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We study the following problem. Given a multiset M of non-negative integers, decide whether there exist and, in the

positive case, compute two non-trivial multisets whose Minkowski sum is equal to M . The Minkowski sum of two

multisets A and B is a multiset containing all possible sums of any element of A and any element of B. This problem

was proved to be NP-complete when multisets are replaced by sets. This version of the problem is strictly related to

the factorization of boolean polynomials that turns out to be NP-complete as well. When multisets are considered, the

problem is equivalent to the factorization of polynomials with non-negative integer coefficients. The computational

complexity of both these problems is still unknown.

The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative integers.

Experimental results show that our heuristic decomposes multisets of hundreds of elements within seconds, inde-

pendently of the magnitude of numbers belonging to the multisets. Our heuristic can also be used for factoring

polynomials in N[x]. We show that, when the degree of the polynomials gets larger, our technique is much faster than

the state-of-the-art algorithms implemented in commercial software like Mathematica and MatLab.
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1 Introduction

The idea of decomposing a mathematical object into the sum (product, or other operations) of smaller

ones is definitely not new. A huge literature has been devoted to the factorization of numbers, polynomi-

als, matrices, graphs and many other mathematical objects, including sets and multisets. The basic idea

behind factorization is decomposing a complex object into smaller and easier to analyze pieces. Proper-

ties satisfied by each piece might shed some light on the properties satisfied by the entire object. As an

example, from irreducible factors of a polynomial, we can recover valuable information about its roots. In

this paper, we study the decomposition of multisets of non-negative integers according to the Minkowski

sum. Multisets are an extension of the notion of sets where, basically, multiple copies of the same element

are allowed. The Minkowski sum is a binary operation that can be applied both to sets and multisets. The

Minkowski sum of two multisets A and B is a multiset containing all possible sums of any element of A
and any element of B.
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Given a multiset M of non-negative integers, the decomposition problem asks for computing two

non-trivial multisets whose Minkowski sum is equal to M . Multisets theory have applications in many

fields Singh et al. (2007), e.g., in combinatorics Anderson (2002); Stanley (2011); Stanley and Fomin

(1999), in the theory of relational databases Grumbach and Milo (1996); Henglein et al. (2022); Lamperti

et al. (2000), in multigraphs theory DeVos et al. (2013); Dudek et al. (2013) and in computational geome-

try Emiris et al. (2017). The problem of decomposing multisets of non-negative integers is strictly related

to the problem of factoring univariate polynomials with non-negative coefficients (see Section 2.1 for de-

tails). Even if this problem arises in a very natural way in a number of different theoretical and practical

contexts, it has not been thoroughly studied (see for example Brunotte (2013); Campanini and Facchini

(2019); Van de Woestijne (2012)) and its computational complexity is still unknown. To our knowledge,

no polynomial time algorithm nor an NP-completeness proof exists. When multisets are replaced by sets,

the decomposition problem was proved to be NP-complete Kim and Roush (2005). Other variants of the

Minkowski sum decomposition problem have been studied. As an example, in Gao and Lauder (2001)

the authors study the Minkowski decomposition of integral convex polytopes proving that the decisional

version of this problem is again NP-complete.

The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative

integers which, in turn, can be applied to factoring polynomials with non-negative coefficients.

The idea behind our algorithm is to transform the decomposition problem in an optimization problem

by introducing a score function for candidate solutions. A candidate solution is an approximation of a

solution. The score function measures the quality of candidate solutions, i.e., the similarity to the actual

solution (not necessarily unique). The score function reaches its maximum (whose value is known in

advance) only at a solution for the problem. Our algorithm starts from a randomly generated candidate

solution s0 and iteratively improves it until it finds a local optimum candidate solution sk according to

the score function. If sk reaches the maximum score the algorithms terminates, otherwise it starts over

from another initial candidate solution computed starting from sk. The maximum number of iterations is

bounded by a predetermined threshold.

We extensively tested our algorithm over randomly generated instances of different size and structure.

Experimental results (see Section 4 and Tables in Appendix A and B) show that after a small number of

iterations our algorithm almost always finds a solution.

As far as polynomial with non-negative coefficients factorization is concerned, no efficient and specif-

ically designed algorithms are known. A possible natural strategy to solve this problem might consist of

factoring the polynomial in Z[x] (this can be done in polynomial time) and then suitably grouping factors

in Z[x] in order to get factors in N[x]. Unfortunately, there exists no efficient algorithm to perform the

grouping of factors whose number can be, in general, exponentially large. In our opinion, this is an inter-

esting problem in itself. Since decomposing multisets of non-negative integers is equivalent (under some

conditions we will discuss in Section 2.1) to the problem of factoring polynomials in N[x], the alternative

strategy might also be used for decomposing multisets. In Section 5 we make a comparison between our

algorithm and the alternative strategy depicted above unrealistically assuming that the grouping of factors

can be computed for free. We used built-in functions provided in Wolfram Mathematica language for

integer polynomials factorization (similar results have been found using MatLab).

