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In this paper we first study k × n Youden rectangles of small orders. We have enumerated all Youden rectangles

for a range of small parameter values, excluding the almost square cases where k = n − 1, in a large scale com-

puter search. In particular, we verify the previous counts for (n, k) = (7, 3), (7, 4), and extend this to the cases

(11, 5), (11, 6), (13, 4) and (21, 5).

For small parameter values where no Youden rectangles exist, we also enumerate rectangles where the number of

symbols common to two columns is always one of two possible values, differing by 1, which we call near Youden

rectangles.

For all the designs we generate, we calculate the order of the autotopism group and investigate to which degree a

certain transformation can yield other row-column designs, namely double arrays, triple arrays and sesqui arrays.

Finally, we also investigate certain Latin rectangles with three possible pairwise intersection sizes for the columns

and demonstrate that these can give rise to triple and sesqui arrays which cannot be obtained from Youden rectangles,

using the transformation mentioned above.

Keywords: Youden squares, block designs, row-column designs

1 Introduction

An (n, k, λ) Youden rectangle (sometimes referred to as a Youden square) where n ≥ k is a k × n array

on n symbols that satisfies the following two conditions:

1. There is no repeated symbol in any row or column, which we will call the Latin condition.

2. The number of shared symbols between any two columns is always λ, which we will call the

balance condition.

Youden rectangles can be represented in different ways. In particular, by switching the roles of rows

and symbols, one gets a representation in the form of a square matrix, typically with some empty cells. In

previous literature, the term ‘Youden square’ has sometimes been used for the rectangular format as well,
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but we shall use the term ‘Youden rectangle’ for the rectangular format, reserving the term ‘square’ for

the actual square format.

As indicated by the choice of terminology in the first part of the definition, a Youden rectangle can be

viewed as a special case of a k×n Latin rectangle, which in this setting can be defined as a k×n array on

n symbols, satisfying the Latin condition. In the present paper, we exclude the square, and almost square

cases k = n, k = n − 1 as well as k = 1 for Youden rectangles, since for these parameter choices, all

Latin rectangles trivially also satisfy the second condition.

Clearly, each row will contain each symbol exactly once, and so the array will also be equireplicate,

that is, each symbol appears the same number of times, namely k. As is well known, divisibility and

double counting considerations easily give that in order for a Youden rectangle to exist, λ = k(k−1)
n−1 must

be an integer.

The reason for the use of the term ‘balance’, is that when treating the columns of a Youden rectangle

as sets of symbols, these sets form the blocks of a symmetric balanced incomplete block design (SBIBD).

Conversely, it was proven by Smith and Hartley [30] that the elements in the blocks of any SBIBD can be

ordered to give a Youden rectangle. In fact, many different orderings are possible, so a single SBIBD will

give rise to many different Youden rectangles. We have not employed this connection between SBIBDs

and Youden rectangles in our computational work.

Alternatively, and equivalently, a Youden rectangle may be defined with more of an SBIBD approach as

a k×n array on n symbols, where no symbol is repeated in any row, and when viewing the columns as sets

of symbols, each pair of symbols occurs the same number of times, namely λ. The property that all pairs

of blocks in an SBIBD intersect in the same number of elements is sometimes expressed by saying that

the design is linked, and more recently rather by saying that the design has constant block intersections.

Already in the original paper [33] Youden points out that from a statistical point of view Youden rect-

angles suffer from the restricted set of feasible parameters. As one way around this problem we here

introduce the class of near Youden rectangles. For given values of n and k a near Youden rectangle is

a Latin rectangle with two allowed block intersection sizes, differing by 1, rather than one single inter-

section size. This relaxation significantly increases the set of allowed parameters while in a sense still

keeping the design as balanced as possible. In Section 2.2 we discuss the theoretical properties of these

designs in greater detail, and discuss their connections to existing design classes.

The early history of the study of Youden rectangles was chronicled by Preece [25], and a good starting

point for further reading is the Youden chapter in the Handbook of Combinatorial Designs [10].

Little has been done on complete enumeration of these objects, though in [24] Youden rectangles with

n ≤ 7 were classified by Preece, and in [14] we performed a full enumeration of mutually orthogonal (in

the Latin rectangle sense) triples of Youden rectangles for n ≤ 7. Note that orthogonal Youden rectangles

should not be confused with multi-layered Youden rectangles, as studied in [26]. In the present paper, our

main aim has been to perform a complete enumeration of Youden rectangles for as large parameters as

possible. The current state of knowledge on the number of Youden rectangles is tabulated in [10], which

goes up to n = 7.

