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The average distance of a vertex v of a connected graph G is the arithmetic mean of the distances from v to all other

vertices of G. The proximity π(G) and the remoteness ρ(G) of G are the minimum and the maximum of the average

distances of the vertices of G, respectively.

In this paper, we give upper bounds on the remoteness and proximity for graphs of given order, minimum degree and

maximum degree. Our bounds are sharp apart from an additive constant.
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1 Introduction

Let G be a connected graph of order n with vertex set V (G). The average distance σ(v) of a vertex v of

G is defined as the arithmetic mean of the distances from v to all other vertices of G, i.e.,

σ(v,G) =
1

n− 1

∑

u∈V (G)

d(v, u),

where d(v, u) is the usual shortest path distance between vertices v and u. The proximity and the remote-

ness of G, denoted by π(G) and ρ(G), are the smallest and the largest, respectively, average distance

among the vertices of G. The average distance of a vertex v is closely related to its total distance σ(v,G),
defined as the sum of the distances from v to all other vertices. Clearly, σ(v,G) = (n− 1)σ(v,G). Also

the names status or transmission have been used in the literature. The proximity of a graph is closely

related to its minimum status, defined as the smallest total distance among the vertices of the graph.

If a graph G represents a network in which we want to place a facility which should be close, on

average, to vertices of G, then the proximity of G is an indicator for how good the best location in the

network is, and the remoteness is an indicator for how good the worst location is.
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The proximity and also the remoteness of a connected graph on at least two vertices is at least 1.

Sharp upper bounds in terms of order alone were given by Zelinka [21] and later, independently, by

Aouchiche and Hansen [3], who introduced the names proximity and remoteness. They proved that for

every connected graph of order n,

ρ(G) ≤ n

2
, (1)

with equality if and only if G is a path, and also that

π(G) ≤
{ n+1

4 if n is odd,
n+1
4 + 1

4(n−1) if n is even,
(2)

with equality if and only if G is a path or a cycle.

There are several results in the literature on relations between proximity or remoteness and other dis-

tance measures. For the diameter (defined as the largest of the distances between the vertices), these were

first investigated by Aouchiche and Hansen [3], who determined sharp upper bounds on the difference be-

tween diameter and proximity and on the difference between diameter and remoteness in terms of order.

Improved bounds, that take into account also the minimum degree were given in [9] and [11].

Also bounds involving the radius (defined as the smallest of the eccentricities of the vertices of G,

where the eccentricity of a vertex v is the distance from v to a vertex farthest from v) have been explored.

A sharp upper bound on the difference between radius and proximity of a graph of given order was given

in [3], and improved bounds that take into account also the minimum degree can be found in [9] and [11].

A conjecture in [3] on the maximum value of the difference between remoteness and radius for graphs of

given order was proved independently by Wu and Zhang [20] and Hua, Chen and Das [13].

Ma, Wu and Zhang [16] showed that the difference between average eccentricity (defined as the arith-

metic mean of the eccentricities of the vertices) and proximity is maximised by the path, thus proving a

conjecture from [3]. Another conjecture in [3] which states that the difference between average eccentric-

ity and remoteness cannot exceed that of the cycle was shown by Sedlar [19] to hold for trees.

The maximum value of the difference between remoteness and average distance (defined as the arith-

metic mean of the distances between all vertices of the graph) and the difference between average distance

and proximity were determined by Wu and Zhang [20] and by Sedlar [19], respectively, thus confirming

two conjectures from [3]. The minimum value of the ratio of proximity to average distance for graphs of

given order was determined by Hua and Das [12].

Proximity and remoteness have been studied for graphs from various classes. Among other results,

Barefoot, Entringer and Székely [4] determined the maximum value of the ratio ρ(T )/π(T ) for a tree T
of given order. They also determined lower bounds on the ratios of average distance to proximity and

average distance to remoteness for trees of given order. The trees that maximise proximity among trees

of given order and diameter were determined by Peng and Zhou [17]. The same authors also gave bounds

on proximity in terms of order and either number of end-vertices, number of vertices of odd degree and

number of vertices of degree 2. Proximity of series-reduced trees, i.e., trees with no vertex of degree

2, were studied by Cheng, Lin and Zhou [5]. For maximal planar graphs, bounds on remoteness and

proximity were given by Czabarka, Dankelmann, Olsen and Székely in [6] and [7], respectively. The

study of proximity and remoteness in digraphs was initiated by Ai, Gerke, Gutin and Mafunda [1].

This paper is concerned with bounds on proximity and remoteness that take into account vertex degrees.

The degree of a vertex v is defined by degG(v) = |NG(v)|, where NG(v) is the neighbourhood of v i.e.,
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the set of vertices adjacent to v. By δ(G) and ∆(G) we denote the minimum degree and the maximum

degree of G, i.e., the smallest and the largest degree of a vertex in G.

The upper bounds in (1) and (2) are attained by paths, which have minimum degree 1. For graphs of

larger minimum degree δ, the following improved bounds were given in [8].

ρ(G) ≤ 3n

2(δ + 1)
+

7

2
, (3)

π(G) ≤ 3n

4(δ + 1)
+ 3, (4)

and further improvements for graphs not containing a 3-cycle or a 4-cycle as a subgraph were given in

[10].

The graphs constructed in [8] to show that (3) and (4) are sharp apart from an additive constant are

close to regular. Hence it is natural to ask if one can find improved bounds for graphs containing a vertex

of large degree. That this is indeed the case for trees was shown by Tsai, Shang and Zhang [15] and

Rissner and Burkhard [18], who determined the trees of given order and maximum degree that maximise

proximity and remoteness. In this paper we answer the above question in the affirmative and improve the

bounds (3) and (4) for graphs of given maximum degree. We prove the following bounds, which are sharp

apart from an additive constant:

π(G) ≤
{

3(n−∆)2

2(n−1)(δ+1) +
13
2 if ∆ > n

2 − 1,

3n2−6∆2

4(n−1)(δ+1) +
35
4 if ∆ ≤ n

2 − 1,

and

ρ(G) ≤ 3(n2 −∆2)

2(n− 1)(δ + 1)
+ 7,

where ∆ denotes the maximum degree of G. Our bounds show a certain analogy to results in [2], where

it was shown that bounds on the average distance of graphs in terms of order and minimum degree can be

improved significantly for graphs with large maximum degree.