Experimental results clearly show (see Tables 13,14 and 15 in Appendix B) that, when the degree of

polynomials increases, our technique is much faster than going through factoring. Reversing the line of

reasoning, i.e., using multisets decomposition techniques for factoring polynomials in N[x], our heuristics

becomes a serious candidate to be the first effective method for factoring polynomials with non-negative
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coefficients.

The rest of this paper is organized as follows. In Section 2 we give basic definitions and known results.

In Section 3 we describe our heuristics and we provide its pseudocode. In Section 4 we show experi-

mental results. In Section 5 we make a comparison between our algorithm and an alternative strategy

for decomposing multisets based on integer polynomial factorization. Section 6 contains conclusions and

some ideas for further works. Appendices A and B contain tables with experimental data.

2 Definitions and Known Results

Let Z be the set of integers and Z[x] be the sets of univariate polynomials with coefficients in Z. Let N be

the set of non-negative integers and N[x] be the sets of univariate polynomials with coefficients in N.

Multisets are an extension of the concept of sets. While a set can contain only one occurrence of any

given element, a multiset may contain multiple occurrences of the same element. To distinguish multisets

from sets, we will represent multisets by using double braces.

As an example M = {{2, 2, 3, 3, 5, 5, 5, 5, 5, 6, 8, 8}} is a multiset. Given a multiset M we denote by

µ(x,M) the number of occurrences (possibly 0) of the element x in M . Sometimes we will represent

a multiset M as a set of pairs (element, µ(element,M). With this notation, the above multiset can be

written as M = {(2, 2), (3, 2), (5, 5), (6, 1), (8, 2)}. In what follows, we will consider sets and multisets

of numbers. This enable us to define a binary operation on them (denoted by the symbol ⊕) sometimes

called Minkowski sum. We will use the symbol ⊕ both for sets and multisets sum inferring the type of

operation from the type of operands.

Definition 1 (Minkowski Set Sum). The Minkowski sum of two sets A and B is a set defined as follows.

A⊕ B = {a+ b : a ∈ A and b ∈ B}

Example 1. Example of set sum. Let A = {0, 1, 3} and B = {2, 5}. Then A⊕B = {2, 3, 5, 6, 8}. Since

we are working with sets, the multiplicity of 5 in A ⊕ B is 1 even if 5 can be obtained both as 0 + 5 and

3 + 2.

Definition 2 (Minkowski Multiset Sum). The Minkowski sum of two multisets A and B is a multiset given

by

A⊕B = {{a+ b : a ∈ A and b ∈ B}}
Example 2. Examples of multiset sum.

Let A = {{0, 1, 3}} and B = {{2, 5}}. Then A⊕B = {{2, 3, 5, 5, 6, 8}}.

Let A = {{0, 1, 3, 3}} and B = {{2, 2, 5}}. ThenA⊕B = {{2, 2, 3, 3, 5, 5, 5, 5, 5, 6, 8, 8}}.

The identity element with respect to the set sum is {0} and the identity element with respect to the

multiset sum is {{0}}. A multiset A is contained in a multiset B (A ⊆ B) if and only if

∀x ∈ A : x ∈ B and µ(x,A) ≤ µ(x,B) (1)

We also define the multiset difference operation (denoted by the \ symbol) as follows.

A \B = {(x,mx) : x ∈ A and mx = max(µ(x,A) − µ(x,B), 0)} (2)

As an example, {{2, 2, 3, 3, 5, 6, 8, 8}}\{{2, 3, 3, 3, 5, 9}}= {{2, 6, 8, 8}}. We now introduce the notion

of reducible multisets (sets) of non-negative integers.



4 Luciano Margara

Definition 3 (Reducible multiset (set)). A multiset (set) M of non-negative integers is reducible if and

only if there exist two multisets (sets) A and B, both of them different from the identity element, such that

M = A⊕B.

A multiset (set) M of non-negative integers is irreducible (sometimes called prime) if and only if it is

not reducible. We are now ready to state the following two problems.

Definition 4 (SET-RED). Given a set S of non-negative integers, decide whether S is reducible or not.

Definition 5 (MULTISET-RED). Given a multiset M of non-negative integers, decide whether M is re-

ducible or not.

The following result was proved in Gao and Lauder (2001).

Theorem 1. SET-RED is NP-complete.

Unlike SET-RED, the computational complexity of MULTISET-RED is, to our knowledge, still unknown.

This leads us to state the following open question.

Question 1. Is MULTISET-RED NP-complete ?

Even if we have defined SET-RED and MULTISET-RED in their decisional version, in the rest of this

paper we will refer to them (with a little abuse of notation) as constructive problems, i.e, the problem of

effectively computing two multisets (sets) whose Minkowski sum is equal to the multiset (set) received as

input.

In the next example we show that the irreducible factorization of non-negative integer multisets is not

unique. This makes the problem of factoring multisets even harder, if possible.

Example 3. Let M = {{0, 1, 2, 3, 4, 5}}. Then

M = {{0, 1}} ⊕ {{0, 2, 4}}
= {{0, 3}} ⊕ {{0, 1, 2}}.