The rest of the paper is structured as follows. In Section 2 we give some further basic notation and

formal definitions. In Section 3 we state the questions guiding our investigation, and describe briefly

the method and algorithms used together with some practical information regarding the computer calcu-

lations. In Section 4 we present the data our computer search resulted in, in particular the number of

different Youden rectangles of some small orders. In Section 5, we analyze the constructed objects with

regards to other types of row-column designs. Section 6 concludes.
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2 Preliminaries

2.1 Notions of Equivalence

We will use {0, 1, . . . , n− 1} as the symbol set. We call a Youden rectangle normalized if it satisfies the

following conditions:

(S1) (Ordering among columns) The first row is the identity permutation.

(S2) (Ordering among rows) The first column is 0, 1, 2, . . . , k − 1.

Two Youden rectanglesYA and YB are said to be isotopic if there exists a permutation πs of the symbols,

a permutation πr of the rows and a permutation πc of the columns such that when applying all three

permutations to YA, we get YB . The equivalence concept isotopism is perhaps the most natural one when

studying Youden rectangles, and isotopism classes are also known as transformation sets in this context.

Two normalized Youden rectangles YA and YB can be isotopic to each other, so grouping Youden

rectangles according to which normalized rectangle they yield when renaming the symbols in the first

column 0, 1, . . . k − 1 in this order, and permuting the columns to satisfy S1 gives a weaker notion of

equivalence, by saying that YA and YB are equivalent if they yield the same normalized Youden rectangle

in this way.

Other concepts of equivalence are also possible, and allowing for exchanging the roles of symbols and

columns leads to the notion of species (also known as main classes). In the present paper, we will not

be employing the last mentioned notion of equivalence, and we comment on this choice below. Taking

transposes (that is, exchanging the roles of columns and rows), or exchanging the roles of symbols and

rows, however, does not map k × n Youden rectangles to k × n Youden rectangles, and so we do not

consider these transformations here.

Making this more formal, the group Gn,k = Sk × Sn × Sn of isotopisms acts on the set of k × n

Youden rectangles, where Sk corresponds to a permutation of the rows, the first Sn corresponds to a

permutation of the columns, and the last Sn corresponds to a permutation of the symbols. Two rectangles

YA and YB of size k × n are isotopic, and we say that they belong to the same isotopism class if there

exists a g ∈ Gn,k such that g(YA) = YB . The autotopism group of a Youden rectangle Y is defined as

Aut(Y ) := {g ∈ Gn,k | g(Y ) = Y }. When presenting examples, we use normalized representatives of

isotopism classes. For a recent survey on the concept of isotopism in algebra and designs, see [11].

2.2 Near Youden Rectangles

For parameters where λ as calculated by λ = k(k−1)
n−1 is not an integer, no Youden rectangle exists. This

divisibility is quite restrictive and from a statistical design theory perspective it is desirable to include

more parameter choices here. One natural relaxation is to allow two different column intersection sizes,

leading us to the following definition:

Definition 2.1. A near Youden rectangle (NYR) is a k × n Latin rectangle where every column-column

intersection has size either λ1 = ⌊λ⌋, or λ2 = ⌈λ⌉, where λ = k(k−1)
n−1 .

An example of a 4×6 NYR with column intersection sizes λ1 = 2 and λ2 = 3 is given in Figure 1. For

example, the first column intersects the second, third and fourth columns in 2 symbols, and the remaining

columns in 3 symbols.
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0 1 2 3 4 5

1 0 5 4 3 2

2 4 0 5 1 3

3 5 4 0 2 1

Fig. 1: A 4× 6 near Youden rectangle.

If λ1 is zero, the resulting designs (when interpreting columns as blocks) may be disconnected, that

is, the symbol set can be partitioned in two parts S1 and S2 such that the set of columns where the

symbols in S1 appear is disjoint from the set of columns where the symbols in S2 appear. For example,

two 7 × 3 Youden rectangles on disjoint symbol sets may be juxtaposed to form a 14 × 3 near Youden

rectangle. Disconnectedness is undesirable from a statistical design point, but when λ1 ≥ 1, all near

Youden rectangles are connected.

If we disregard the order of the elements in the columns of an NYR we get an equireplicate block

design with the same intersection property as the NYR, i.e. pairs of blocks intersect in either λ1 or λ2

elements. However, in the study of block designs it has been more common to define designs in terms

of covering numbers for pairs of symbols, i.e. the number of blocks which contain the pair of symbols,

rather than intersection numbers. However, following Fisher’s original proof of Fishers inequality in [12],

rather than the now more common linear algebraic version, one can easily connect intersection numbers

and covering numbers. The idea behind Fisher’s proof is to calculate the variance of the intersection

numbers in terms of the covering numbers, and as a corollary he also gets the result that in an SBIBD

the intersection number is constant. This argument can also be done in the other direction, describing the

variance of the covering numbers in terms of the intersection numbers. Instead of doing this from scratch

we will use an identity given by Tsuji in [31], though we note that similar identities were used earlier in

[8]. We here state the identity in a less general form, adapted to our current situation.