This paper is organised as follows. In Section 2 we consider graphs with a weight function on the

vertex set. We define the weighted distance of a vertex and prove bounds on the weighted distance. These

bounds are used in Section 3 to prove our main results, bounds on proximity and remoteness in terms of

order, minimum degree and maximum degree. Graphs that show that these bounds are sharp apart from

an additive constant are constructed in Section 4.

2 Proximity and remoteness of weighted graphs

In this section we consider graphs with a weight function on the vertex set. Taking an approach similar to

that in [8], we first define the weighted distance of a vertex v.

Definition 2.1 Let G be a connected graph and c : V (G) −→ R
≥0 be a nonnegative weight function on

the vertices of G. Let v be a vertex of G. Then the weighted distance of v with respect to c is defined as

σc(v) =
∑

w∈V (G)−{v}

c(w)d(v, w).
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A vertex whose weighted distance is minimum among all vertices of G is a c-median vertex, and the

c-median of G is the set of all c-median vertices of G.

If c(v) = 1 for every vertex v of G, then the c-median is exactly the median of G. It is well-known (see

for example [21]) that in a tree T of order n, the median vertices are exactly the vertices whose branch

weight is not more than n
2 , where the branch weight of a vertex v in T is defined as the maximum order

among all components of T − v. A more general result for weighted trees was given by Kariv and Hakimi

[14].

Definition 2.2 Let T be a tree and c : V (T ) −→ R
≥0 be a nonnegative weight function on the vertices of

T . Let v be a vertex of T . Then the c-branch weight bwc(v, T ) of v is the largest weight of a component

of T − v, where the weight of a component is the sum of the weights of its vertices.

If G is a graph with a weight function c on the vertex set, then for a set A of vertices of G we write

c(A) for
∑

v∈A c(v). If H is a subgraph of G, then we write c(H) for c(V (H)).

Proposition 2.1 ([14]) Let T be a tree and c : V (T ) −→ R
≥0 be a nonnegative weight function on the

vertices of T . Let v be a vertex of T . Then v is a c-median vertex of T if and only if bwc(v, T ) ≤ c(T )
2 .

A key result on weighted graphs in [8] gives a bound on the weighted distance of a c-median vertex of a

weighted graph with given total weight but no restriction on the order, in which the weight of every vertex

is at least a prescribed value k. In the following lemma, which can be viewed as an extension of the result

in [8], the graph satisfies the additional condition that the weight of at least one vertex is not less than a

prescribed large value L. Its proof is significantly more involved than that of the corresponding result in

[8].

Lemma 2.2 Let G be a connected graph and k, L ∈ R with 0 < k < L. Let c : V (G) −→ R
≥0 be

a weight function with total weight N . Assume that c(u) ≥ k for every vertex u ∈ V (G), and that G
contains a vertex of weight at least L. Assume further that N − L is an integer multiple of k. If v is a

c-median vertex of G, then

σc(v,G) ≤
{

(N−L)(N−L+k)
2k if L > N

2 ,

N2−2L2

4k + N+L
2 if L ≤ N

2 .
(5)

Proof: Assume that N , k and L are given. Let T be a spanning tree of G that preserves the distances

from a c-median vertex v. Clearly, v is a c-median vertex of T and σc(v, T ) = σc(v,G), so it suffices to

prove the lemma for T . We may assume that T and c are such that the weighted distance of a c-median

vertex of T is maximum among all trees and weight functions satisfying the hypothesis of the lemma.

Our proof strategy is as follows. We prove a sequence of claims from which it follows that T is a path

in which one end-vertex has weight L, and all other vertices have weight k. Evaluating the weighted

distance of a c-median vertex of this path then yields the inequality (5).

We assume that v is a c-median vertex of T that is also an internal vertex, if possible. Let u1, u2, . . . , ud

be the neighbours of v. For i ∈ {1, 2, ..., d} denote the component of T − v containing ui by Ti, and

its total weight by Ci. We may assume that C1 ≥ C2 ≥ . . . ≥ Cd. It follows from Proposition 2.1 that

C1 = bwc(v, T ) ≤ N
2 .

CLAIM 1: Ci + Cj >
N
2 for all distinct i, j ∈ {1, 2, . . . , d}.
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Suppose to the contrary that Ci + Cj ≤ N
2 for some distinct i, j ∈ {1, 2, . . . , d}. We consider the tree

H = T −vui+uiuj with the same weight function c. Clearly, the weights of the vertices of H satisfy the

hypothesis of the lemma. Furthermore, v is also a c-median vertex of H since the new branch has weight

Ci + Cj ≤ N
2 , which implies that the c-branch weight of v in H is still at most N

2 . Since the distance

between the vertices of Ti and v has increased by 1, we have

σc(v,H) = σc(v, T ) +
∑

x∈V (Ti)

c(x) = σc(v, T ) + Ci > σc(v, T ),

contradicting our choice of T and v. This proves Claim 1.

CLAIM 2: T − v has at most 3 components, i.e., d ≤ 3.

Suppose to the contrary that T −v has at least 4 components. Since by Claim 1 the total weight of any two

of these is greater than N
2 , the total weight of these four components would exceed N . This contradiction

proves Claim 2.

CLAIM 3: Ti is a path and v is adjacent to one of the end-vertices of Ti for each i ∈ {1, 2, . . . , d}.