Multisets {{0, 1}}, {{0, 2, 4}}, {{0, 3}} and {{0, 1, 2}} are irreducible.

2.1 Multisets decomposition and polynomials factorization

One of the most studied problem in computer algebra is the problem of factoring polynomials. A huge

literature has been devoted to the factorization of polynomials (without claim of exhaustiveness see Hoeij

(2002); Lenstra et al. (1982); Kaltofen (1992)). The first polynomial factorization algorithm was pub-

lished by Theodor Von Schubert in 1793 Schubert (1793). Since then, dozens of papers on the computa-

tional complexity of polynomial factorization have been published. In 1982, Arjen K. Lenstra, Hendric

W. Lenstra, and László Lovász Lenstra et al. (1982) published the first polynomial time algorithm for

factoring polynomials over Q and then over Z.

The problem of factoring polynomials over a ring can be, in a sense, labeled as “well studied” and

“efficiently solved”. The same cannot be said when rings are replaced by semirings (e.g. the natural

numbers). Unlike the case of factoring polynomials over rings, the problem of factoring polynomials

over semirings has received far less attention, there are far fewer known results and many interesting

unanswered questions. One of them is the following.

Question 2 (N-POLY-RED). Given a polynomial p(x) ∈ N[x], decide whether p(x) is reducible in N[x].
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As far as we know, for the N-POLY-RED problem, there are neither polynomial algorithms to solve it

nor proofs of NP-completeness. N-POLY-RED problem is strictly related to the MULTISET-RED problem.

To any given polynomial p(x) ∈ N[x] it is possible to associate a multiset as follows. Let p = a0 +
a1x+ a2x

2 + · · ·+ anx
n be any element of N[x]. We define the multiset

Multiset(p) = {{
a0

︷ ︸︸ ︷

0, . . . , 0, . . . ,

ai

︷ ︸︸ ︷

i, . . . , i, . . . ,

an

︷ ︸︸ ︷
n, . . . , n}} (3)

On the other hand, we can associate to any multiset

M = {{
m1

︷ ︸︸ ︷
n1, . . . , n1,

m2

︷ ︸︸ ︷
n2, . . . , n2, . . . ,

md

︷ ︸︸ ︷
nd, . . . , nd}}

the polynomial

Polynomial(M) = m1x
n1 +m2x

n2 + · · ·+mdx
nd (4)

It is not difficult to verify that

- Polynomial(Multiset(p)) = p and Multiset(Polynomial(M)) = M
- Multiset(p q) = Multiset(p)⊕Multiset(q) and

- Polynomial(A⊕B) = Polynomial(A)Polynomial(B)
As a consequence of these properties we have that

- M is an irreducible multiset of non-negative integers if and only if

Polynomial(M) is an irreducible polynomial over N[x] and

- p is an irreducible polynomial over N[x] if and only if Multiset(p) is an irreducible multiset of non-

negative integers.

Unfortunately, in the general case, the size of Multiset(p) may be exponentially larger than the size

of p. This prevents us from readily translating computational complexity results for MULTISET-RED into

equivalent results for N-POLY-RED and viceversa.

Taking advantage of Example 3 we show that the irreducible factorization of polynomials in N[x] is not

unique.

Example 4. Let p(x) = 1 + x + x2 + x3 + x4 + x5. The complete factorization of p(x) in Z[x] is

p(x) = (1+x)(1−x+x2)(1+x+x2). Since (1+x)(1−x+x2) ∈ N[x] and (1−x+x2)(1+x+x2) ∈ N[x],
then we have two distinct factorizations of p(x) in N[x].

p(x) = (1 + x)(1 + x2 + x4)

= (1 + x3)(1 + x+ x2)

3 The Heuristics

In this section we provide a complete description of our heuristics by using pseudocode (for details see

pages from 20 to 22 in Cormen et al. (2009)).

Given a multiset M of n non-negative integer numbers, a candidate solution for M is any multiset A
(A 6= {{0}}) of cardinality m such that A ⊆ M and m divides n. A candidate solution A for M is also

a solution for M if and only if there exists another candidate solution B (B 6= {{0}}) for M such that

M = A ⊕ B. Given a candidate solution A for M , deciding whether A is also a solution for M can be
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done in polynomial time. Given a solution A for M , computing B such that M = A⊕B can be done in

polynomial time.

Our heuristics starts from an initial candidate solution of a given cardinality and iteratively improves it

(according to a given score function) until it finds a solution. The cardinality m of the initial candidate

solution is unknown in advance but must divide the cardinality of M . For computing an actual decompo-

sition of a multiset M of cardinality n we have to run our algorithm on all possible factors f of n with

f ≤ √
n. We are aware that this leads to an overhead of computation, but luckily, the number of factors

of any positive integer n (not exceeding
√
n) is very small if compared to n. For every positive integer n,

with 100 ≤ n ≤ 100.000, we computed its number of factors divided by n. It turns out that the average

of these ratios is 0.00025 and the maximum is 0.058 (higher values are obtained for small numbers). For

these reasons, in what follows, we will assume that the target cardinality of solutions is known.