It suffices to prove that no vertex w of Ti has two neighbours that are farther by 1 from v than w. Suppose

to the contrary that some vertex w of Ti has two neighbours, say, x1 and x2 with d(v, x1) = d(v, x2) =
d(v, w) + 1. Consider the tree H = T − wx1 + x1x2 with the same weight function c. The distance

between x1 and v has increased by 1, and no distance between v and another vertex has decreased. Fur-

thermore, v is a c-median vertex of H since its c-branch weight has not changed and is thus still at most
N
2 . Hence σc(v,H) > σc(v, T ). This contradiction to our choice of T proves Claim 3.

For the remainder of the proof we use the following notation. For i ∈ {1, 2, . . . , d} denote the end-

vertex of Ti that is farthest from v by zi. Let y be a vertex of maximum weight in T , so c(y) ≥ L > k. If

v is among the vertices of maximum weight, then choose y = v.

CLAIM 4: Let w be an internal vertex of T . Then c(w) = k, unless w = v = y and c(w) = L.

Assume that T contains an internal vertex w with c(w) > k. It suffices to show that w = v, w = y
and c(y) = L. First suppose that w 6= v. Then w ∈ V (Ti) for some i ∈ {1, 2, . . . , d}. We obtain a

weight function c′ from c by reducing the weight of vertex w to k and adding the difference c(w) − k
to the weight of zi. Then v is also a c′-median vertex since its c′-branch weight equals its c-branch

weight, which is at most N
2 . The conditions on the weight function are satisfied by c′. Indeed, every

vertex has weight at least k, and either w 6= y, in which case c′(y) ≥ L, or w = y, in which case

c′(zi) = c(zi)+ c(y)− k ≥ k+L− k = L, so there exists a vertex of weight at least L. Clearly, we have

σc′(v, T ) = σc(v, T ) + dT (w, zi)
(

c(w)− k
)

> σc(v, T ),

contradicting our choice of T and c. This proves that w = v.

Now suppose that w 6= y or that w = y and c(w) > L. Since v = w and w is an internal vertex, T − v
has at least two components. Note that C1 + C2 ≤ N − c(v) < N − k, thus we get that C2 ≤ N

2 − k
2 .

We now obtain the weight function c′ by reducing the weight of w by min{k
2 , c(w) − k} if w 6= y, and

by min{k
2 , c(w) − L} if w = y and increasing the weight of z2 by the same amount. Then v is also a

c′-median vertex, c′ satisfies the hypothesis of the lemma, but σc′(v, T ) > σc(v, T ), a contradiction to the

choice of T and c. We conclude that w = y and c(y) = L, so Claim 4 follows.

CLAIM 5: The lemma holds if L > N
2 .
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Assume that L > N
2 . Then y is a c-median vertex since bwc(y, T ) ≤ N − c(y) ≤ N

2 . It is easy to see

that y is the only c-median vertex of T , so y = v. Now v is an end-vertex of T . Indeed, if v is an internal

vertex, then T − v has at least two components, and by Claim 1 their combined weight is more than N
2 .

Since L > N
2 , this would imply that the total weight of T is greater than N , a contradiction. Thus v is an

end-vertex. By Claim 3 and Claim 4 it follows that T is a path with all internal vertices having weight k.

We now show that c(v) = L. Indeed, if c(v) > L, then we obtain a weight function c′ from c by

reducing the weight of v to L and adding the excess weight c(v)−L to z1. Then c′ satisfies the hypothesis

of the lemma and v is a c′-median vertex of T . As above, c′ satisfies the hypothesis of the lemma, and we

have

σc′(v, T ) = σc(v, T ) + d(v, z1)(c(v) − L) > σc(v, T ),

a contradiction to the maximality of σc(v, T ).

We now show that c(z1) = k. Suppose to the contrary that c(z1) > k. Since N − L is an integer

multiple of k and c(v) = L, it follows that c(z1) is an integer multiple of k, which implies that c(z1) ≥ 2k.

Extending the path T by adding a new vertex z′1 adjacent to z1, and moving c(z1) − k weight units from

z1 to z′1 yields a tree H with a weight function c′ that satisfies the hypothesis of the lemma. Then v is a

c′-median vertex of H and σc′(v,H) > σc(v, T ), a contradiction.

We have shown that T is a path, the c-median vertex v has weight L and is an end-vertex of T , and all

other vertices have weight k. So there are N−L
k vertices of weight k at distance 1, 2, . . . , N−L

k from v.

Hence,

σc(v, T ) = k
(

1 + 2 + · · ·+ n− L

k

)

=
(N − L)(N − L+ k)

2k
,

which proves (5) for the case L > N
2 .

CLAIM 6: If L ≤ N
2 , then v is an internal vertex of T , T is a path, and y is an end-vertex of T .

We first prove that v is an internal vertex of T . Suppose to the contrary that v is an end-vertex. Then T −v
has only one component, and bwc(v, T ) = N − c(v). Since bwc(v, T ) ≤ N

2 it follows that c(v) ≥ N
2 . If

this inequality is strict, i.e., if c(v) > N
2 , then transferring c(v)− N

2 weight units from v to its neighbour

u1 yields a weight function c′ which satisfies the hypothesis of the lemma and for which v is a c′-median

vertex. But σc′(v, T ) > σc(v, T ), a contradiction to the maximality of σc(v, T ). Hence c(v) = N
2 . Now

consider vertex u1. Clearly, the component of T − u1 containing only v has the maximum weight among

all components of T − u1, so bwc(u1, T ) = N
2 , hence u1 is also a c-median vertex. Hence T has an

internal vertex that is a c-median vertex. This contradicts the choice of v as a c-median vertex that is also

internal, if possible. It follows that our initial assumption that v is an end-vertex is false, and so v is an

internal vertex of T .

We now show that T is a path. Suppose not. Since by Claim 3 each component of T −v is a path where

v is adjacent to one of its ends, it follows that T − v has at least three components. Since T − v has at

most three components by Claim 2, it follows that T − v has exactly three components.

There are at least two components of T − v, Ti′ and Ti′′ say, that do not contain y. Denote the third

component by Ti. Recall that zi′ and zi′′ are the end-vertices of T in Ti′ and Ti′′ , respectively. We may

assume that dT (v, zi′) ≥ dT (v, zi′′).