We now give the pseudocode of each function used in our heuristics and a short explanation on how it

works.

INITIALSOLUTION(M,n)

1 m = ROUND(M. length/2)
2 M = SORT(M)
3 M = M [1 . .m]
4 M = RANDOMSAMPLE(M,n)
5 return M

INITIALSOLUTION takes as input a multiset M and a non-negative integer n that divides the cardinality

of M and returns a candidate solution of cardinality n.

SCORE(M,S)

1 // invariant: S[1] = 0, S ⊆ M and S. length divides M. length
2 col = S. length
3 row = M. length/col // Let mat be an row × col matrix whose entries are set to 0
4 r = M \ S
5 // first row of mat gets S
6 score = col
7 for i = 2 to row
8 w = MIN(r)

9 r = r \ {w}
10 score = score + 1
11 //mat[row, 1] = w
12 for j = 2 to col
13 c = w + S[j]
14 if c ∈ r
15 r = r \ {c}
16 score = score + 1
17 //mat[row, col] = c
18 else return score
19 return score
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SCORE takes as input a multiset M and a candidate solution S for M and returns a positive integer

measuring the quality of S. SCORE(M,S) ranges from length of S (lowest quality) to length of M
(highest quality). If SCORE(M,S) = length of M then S is a solution for M .

To better understand how SCORE works, we describe its behavior on the following example. Let A =
{{0, 1, 3, 3}}, B = {{0, 2, 2, 6}}, and

M = A⊕B = {{0, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 7, 9, 9}}

Assume now to run SCORE(M,B). Since B is a solution for M , SCORE(M,B) returns 16, i.e., the

length of M . The matrix mat described (but not computed) at lines 6,8,14 and 20 would be

mat =







0 2 2 6
1 3 3 7
3 5 5 9
3 5 5 9







and the elements of mat would give exactly the multiset M .

Assume now to run SCORE(M,C). Where C = {{0, 1, 2, 6}} is a candidate solution but not a solution.

SCORE(M,C) returns 6. The matrix mat would now have the form

mat =







0 1 2 6
2 3 0 0
0 0 0 0
0 0 0 0







The element at row 2 and column 3 (2 + 2 = 4) in mat cannot be found in M (note that we have already

removed 0, 1, 2, 6, 2 and 3 from M ) and then SCORE(M,C) stops at line 21 returning 6, i.e., the number

of elements correctly placed in mat until that moment.

Last case. Assume to run SCORE(M,C). Where C = {{0, 2, 2, 5}} is again a candidate solution but

not a solution. SCORE(M,C) returns 11. The matrix mat would have now the form

mat =







0 2 2 5
1 3 3 6
3 5 5 0
0 0 0 0







The element at row 3 and column 4 (3 + 5 = 8) in mat cannot be found in M and then SCORE(M,C)

stops at line 21 returning 11, i.e., the number of elements correctly placed in mat until that moment.
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NEIGHBORSEARCH(M,S)

1 // invariant: S[1] = 0 and S. length divides M. length
2 initial score = SCORE(M,S)
3 alternatives = DELETEDUPLICATES(M \ S)
4 for i = 2 to S. length
5 for j = 1 to alternatives. length
6 temp = S[i]
7 S[i] = alternatives[j]
8 new score = SCORE(M,S)
9 if new score > initial score

10 return (new score, S)
11 else S[i] = temp
12 return (initial score, S)

NEIGHBORSEARCH takes as input a multiset M and a candidate solution S for M and returns a candidate

solution N in the neighborhood of S such that SCORE(M,N ) > SCORE(M,S), if any. Returns S,

otherwise.

Given a multiset M and a candidate solution S for M , a neighbor of S is any candidate solution for M
differing from S for exactly 1 element. To speed up the process, NEIGHBORSEARCH returns (line 11) the

first improved candidate solution found.

FINDLOCALOPT(M,S)

1 // invariant: S[1] = 0
2 n = M. length
3 current score = SCORE(M,S)
4 while TRUE

5 (score, S) = NEIGHBORSEARCH(M,S)
6 if score = = n
7 return (TRUE, S)
8 if score = = current score
9 return (FALSE, S)

10 current score = score

FINDLOCALOPT takes as input a multiset M and a candidate solution S for M and returns a candidate

solution N with the property of being the best candidate solution in its neighbor, i.e., a local optimum. To

accomplish this task, FINDLOCALOPT keeps on calling NEIGHBORSEARCH on improved solutions until

no more improvement is found. Note that the candidate solution N produced by FINDLOCALOPT is not

guaranteed to be a solution.
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ITERATEDSEARCH(M,m, iterations)

1 // invariant: m divides M. length
2 current solution = INITIALSOLUTION(M,m)
3 for i = 1 to iterations
4 (found, S) = FINDLOCALOPT(M, current solution)
5 if found
6 return S
7 current solution = NEWINITIALSOLUTION(M, current solution)
8 // note that current solution contains 0
9 return solution not found

ITERATEDSEARCH takes as input a multiset M , an integer m > 1 dividing the cardinality of M and

an upper bound on the number of iterations and returns a solution of cardinality m, if found. ITERAT-

EDSEARCH keeps on calling FINDLOCALOPT with different initial candidate solutions (computed by

NEWINITIALSOLUTION) until a solution is found or the maximum number of iterations is exceeded.