Note that c(zi′) < 2k (and similarly, c(zi′′) < 2k) since otherwise, if c(zi′) ≥ 2k, then we obtain a

new graph by adding a new vertex of weight k, joining it to zi′ and reducing the weight of zi′ by k, which

increases the weighted distance of v, which contradicts our choice of T and c.
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We now bound Ci′ . Clearly, Ci′ = N − Ci − Ci′′ − c(v). Since Ci + Ci′′ > N
2 by Claim 1, and

c(v) ≥ k, it follows that Ci′ <
N
2 − k.

We may assume that c(zi′′) = k. Indeed, if c(zi′′ ) > k, then let r = c(zi′′) − k. As shown above,

we have r ≤ k. Consider the weight function obtained from c by shifting the extra weight r from zi′′ to

zi′ . This does not increase the total weight of Ti′ beyond N
2 , so v is also a c′-median vertex of T , and

the weighted distance of v has not decreased since dT (v, zi′) ≥ dT (v, zi′′). Hence, from now on we may

assume that c(zi′′ ) = k.

Let x be the neighbour of zi′′ in T . Consider the tree H = T−zi′′x+zi′′zi′ , so vertex zi′′ is transferred

from Ti′′ to Ti′ . Since Ci′ <
N
2 − k, vertex v has c-branch weight at most N

2 in H and is thus a c-median

vertex of H . Moreover,

σc(v,H) = σc(v, T ) + k(dT (v, zi′) + 1− dT (v, zi′′)) > σc(v, T ),

a contradiction to the choice of T . Hence T is a path.

Now we complete the proof of Claim 6 by showing that y is an end-vertex of T . It suffices to show that

y 6= v since then by Claim 4 all internal vertices of T have weight k, so y is an end-vertex.

Suppose to the contrary that y = v. Since v is an internal vertex, it follows from Claim 4 that c(v) = L.

Let c′ be the weight function obtained from c by movingL−k weight units from v to u2, i.e., let c′(v) = k,

c′(u2) = c(u2) + L− k and c′(x) = c(x) for all x ∈ V (T )− {v, u2}. Clearly, c′ satisfies the hypothesis

of the lemma. We have either C1 > N
2 − k or C1 ≤ N

2 − k.

If C1 > N
2 − k, then v is also a c′-median vertex of T . Indeed, the weights with respect to c′ of the two

branches of T − v are C1 and N − C1 − k < N
2 . Clearly, σc′(v, T ) = σc(v, T ) + L − k > σc(v, T ), a

contradiction to the maximality of σc(v, T ).
If C1 ≤ N

2 − k, then u2 is a c′-median vertex of T . Indeed, the total weights with respect to c′ of the

two branches of T − u2 are C1 + k and C2 − c(u2), and both terms are clearly not more than N
2 . Clearly,

σc′(u2, T ) = σc(v, T ) + C1 + k − C2 > σc(v, T ), again a contradiction to the maximality of σc(v, T ).
Hence Claim 6 holds.

CLAIM 7: If L ≤ N
2 , then the lemma holds.

Assume that L ≤ N
2 . Then by Claim 6, we have that T is a path, v is an internal vertex, and y is one of the

two end-vertices of T . Denote the other end-vertex of T by x. Moreover, denote the components of T − v
that contain vertex x and y by Tx and Ty , respectively. Note that c(w) = k for all w ∈ V (T ) − {x, y}
by Claim 4. Let Cx and Cy be the total weight of the components of T − v that contain vertex x and y,

respectively. Let rx = c(x) − k and ry = c(y)− L. We prove that

0 ≤ rx, ry < k and rx + ry ∈ {0, k}. (6)

We first show that 0 ≤ rx < k. Clearly, 0 ≤ rx. If rx ≥ k, then we obtain a contradiction by adding

a new vertex x′ and joining it to x to obtain a new tree H , and defining a new weight function c′ with

c′(x) = k, c′(x′) = rx and the remaining vertices have the same weight as for c. Then v is a c′-median

vertex of H but σc′(v,H) > σc(v, T ), a contradiction. Similarly we show that 0 ≤ ry < k. Since N −L
is an integer multiple of k, and since all vertices except possibly x and y have weight k, it follows that

rx + ry is also an integer multiple of k. From 0 ≤ rx, ry < k we conclude that rx + ry either equals 0 or

k. This proves (6).

We now consider three cases, depending on the values of L and bwc(v, T ).
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CASE 1: c(y) = L.

Since c(y) = L we have ry = 0 and thus c(x) = k by (6). Hence T is a path v0, v1, . . . , v(N−L)/k, where

v0 has weight L and the other vertices have weight k.

In order to determine a c-median vertex of T , let a ∈ {1, 2, . . . , N−L
k } be the largest value for which

the component of T − va containing v0 has a total weight of not more than N
2 , so a = ⌊N/2−L+k

k ⌋. Then

bwc(va, T ) ≤ N
2 , and so va is a c-median vertex of T . Apart from va and y, T has a−1 vertices of weight

k at distance 1, 2, . . . , a− 1 from va in the component of T − va containing v0, and N−L−ak
k vertices of

weight k at distance 1, 2, . . . , N−L−ak
k from va in the other component of T − va. Thus,

σc(va, T ) = aL+ k
(

1 + 2 + . . .+ (a− 1)
)

+ k
(

1 + 2 + . . .+
N − L− ak

k

)

= aL+
ka(a− 1)

2
+

(N − L− ak)(N − L− ak + k)

2k
.

Now N−2L
2k < a ≤ N−2L+2k

2k and so N − L− ak < N
2 . Hence

σc(va, T ) <
N − 2L+ 2k

2k
L+

k

2

N − 2L+ 2k

2k

N − 2L

2k
+

1

2k

N

2

(N

2
+ k

)

=
N2 − 2L2

4k
+

N + L

2
,

and (5) holds in this case.

CASE 2: c(y) > L and bwc(v, T ) =
N
2 .

Since bwc(v, T ) =
N
2 , there exists a component of T − v with total weight N

2 . Let v′ be the neighbour

of v in this component. Then T − vv′ has two components, each of total weight N
2 . It follows that

bwc(v
′, T ) = N

2 , and so v′ is also a c-median vertex. We assume that x is in the same component of

T − vv′ as v, and y is in the same component as v′ (otherwise the proof is analogous). The weights of the

two components of T − vv′ are kdT (v, x) + c(x) and kdT (v
′, y) + c(y). Since these weights are equal,

and since c(y) ≥ c(x), we have kdT (v, x) ≥ kdT (v
′, y) and thus dT (v, x) ≥ dT (v

′, y). Since v and v′

are adjacent, this implies that

dT (v, y) ≤ dT (v, x) + 1. (7)

Now we obtain a new tree H by adding a new vertex x′ and joining it to x. We define a new weight

function c′ by letting c′(y) = L, c′(x) = k, c′(x′) = rx + ry , and as in c, all other vertices have weight

k. By (6) and ry > 0 we have that c′(x′) = k. Note that v is a c′-median vertex. Indeed, the components

of T − v containing y and x have (with respect to c) total weight N
2 and N

2 − k, respectively, so the

components of H − x containing y and x have (with respect to c′) total weight N
2 − ry and N

2 − k + ry ,

respectively, and both are less than N
2 . From (7) we obtain that

σc′(v,H) = σc(v, T ) + rx +
(

dT (v, x) + 1− dT (v, y)
)

ry > σc(v, T ),

contradicting our choice of v, T and c. Hence Case 2 cannot occur.

CASE 3: c(y) > L and bwc(v, T ) <
N
2 .

We first show that dT (v, x) = dT (v, y). Suppose not. Then we have either dT (v, x) < dT (v, y) or
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dT (v, x) > dT (v, y). First assume that dT (v, x) < dT (v, y). Define ε := min{N
2 − bwc(v, T ), c(y) −

L, c(x)− k}. Since bwc(v, T ) <
N
2 , we have that ε > 0. We define a new weight function c′ by moving

ε weight units from x to y. Clearly, c′ satisfies the hypothesis of the lemma and v is a c′-median vertex of

T . Then σc′(v, T ) > σc(v, T ), a contradiction. We obtain a similar contradiction if dT (v, x) > dT (v, y).
This proves that dT (v, x) = dT (v, y).

If Cx ≤ N
2 − k, then we obtain a new tree H by adding a new vertex x′ and joining it to x, and a new

weight function c′ with c′(x′) = rx+ry = k, c(y) = L and all remaining vertices have weight k. Clearly,

v is a c′-median vertex since its c′-branch weight does not exceed N
2 . Also, σc′(v,H) > σc(v, T ), a con-

tradiction. If N
2 − k < Cx < N

2 , then either Cx ≤ N
2 − ry or Cx > N

2 − ry . If Cx ≤ N
2 − ry , then

we consider the weight function c′ obtained from c by decreasing the weight of y by ry and increasing

the weight of x by ry . Now dT (v, x) = dT (v, y) implies that σc′(v, T ) = σc(v, T ). Since c′(y) = L,

we can now apply Case 1 to c′. If Cx > N
2 − ry , then let ε := N

2 − Cx. Consider the weight function

c′ obtained from c by decreasing the weight of y by ε and increasing the weight of x by ε. As above we

have σc′(v, T ) = σc(v, T ). Since bwc′(v, T ) =
N
2 , we can now apply Case 2 to c′. In both cases, Claim

7 follows. This completes the proof of Lemma 2.2. ✷

Lemma 2.3 Let G be a connected graph and k, L ∈ R with 0 < k < L. Let c : V (G) −→ R
≥0 be

a weight function with total weight N . Assume that c(u) ≥ k for every vertex u ∈ V (G), and that G
contains a vertex of weight at least L. Assume further that N − L is an integer multiple of k. If v is a

vertex of G, then

σc(v,G) ≤ (N − L)(N + L− k)

2k
. (8)

Proof: We give only an outline the proof of Lemma 2.3 since it uses arguments very similar to those in

the proof of Lemma 2.2, but is much less elaborate.

Let N, k, L be as in the hypothesis of the lemma. Let G, v and c be such that σc(v,G) is maximised

among all graphs, vertices and weight functions satisfying the hypothesis of the lemma. We may assume

that G is a tree.

Then v is an end-vertex of G since otherwise, if u1 and u2 are two neighbours of v, the graph H =
G − vu2 + u1u2 satisfies σc(v,H) > σc(v,G), a contradiction. A similar argument shows that G is a

path. As in the proof of Lemma 2.2 we show that v and all internal vertices of the path G have weight

equal to k, and that the other end-vertex of G has weight L. Thus G has N−L
k − 1 vertices at distance

1, 2, . . . , N−L−k
k from v, all of weight k, and one vertex at distance N−L

k from v which has weight L.

Hence

σc(v,G) = k
(

1 + 2 + · · ·+ N − L− k

k

)

+
N − L

k
L =

(N − L)(N + L− k)

2k
,

which proves Lemma 2.3. ✷

3 Proximity and remoteness of graphs of given minimum degree

and maximum degree

In this section we present our main results. We give a bound on the proximity of a graph in terms of order,

minimum degree and maximum degree, and we construct graphs to show that our bound is sharp apart

from an additive constant.
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If v is a vertex of G, then by S(v) we mean the subgraph with vertex set NG(v) ∪ {v} in which v is

adjacent to each vertex of NG(v), and no other edges are present. We define the distance between a vertex

v and a set B ⊆ V (G) as minu∈B d(v, u).

Theorem 3.1 Let G be a connected graph of order n, minimum degree δ and maximum degree ∆.

If ∆ > n
2 − 1, then

π(G) ≤ 3(n−∆)2

2(n− 1)(δ + 1)
+

13

2
.

If ∆ ≤ n
2 − 1, then

π(G) ≤ 3(n2 − 2∆2)

4(n− 1)(δ + 1)
+

35

4
.