NEWINITIALSOLUTION(M,S)

1 // invariant: S[1] = 0, all the elements of S are in M and S. length divides M. length
2 col = S. length
3 row = M. length/col
4 // Let mat be an row × col matrix whose entries are set to 0
5 R = M \ S
6 // first row of mat gets S
7 new set = S
8 for i = 2 to row
9 w = MIN(R)

10 R = R \ {w}
11 new set = new set

⋃
{w}

12 //mat[row, 1] = w
13 for j = 2 to col
14 c = w + S[j]
15 if c ∈ R
16 r = R \ {c}
17 //mat[row, col] = c
18 else return RANDOMSAMPLE(new set, col)
19 // RANDOMSAMPLE(new set, col) must contain 0
20 return RANDOMSAMPLE(new set, col)

NEWINITIALSOLUTION takes as input a multiset M and a candidate solution S for M and returns a new

initial candidate solution. To better understand how NEWINITIALSOLUTION works, we show its behavior

on an example. Let A = {{0, 1, 3, 3}}, B = {{0, 2, 2, 6}}, and

M = A⊕B = {{0, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 7, 9, 9}}

Assume to run NEWINITIALSOLUTION(M,C). Where C = {{0, 2, 2, 5}} is a candidate solution but not
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a solution. The matrix mat, if computed, would have the form

mat =







0 2 2 5
1 3 3 6
3 5 5 0
0 0 0 0







NEWINITIALSOLUTION(M,C) stops at line 20 returning {{0, 2, 2, 5, 1, 3}}, i.e., the union of the first row

of mat and the initial part (first 3 elements) of the first column of mat. Experimental results clearly show

that solutions to the problem contains with high probability elements placed in the first row or in the first

column of the matrix mat associated to the local optimum candidate solution.

4 Experimental results

We tested our algorithm on an iMac equipped with a 4.2 GHz Intel Core i7 quad-core processor and 32
GB RAM (2400 MHz DDR4 ). Operating System: macOS Monterey Version 12.2.1. Our algorithm has

been implemented in Wolfram Mathematica language (Version 12). To make the code more readable even

to those unfamiliar with the Mathematica language, we decided to describe it providing a pseudocode

version (see Section 3).

Our algorithm has been extensively tested over instances (multisets of non-negative integers) of differ-

ent size and structure. Instances depend on two parameters, namely structure and range, and have been

generated according to the following procedure.

INSTANCEGENERATION(structure, range)

1 inst = {{0}}
2 for i = 1 to structure. length
3 Let M be a multiset with the following properties:

4 - cardinality of M is equal to structure[i]
5 - M contains at least one element equal to 0
6 - each element of M is randomly chosen in the interval [0 . . range]
7 inst = inst⊕M
8 return inst

The parameter structure is a list of positive integers representing the cardinalities of the multisets

that, once summed together, produce the instance. The parameter range represents an upper bound

on the numbers in the multisets (see line 6 of INSTANCEGENERATION). As an example, the instance

produced by INSTANCEGENERATION({2,2,3}, 10) is a multiset of cardinality 12 = 2 × 2 × 3 obtained

by summing up 3 randomly generated multisets of cardinality 2, 2 and 3, respectively. Each element of

the 3 multisets is randomly chosen from the set {0, 1, . . . , 10}. We only consider multisets containing at

least one element equal to zero. In fact, any multiset M that does not contain 0, i.e., µ(0,M) = 0, can be

always decomposed as {{min(M)}} ⊕M ′ where M ′ is a multiset obtained from M subtracting to each

element min(M). As an example, {{2, 4, 3, 4, 3, 5}}= {{2}} ⊕ {{0, 2, 1, 2, 1, 3}}.

For each structure and range, we tested our algorithms on a large number of instances collecting

results in Tables 1 to 12 in Appendix A.

Columns of Tables contain the following data.

1. Size: size of the input, i.e., cardinality of the considered multiset
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2. Structure: structure of the considered multiset

3. Success: percentage of runs for which a solution is found

4. Iterations: Average number of iterations for any given structure
5. T ime: Average running time for any given structure
6. T ime/Iter: T ime divided by Iterations
7. T ime/Size: T ime divided by Size We investigated the performance of our algorithm in different

scenarios. Number of duplicates. We tested our algorithm with two different values of the parameter

range. Namely, range = 5 and range = 10000. In the case of range = 5, multisets contain a large

number of duplicates, while in the case of range = 10000 duplicates are very rare.

with 3 different type of structures {n, n}, {2n, n} and {n, . . . , n}.

- {n, n}: sum of two multisets with the same cardinality;

- {2n, n}: sum of two multisets with different cardinalities (one half of the other);

- {n, . . . , n}: sum of k multisets with the same cardinality (denoted by {n}k).

We now give some reading keys and interpretations of experimental data collected in Tables 1 to 12 in

Appendix A.