Proof: We first construct a spanning tree T of G as follows. Let b0 be a vertex of G of maximum

degree. Let B0 = {b0} and T0 = S(b0). Let b1 be a vertex at distance exactly 3 from B0, if one exists.

Then there exists an edge e1 joining some vertex of T0 to some vertex of S(b1). Let T1 be the tree obtained

from T0 ∪ S(b1) by adding the edge e1 and let B1 = B0 ∪ {b1}. Let b2 be a vertex at distance exactly 3
from B1, if one exists. Then there exists an edge e2 joining some vertex of T1 to some vertex of S(b2).
Let T2 be the tree obtained from T1 ∪ S(b2) by adding the edge e2 and let B2 = B1 ∪ {b2}. Generally,

for given Bj and Tj , choose a vertex bj+1 at distance exactly 3 from Bj , if one exists, let ej be an edge

joining some vertex of Tj to some vertex of S(bj+1), let Tj+1 be the tree obtained from Tj ∪ S(bj+1) by

adding the edge ej+1 and let Bj+1 = Bj ∪ {bj+1}. Repeat this procedure, say, for r steps, until each

vertex of G is at distance at most 2 from some vertex in Br.

Let T ′ = Tr and B = Br = {b0, b1, . . . , br}. Then all vertices of G are within distance at most 2 from

B in G, and thus adjacent to some vertex in T ′. Now we obtain a spanning tree T of G by joining every

vertex that is not in T ′ to a neighbour in T ′, which results in a spanning tree T of G. Note that T has the

same maximum degree as G since degG(b0) = degT (b0).
Consider T as a weighted tree in which every vertex of T has weight 1. Define a new weight function

on the vertices of T by moving each weight to the nearest vertex in B. More precisely, for every vertex v
of T let vB be a vertex in B closest to v in T . We now move the weight of v to vB , that is, we define the

weight function c : V (T ) −→ R
≥0 by

c(w) = |{v ∈ V (T ) | vB = w}|

for w ∈ V (T ). Every vertex of T is within distance 2 of some vertex in B, hence we have d(v, vB) ≤ 2
for all v ∈ V (T )−B and d(v, vB) = 0 for all v ∈ B. Hence,

σ(w, T ) =
∑

v∈V (T )

dT (w, v)

≤
∑

v∈V (T )

(dT (w, vB) + dT (v, vB))

≤
∑

v∈V (T )

c(v)dT (w, v) + 2(n− |B|)

≤
∑

v∈V (T )

c(v)dT (w, v) + 2(n− 1).
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Thus, for all w ∈ V (T ),
σ(w, T ) ≤ σc(w, T ) + 2(n− 1). (9)

Since the weight of the vertices of T is concentrated entirely in B, we have

σc(w, T ) =
∑

v∈B

c(v)d(w, v).

Denote by T 3 the graph with vertex set V (T ) in which two vertices u, v are adjacent if and only if

dT (u, v) ≤ 3. Let F be the subgraph of T 3 induced by B. It follows from the construction of T and B
that for each vertex bi ∈ B with i ≥ 1 there exists some vertex bj ∈ B with j < i such that dT (bi, bj) = 3.

This implies that for every i ≥ 1 there exists a (bi, b0)-path in F , and so F is connected.

We now consider F with the weight function c. (Note that we use the notation c also for the restriction

of c to B.) Fix a c-median vertex w0 of F . Since dT (w0, v) ≤ 3dF (w0, v) for all v ∈ B, we have

σc(w0, T ) ≤
∑

v∈B

3dF (w0, v) = 3σc(w0, F ). (10)

Our aim is to bound the weighted distance σc(w0, F ) using Lemma 2.2. If w ∈ B, then every vertex

v ∈ NG(w) ∪ {w} satisfies vB = w, hence we have c(w) ≥ degG(w) + 1. This implies that every vertex

of B has weight at least δ + 1, and that F contains a vertex, viz. w0, of weight at least ∆ + 1. Also,

c(B) = c(T ) = n. However, n− (∆ + 1) is not necessarily a multiple of δ + 1, so we apply Lemma 2.2

not to c but to a slightly modified weight function c′.
There exists q ∈ R with 0 ≤ q ≤ δ such that n− (∆+1)+ q is a multiple of δ+1. Let c′ be the weight

function obtained from c by increasing the weight of w0 by q and leaving the other weights unchanged.

Then c′(F ) = n + q, each vertex of F has weight at least δ + 1, and F contains a vertex of weight at

least ∆+ 1. Furthermore, c′(F )− (∆ + 1) is a multiple of δ + 1. Clearly, σc(w0, T ) ≤ σc′(w0, T ) and

w0 is a c′-median vertex of F . For N,L, k ∈ R
≥0 let f1(N,L, k) = (N−L)(N−L+k)

2k and f2(N,L, k) =
N2−2L2

4k + N+L
2 . By Lemma 2.2 we have

σc(w0, F ) ≤ σc′(w0, F ) ≤
{

f1(n+ q,∆+ 1, δ + 1) if ∆+ 1 > n+q
2 ,

f2(n+ q,∆+ 1, δ + 1) if ∆+ 1 ≤ n+q
2 .

In order to eliminate q, we observe that if ∆+ 1 ≤ n
2 , then ∆+ 1 ≤ n+q

2 , and if ∆+ 1 ≥ n+δ+1
2 , then

∆+1 > n+q
2 . If n

2 < ∆+1 < n+δ+1
2 , then clearly σc′(w0, F ) ≤ max{f1(n+ q,∆+ 1, δ+1), f2(n+

q,∆+ 1, δ + 1)}. It is easy to verify that f1(N,L, k) ≥ f2(N,L, k) if and only if 2L − 2
√
kL ≤ N ≤

2L+2
√
kL. For N = n+q, L = ∆+1 and k = δ+1, this condition is satisfied if n

2 < ∆+1 < n+δ+1
2 .