ITERATEDSEARCH finds a solution most of the time. Leaving unbounded the maximum number of

allowed iterations, ITERATEDSEARCH always finds a solution. From a practical point of view, leaving

unbounded the number of iterations prevents the algorithm to recognize irreducible multisets. In our tests

we set the maximum number of iterations equal to 100. Even in this case, ITERATEDSEARCH is able to

find a solution approximately 999 times out of 1000.

Multisets with many duplicates approximately takes the same amount of time to decompose with re-

spect to multisets with a small number of duplicates. The presence of many duplicates forces the heuristics

to go through a larger number of iterations to find a solution but single iterations are much faster. With

many duplicates, the behavior of ITERATEDSEARCH is less regular in terms of running times and distri-

bution of failures.

Multisets obtained summing up many small multisets are much easier to decompose with respect to

multisets obtained summing up 2 large multisets. As an example, a multiset with structure {2}15 and

size 32768 takes approximately the same time (last row of Table 3) of a multiset with structure {20, 20}
and size 400 (last row of Table 2). For multisets obtained summing up many small multisets, the average

number of iterations is very close to 1.

5 Polynomial Factorization vs Iterated Search

An alternative strategy for decomposing a multiset of non-negative integers (or, equivalently, an intuitive

way of factoring a polynomial in N[x]) might be the following.

ALTERNATIVESTRATEGY(M )

1 //M is a multiset of non-negative integers

2 p = POLYNOMIAL(M)
3 fl = FACTORLIST(p)
4 (P1 ,P2 ) = GROUP(fl)
5 return (Multiset(P1),Multiset(P2))

Line 2 computes the polynomial p associated to the multiset M as shown in Equation (4). Line 3

computes the factor list fl of p. Line 4, using some unknown algorithm (it would be of some interest
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to find an algorithm for efficiently computing GROUP(fl)), computes a partition P = {P1, P2} (if there

exists one) of the factor list fl such that the product of all the polynomials in P1 and the product of all the

polynomials in P2 have non-negative coefficients.

In what follows we will assume that the computational cost of Line 4 is zero. Table 13 to 15 com-

pare running times of ITERATEDSEARCH and ALTERNATIVESTRATEGY for multisets with homogeneous

structure and increasing ranges.

For computing the factor list at Line 3 of ALTERNATIVESTRATEGY we make use of the function

FACTORLIST provided by Mathematica Language (similar results are obtained by using the function

FACTOR of MatLab).

Experimental results (see Tables 13,14 and 15) clearly show that the running time of ITERATEDSEARCH

is independent of the magnitude of numbers in the multisets (exponents in the polynomials). ITERATED-

SEARCH is much faster than ALTERNATIVESTRATEGY in the case of multisets containing large numbers

and small multiplicity.

Doing the reverse path enable us to give a new technique for decomposing polynomials in N[x] based

on ITERATEDSEARCH.

N-POLYFACT(p)

1 // p ∈ N[x]
2 M = MULTISET(p)
3 S = ITERATEDSEARCH(M) //

4 P = Polynomial(S)
5 return (Polynomial(S), p/P )

We end this section by giving a small multiset M of non-negative integers that ITERATEDSEARCH

decomposes in 0.008 seconds. ALTERNATIVESTRATEGY (both using Mathematica and MatLab factor-

ization primitives) called on the same multiset, after 24 hours of computation, was unable to find any

solution.

A = {{0, 1249, 4270, 4324, 4852}}
B = {{0, 1705, 2250, 2267, 4390}}

M = A⊕B = {{0, 1249, 1705, 2250, 2267, 2954, 3499, 3516, 4270, 4324, 4390, 4852, 5639,
5975, 6029, 6520, 6537, 6557, 6574, 6591, 7102, 7119, 8660, 8714, 9242}}

Polynomial(M) = 1 + x1249 + x1705 + x2250 + x2267 + x2954 + x3499 + x3516 + x4270 +

x4324 + x4390 + x4852 + x5639 + x5975 + x6029 + x6520 + x6537 +

x6557 + x6574 + x6591 + x7102 + x7119 + x8660 + x8714 + x9242

6 Conclusions and further work

We have introduced and analyzed a heuristic technique for decomposing multisets of non-negative integers

according to the Minkowski sum. Experimental results show that our technique allows to decompose quite
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large multisets (hundreds to thousands of elements depending on the instance structure) in seconds. Our

technique can also be used to tackle the problem of factoring polynomials in N[x]. Experimental results

show that, when the size of exponents (elements of multisets) increases, our technique is much faster

than state-of-the-art implementation of polynomial factoring algorithms over Z[x] that can be viewed as

a preparatory step for factoring over N[x].
A natural extension of this work is replacing non-negative integers with more complex mathematical

objects. It would be of some interest to investigate the case of d dimensional vectors of non-negative

integers with d > 1. The problem of decomposing multisets of d dimensional vectors is strictly related to

the problem of factoring multivariate polynomials with non-negative coefficients, but also to a number of

problems arising, for example, in the field of computational geometry and seems to be more challenging

than the 1 dimensional case.