Hence we have σc′(w0) ≤ f2(n+ q,∆+ 1, δ + 1) if n
2 < ∆+ 1 < n+δ+1

2 . It follows that

σc(w0, F ) ≤
{

f1(n+ q,∆+ 1, δ + 1) if ∆+ 1 > n
2 ,

f2(n+ q,∆+ 1, δ + 1) if ∆+ 1 ≤ n
2 .

Since f1(N,L, k) and f2(N,L, k) are increasing in N , and since n+q ≤ n+δ, we obtain, after evaluating

f1(n+ δ,∆+ 1, δ + 1) and f2(n+ δ,∆+ 1, δ + 1),

σc(w0, F ) ≤
{

(n+δ−∆−1)(n+2δ−∆)
2(δ+1) if ∆+ 1 > n

2 ,

(n+δ)2−2(∆+1)2

4(δ+1) + n+δ+∆+1
2 if ∆+ 1 ≤ n

2 .
(11)
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CASE 1: ∆ > n
2 − 1.

Consider the right hand side of (11). We have (n + δ − ∆ − 1)(n + 2δ − ∆) = (n − ∆)2 + (n −
∆)(3δ − 1) + 2δ(δ − 1). Bounding 3δ − 1 by 3(δ + 1) and 2δ(δ − 1) by 3δ(δ + 1) we obtain that

(n−∆)(3δ − 1) + 2δ(δ − 1) ≤ 3(δ + 1)(n−∆+ δ) ≤ 3(δ + 1)(n− 1), and so

σc(w0, F ) ≤ (n−∆)2

2(δ + 1)
+

3

2
(n− 1). (12)

Combining (9) for w = w0, (10) and (12) we obtain

σ(w0, T ) ≤ σc(w0, T ) + 2(n− 1)

≤ 3σc(w0, F ) + 2(n− 1)

≤ 3(n−∆)2

2(δ + 1)
+

13

2
(n− 1).

Division by n− 1 now yields the bound in the theorem.

CASE 2: ∆ ≤ n
2 − 1.

Consider the right hand side of (11). We have (n+ δ)2 − 2(∆+ 1)2 = n2 − 2∆2 + 2δn+ δ2 − 4∆− 2.

Bounding 2δn by 2(δ+1)(n−1) and δ2−4∆−2 by (δ+1)(δ−1), we obtain that 2δn+ δ2−4∆−2 ≤
(δ + 1)(2(n− 1) + δ − 1). We thus obtain

σc(w0, F ) ≤ n2 − 2∆2

4(δ + 1)
+

2n+∆+ 3
2δ − 1

2

2

≤ n2 − 2∆2

4(δ + 1)
+

9

4
(n− 1), (13)

where in the last step we bounded ∆ ≤ n− 1 and δ ≤ n− 2. Combining (9) for w = w0, (10) and (13)

we obtain

σ(w0, T ) ≤ σc(w0, T ) + 2(n− 1)

≤ 3σc(w0, F ) + 2(n− 1)

≤ n2 − 2∆2

4(δ + 1)
+

35

4
(n− 1).

Since π(G) ≤ π(T ) ≤ 1
n−1σ(w0, T ), division by n− 1 now yields the desired bound. ✷

Theorem 3.2 Let G be a connected graph of order n, minimum degree δ and maximum degree ∆. Then

there exists a spanning tree T of G with

ρ(T ) ≤ 3(n2 −∆2)

2(n− 1)(δ + 1)
+ 7.

Proof: Let B, T , F , c, q and c′ be as in the proof of Theorem 3.1. Let u be a vertex of maximum

average distance in T , i.e., σ(u) = ρ(T ). By the construction of T there exists a vertex uB ∈ B with

dT (u, uB) ≤ 2. Hence

σ(u, T ) ≤ σ(uB, T ) + 2(n− 1). (14)
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By (9), and as in (10) we have

σ(uB, T ) ≤ σc(uB, T ) + 2(n− 1) ≤ 3σc(uB, F ) + 2(n− 1). (15)

Using the same arguments as in the proof of Theorem 3.1, we bound σc(u, F ) with help of the weight

function c′, to which we apply Lemma 2.3 (with N = n+ q, L = ∆+ 1 and k = δ + 1) and use the fact

that q ≤ δ to obtain that

σc(uB, F ) ≤ σc′(uB, F )

≤ (n+ q −∆− 1)(n+ q +∆− δ)

2(δ + 1)

≤ (n+ δ −∆− 1)(n+∆)

2(δ + 1)
.

Now (n+ δ−∆− 1)(n+∆) = (n−∆)(n+∆)+ (δ− 1)(n+∆) < n2 −∆2 + (δ+1)(2n− 2), and

so

σc(uB, F ) <
(n−∆)(n+∆)

2(δ + 1)
+ n− 1. (16)

Combining (14), (15) and (16) and dividing by n− 1 yields

σ(u, T ) ≤ σ(uB , T ) + 2(n− 1)

≤ 3σc(uB, F ) + 4(n− 1)

≤ 3(n2 −∆2)

2(δ + 1)
+ 7(n− 1).

Since ρ(T ) = 1
n−1σ(u, T ), division by n− 1 now yields the theorem. ✷

Since ρ(G) ≤ ρ(T ) for every spanning tree of a connected graph G, we have the following corollary.

Corollary 3.3 If G is a connected graph of order n, minimum degree δ and maximum degree ∆. then

ρ(G) ≤ 3(n2 −∆2)

2(n− 1)(δ + 1)
+ 7.

4 A sharpness example

We now construct a graph that shows that for fixed δ ≥ 3, and any given values of n and ∆ with δ <
∆ < n, there are graphs of order n, minimum degree δ and maximum degree ∆, whose proximity and

remoteness are within a constant of the bounds in Theorems 3.1 and 3.2, respectively.

If G1, G2, . . . , Gk are graphs, then we define the sequential sum G1 +G2 + · · ·+Gn to be the graph

obtained from the disjoint union of the graphs G1, G2, . . . , Gk by joining every vertex of Gi to every

vertex of Gi+1 for i = 1, 2, . . . , k − 1. By Kn we mean the complete graph on n vertices.

Let n,∆, δ ∈ N be given with 3 ≤ δ < ∆ < n. For the following construction we assume that n−∆ is

a multiple of δ+1, but it is not hard to modify the construction to work without this additional assumption.

Let k := n−∆
δ+1 . Define the graph Gn,∆,δ by

Gn,∆,δ = Kδ +K1 + [K1 +Kδ−1 +K1]
k−1 +K1 +K∆−1,
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where [K1+Kδ−1+K1]
k−1 stands for k−1 repetitions of the pattern K1+Kδ−1+K1. Clearly, Gn,∆,δ

has order n, minimum degree δ and maximum degree ∆.

We first bound the proximity of Gn,∆,δ from below. Define V1 to be the set of δ + 1 vertices that

belong to the first (counted from the left) or second complete graph in the sequential sum, i.e, to Kδ ∪K1.

For i = 1, 2, . . . , k − 1 let Vi+1 be the set of δ + 1 vertices that belong to ith repetition of the pattern

K1 +Kδ−1 +K1 in the definition of Gn,∆,δ. Define Vk+1 to be the set of ∆ vertices belonging to one of

the rightmost two complete graphs, i.e., to K1 +K∆−1 in the definition of Gn,∆,δ. We make use of the

fact that, whenever x and y are two vertices with x ∈ Vi and y ∈ Vj , then d(x, y) ≥ 3|i− j| − 2.

CASE 1: ∆ ≤ n
2 .

Let a := ⌈ n/2
δ+1⌉. Then it is easy to see (for example using the fact that both components of Gn,∆,δ − Va

contain not more than n
2 vertices), that Va contains a median vertex, w say. We bound σ(w,Gn,∆,δ) from

below by taking into account only the distances to vertices not in Va.

σ(w,Gn,∆,δ) >

a−1
∑

i=1

∑

v∈Vi

d(w, v) +

k
∑

i=a+1

∑

v∈Vi

d(w, v) +
∑

v∈Vk+1

d(w, v)

≥
a−1
∑

i=1

(δ + 1)[3(a− i)− 2] +
k
∑

i=a+1

(δ + 1)[3(i− a)− 2]

+∆[3(k − a+ 1)− 2]

=
3

2
(δ + 1)a(a− 1)− 2(δ + 1)(a− 1) +

3

2
(δ + 1)(k − a+ 1)(k − a)

−2(δ + 1)(k − a) + 3∆(k − a+ 1)− 2∆

=
3

2
(δ + 1)[a2 + (k − a+ 1)2] + 3∆(k − a+ 1)

−
[

(δ + 1)(
7

2
k − 1

2
) + 2∆

]

.

Using the inequalities a = ⌈ n/2
δ+1⌉ ≥ n/2

δ+1 , k − a + 1 = k − ⌈ n/2
δ+1⌉ + 1 > k − n/2

δ+1 = n−2∆
2(δ+1) , and

(δ + 1)(72k − 1
2 ) + 2∆ < 7

2 (n− 1) we obtain that

σ(w,Gn,∆,δ) >
3

2
(δ + 1)

[ n2

4(δ + 1)2
+

(n− 2∆)2

4(δ + 1)2
]

+ 3∆
n− 2∆

2(δ + 1)
− 7

2
(n− 1)

=
3(n2 − 2∆2)

4(δ + 1)
− 7

2
(n− 1).

Division by n− 1 yields that

π(Gn,∆,δ) = σ(w,Gn,∆,δ) >
3(n2 − 2∆2)

4(n− 1)(δ + 1)
− 7

2
,

and so π(Gn,∆,δ) differs from the bound in Theorem 3.1 by less than 49
4 .

CASE 2: ∆ ≥ n
2 . Clearly, Vk+1 contains a median vertex, w say. We bound σ(w, (Gn,∆,δ) from below
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by taking into account only the distances to vertices not in Vk+1.

σ(w, (Gn,∆,δ)) >

k
∑

i=1

∑

v∈Vi

d(w, v)

≥
k

∑

i=1

(δ + 1)[3(k + 1− i)− 2]

=
3

2
(δ + 1)k(k + 1)− 2(δ + 1)k

=
3

2
(δ + 1)k2 − 1

2
(δ + 1)k.

Substituting k = n−∆
δ+1 , bounding 1

2 (δ + 1)k = 1
2 (n−∆) ≤ n−1

2 and dividing by n− 1 we obtain

π(Gn,∆,δ) = σ(w, (Gn,∆,δ) >
3(n−∆)2

(n− 1)(δ + 1)
− 1

2
,

and so π(Gn,∆,δ) differs from the bound in Theorem 3.1 by less than 6δ+ 5
2 , which for fixed δ is a constant.

We now bound the remoteness of Gn,∆,δ. Let u be a vertex of the graph Kδ in the representation of

Gn,∆,δ as a sequential sum. We have

σ(u, (Gn,∆,δ)) =
∑

v∈V1

d(u, v) +

k
∑

i=2

∑

v∈Vi

d(u, v) +
∑

v∈Vk+1

d(u, v)

= δ +

k
∑

i=2

(δ + 1)[3i− 3] + ∆3k − 1

= 3(δ + 1)
k(k − 1)

2
+ 3∆k + δ − 1.

Substituting k = n−∆
δ+1 yields after simplification that

σ(u, (Gn,∆,δ)) =
3(n2 −∆2)

2(δ + 1)
− 3

2
(n−∆− 2

3
(δ + 1)) >

3(n2 −∆2)

2(δ + 1)
− 3

2
(n− 1).

Division by n− 1 yields that

ρ(Gn,∆,δ) ≥ σ(u, (Gn,∆,δ) >
3

2

n2 −∆2

(n− 1)(δ + 1)
− 3

2
,

and so ρ(Gn,∆,δ) differs from the bound in Corollary 3.3 by not more than 17
2 .
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