It would be interesting to investigate whether the combination of the results obtained by using our

algorithm on single components of the d dimensional object can be of any help for solving the global

problem.
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A Experimental Data Tables I

Tab. 1: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

9 {3, 3} 100 1 0.001 0.001 0.00011

16 {4, 4} 100 1.14 0.002 0.00175 0.00012

25 {5, 5} 100 1.4 0.008 0.00571 0.00032

36 {6, 6} 100 1.9 0.025 0.01316 0.00069

49 {7, 7} 100 2.6 0.061 0.02346 0.00124

64 {8, 8} 100 3 0.122 0.04067 0.00191

81 {9, 9} 100 4.22 0.242 0.05735 0.00299

100 {10, 10} 100 4.22 0.366 0.08673 0.00366

121 {11, 11} 100 7.06 0.934 0.13229 0.00772

144 {12, 12} 100 4.72 0.95 0.20127 0.0066

169 {13, 13} 100 11.7 2.728 0.23316 0.01614

196 {14, 14} 100 7.02 2.454 0.34957 0.01252

225 {15, 15} 100 7.14 3.298 0.4619 0.01466

256 {16, 16} 100 8.16 4.563 0.55919 0.01782

289 {17, 17} 100 10.72 8.151 0.76035 0.0282

324 {18, 18} 100 9.56 9.18 0.96025 0.02833

361 {19, 19} 99.9 11 12.168 1.10618 0.03371

400 {20, 20} 100 18.5 29.491 1.59411 0.07373

Tab. 2: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

18 {6, 3} 100 1.24 0.002 0.00161 0.00011

32 {8, 4} 100 1.92 0.011 0.00573 0.00034

50 {10, 5} 100 2.52 0.038 0.01508 0.00076

72 {12, 6} 100 3.1 0.104 0.03355 0.00144

98 {14, 7} 100 3.58 0.222 0.06201 0.00227

128 {16, 8} 100 4.68 0.452 0.09658 0.00353

162 {18, 9} 100 6.44 0.961 0.14922 0.00593

200 {20, 10} 100 9.22 1.865 0.20228 0.00932

242 {22, 11} 100 7.56 2.655 0.35119 0.01097

288 {24, 12} 100 9.4 4.161 0.44266 0.01445

338 {26, 13} 100 15.8 8.474 0.53633 0.02507

392 {28, 14} 99.9 12.1 10.56 0.87273 0.02694

450 {30, 15} 100 11.62 13.641 1.17392 0.03031
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Tab. 3: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

8 {2}3 100 1 0.001 0.001 0.00012

16 {2}4 100 1 0.001 0.001 0.00006

32 {2}5 100 1 0.001 0.001 0.00003

64 {2}6 100 1 0.002 0.002 0.00003

128 {2}7 100 1 0.004 0.004 0.00003

256 {2}8 100 1 0.007 0.007 0.00003

512 {2}9 100 1 0.014 0.014 0.00003

1024 {2}10 100 1 0.037 0.037 0.00004

2048 {2}11 100 1 0.11 0.11 0.00005

4096 {2}12 100 1 0.375 0.375 0.00009

8192 {2}13 100 1 1.15 1.15 0.00014

16384 {2}14 100 1 4.708 4.708 0.00029

32768 {2}15 100 1 18.625 18.625 0.00057

Tab. 4: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

27 {3}3 100 1 0.003 0.003 0.00011

81 {3}4 100 1.04 0.012 0.01154 0.00015

243 {3}5 100 1 0.039 0.039 0.00016

729 {3}6 100 1 0.175 0.175 0.00024

2187 {3}7 100 1 1.088 1.088 0.0005

6561 {3}8 100 1 6.646 6.646 0.00101

19683 {3}9 100 1 60.155 60.155 0.00306

Tab. 5: Range = 5. Number of tested instances for each structure: 1000. For Size = 16384, due to time limits, we

reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size

64 {4}3 100 1.1 0.022 0.02 0.00034

256 {4}4 100 1.02 0.14 0.13725 0.00055

1024 {4}5 100 1.06 1.266 1.19434 0.00124

4096 {4}6 100 1 11.377 11.377 0.00278

16384 {4}7 100 1.24 366.325 295.423 0.02236
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Tab. 6: Range = 5. Number of tested instances for each structure: 1000. For Size = 15625, due to time limits, we

reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size

125 {5}3 100 1.38 0.114 0.08261 0.00091

625 {5}4 100 1.26 1.307 1.0373 0.00209

3125 {5}5 100 1.12 23.818 21.2661 0.00762

15625 {5}6 100 1.08 521.383 482.762 0.03337

Tab. 7: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

9 {3, 3} 100 1 0.001 0.001 0.00011

16 {4, 4} 100 1 0.002 0.002 0.00012

25 {5, 5} 100 1 0.008 0.008 0.00032

36 {6, 6} 100 1 0.02 0.02 0.00056

49 {7, 7} 100 1 0.05 0.05 0.00102

64 {8, 8} 100 1 0.105 0.105 0.00164

81 {9, 9} 100 1 0.199 0.199 0.00246

100 {10, 10} 100 1 0.375 0.375 0.00375

121 {11, 11} 100 1 0.606 0.606 0.00501

144 {12, 12} 100 1 1.138 1.138 0.0079

169 {13, 13} 100 1 1.815 1.815 0.01074

196 {14, 14} 100 1 2.831 2.831 0.01444

225 {15, 15} 100 1 4.064 4.064 0.01806

256 {16, 16} 100 1 6.09 6.09 0.02379

289 {17, 17} 100 1.4 10.515 7.51071 0.03638

324 {18, 18} 100 1 13.469 13.469 0.04157

361 {19, 19} 100 1 19.217 19.217 0.05323

400 {20, 20} 100 1.02 27.122 26.5902 0.0678
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Tab. 8: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

18 {6, 3} 100 2.22 0.004 0.0018 0.00022

32 {8, 4} 100 1.78 0.012 0.00674 0.00038

50 {10, 5} 100 2.2 0.047 0.02136 0.00094

72 {12, 6} 100 1.76 0.096 0.05455 0.00133

98 {14, 7} 100 1.72 0.214 0.12442 0.00218

128 {16, 8} 100 1.96 0.488 0.24898 0.00381

162 {18, 9} 100 3.02 1.469 0.48642 0.00907

200 {20, 10} 99.9 6.14 6.141 100016 0.0307

242 {22, 11} 100 2.68 3.944 1.47164 0.0163

288 {24, 12} 100 1.64 4.777 2.9128 0.01659

338 {26, 13} 100 2.26 9.864 4.3646 0.02918

392 {28, 14} 100 2.06 15.012 7.28738 0.0383

450 {30, 15} 100 3.18 33.11 10.412 0.07358

Tab. 9: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

8 {2}3 100 1 0.001 0.001 0.00012

16 {2}4 100 1 0.001 0.001 0.00006

32 {2}5 100 1 0.001 0.001 0.00003

64 {2}6 100 1 0.001 0.001 0.00002

128 {2}7 100 1 0.002 0.002 0.00002

256 {2}8 100 1 0.004 0.004 0.00002

512 {2}9 100 1 0.009 0.009 0.00002

1024 {2}10 100 1 0.024 0.024 0.00002

2048 {2}11 100 1 0.07 0.07 0.00003

4096 {2}12 100 1 0.228 0.228 0.00006

8192 {2}13 100 1 0.811 0.811 0.0001

16384 {2}14 100 1 2.984 2.984 0.00018

32768 {2}15 100 1 11.708 11.708 0.00036
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Tab. 10: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size

27 {3}3 100 1 0.002 0.002 0.00007

81 {3}4 100 1 0.008 0.008 0.0001

243 {3}5 100 1 0.028 0.028 0.00012

729 {3}6 100 1 0.139 0.139 0.00019

2187 {3}7 100 1 0.916 0.916 0.00042

6561 {3}8 100 1 7.047 7.047 0.00107

19683 {3}9 100 1 72.214 72.214 0.00367

Tab. 11: Range = 10000. Number of instances for each structure: 1000. For Size = 16384, due to time limits, we

reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size

64 {4}3 100 1.16 0.021 0.0181 0.00033

256 {4}4 100 1.12 0.148 0.13214 0.00058

1024 {4}5 100 1.28 1.54 1.20312 0.0015

4096 {4}6 100 1.26 21.532 17.0889 0.00526

16384 {4}7 100 1.18 355.661 301.408 0.02171

Tab. 12: Range = 10000. Number of instances for each structure: 1000. For Size = 3125 and Size = 15625, due

to time limits, we reduced the number of instances to 100.

Size Structure Success Iterations Time Time/Iter Time/Size

125 {5}3 100 1.62 0.146 0.09012 0.00117

625 {5}4 100 5.2 4.767 0.91673 0.00763

3125 {5}5 100 7.7 122.143 15.8627 0.03909

15625 {5}6 100 3.4 1689.16 496.812 0.10811
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B Experimental Data Tables II

Tab. 13: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different

range values and structure = {5, 5}. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

25 {5, 5} 100 0.09 0.144747

25 {5, 5} 300 0.008 3.764507

25 {5, 5} 500 0.009 22.003455

25 {5, 5} 700 0.008 64.317906

25 {5, 5} 900 0.007 161.541679

25 {5, 5} 1100 0.01 253.745332

Tab. 14: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different

range values and structure = {10, 10}. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

100 {10, 10} 100 0.551 0.220502

100 {10, 10} 300 0.532 4.213079

100 {10, 10} 500 0.397 26.706801

100 {10, 10} 700 0.426 75.783461

100 {10, 10} 900 0.612 187.938575

100 {10, 10} 1100 0.4 379.374113

Tab. 15: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different

range values and structure = {2}12. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

4096 {2}12 40 0.294 0.142596

4096 {2}12 60 0.319 2.682864

4096 {2}12 80 0.316 3.145838

4096 {2}12 100 0.311 6.137466

4096 {2}12 120 0.283 31.849028

4096 {2}12 140 0.253 356.950613
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