Theorem 2.2 (Lemma 1 in [31]). Let lp,q denote the number of columns which contain the pair {p, q}
and mi,j the size of the intersection of the i:th and j:th columns. With λ as already defined, we then have

∑

p,q

(lp,q − λ)2 =
∑

i,j

(

m2
i,j −

(

1 + 2
(k − 1)2

n− 2

)

mi,j

+
k(k − 1)

n− 1

(

1− 2
k − 1

n− 2
+

nk(k − 1)

(n− 1)(n− 2)

))

where the first sum is over 2-subsets of symbols and the second is over 2-subsets of columns.

Next we note that we can determine the number of column pairs with a given intersection size in a

NYR, and that these intersection sizes are nicely distributed.

Proposition 2.3. Let A be a k × n near Youden rectangle with column intersection sizes λ1 =
⌊

k(k−1)
n−1

⌋

and λ2 =
⌈

k(k−1)
n−1

⌉

. Then any column c intersects n1 = λ2(n − 1) − k(k − 1) other columns in λ1

symbols and n2 = −λ1(n− 1) + k(k − 1) other columns in λ2 symbols.

Proof: We fix an arbitrary column c and count the sum total S of the sizes of the intersections between c

and all the other columns. Suppose c intersects n1 columns in λ1 symbols and intersects n2 columns in
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λ2 symbols. Counting by columns, we then get S = λ1n1 + λ2n2.

Counting by symbols present in column c, we get S = k(k − 1), since c contains k symbols and A is

equireplicate with replication number k, that is, each of the k symbols in c appears k− 1 times outside of

c.

Equating the different counts, and using that n1+n2 = n−1 and λ1+1 = λ2, we get a linear equation

λ1n1 + λ2(n − 1 − n1) = k(k − 1) in the variable n1, with solution n1 = λ2(n − 1) − k(k − 1). It

follows that n2 = −λ1(n− 1) + k(k − 1), and since the choice of c was not used, these values are equal

for all columns c.

Theorem 2.2 together with Proposition 2.3 gives the following:

Theorem 2.4. If D is the block design obtained from a k × n NYR, then any pair of symbols is covered

by either λ1 or λ2 blocks in D.

Proof: Let us first note that the left hand side of the identity in Theorem 2.2 is a multiple of the variance

of the covering numbers. The average covering number is λ, which is not an integer. Hence the smallest

possible variance would be achieved if all covering numbers are one of λ1 and λ2. Since the variance is a

convex function this minimum is also unique.

Using the values of n1 and n2 from Proposition 2.3 we can compute the right hand side of the identity

in Theorem 2.2. Using λi and ni for the covering numbers and their multiplicity in the left hand side

produces the same value.

Hence the unique way to achieve the identity in Theorem 2.2 is to have all covering numbers equal to

one of λ1 and λ2, with the stated frequencies for those two numbers.

Thus the block design coming from a NYR has both intersection numbers and covering numbers taking

only two possible values, doing so in the way that minimises the variance of those numbers. The block

designs appearing here are in fact members of a known class, introduced by John and Mitchell in 1977

[15] called regular graph designs. The name comes from a property of their concurrence matrices which is

in fact the dual of our Proposition 2.3. The class of regular graph designs, which includes non-symmetric

designs, was later generalised to cases where equal replication is not possible, by Cheng and Wu in [9].

As far as we know, Theorem 2.4 has however not been noticed in the literature on regular graph designs.

Analogous to how Smith and Hartley [30] connect SBIBDs to Youden rectangles we can obtain near

Youden rectangles from regular graph designs by ordering the blocks and their elements. In fact, as

observed e.g. by Bailey in Chapter 11.10 of [4], it is possible to order the elements of the blocks to

become the columns of a row-column design for any equireplicate incomplete-block design with the same

number of symbols as blocks.

Here we may also note that other types of designs where one allows the covering numbers, or intersec-

tion numbers to be non-constant have been studied. Bose and Nair [6] introduced and studied partially

balanced incomplete block designs (PBIBD). The particular case where there are just two different values

for the number of repetitions of pairs in a PBIBD was studied for example by Bose and Shimamoto in [7],

and symmetric PBIBDs have also been studied, e.g., by Lawless and Stanton in [16]. Looking instead at

sizes of intersections between blocks, the subclass of balanced incomplete block designs (BIBDs) where

the block intersections only have two different sizes has been studied under the name quasi-symmetric

designs, for example by Shrikande and Sane in [29]. Duals (exchanging the role of blocks and symbols)

of PBIBDs have been studied under the name of linked block designs (LB), with different relaxations, see,

e.g., [13, 20, 28].
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3 Generating Data

In this section, we describe our computational work in general terms.

3.1 Guiding Questions

Our approach is complete enumeration by computer for as large parameter values as possible, and unless

otherwise stated, we save all generated data. In particular, we not only record the number of Youden

rectangles found, but we save the objects themselves.

With some exceptions due to size restrictions, the data generated is available for download at [2] and [1].

Further details about the organization of the data are given there.

The following questions serve as guides for what data to generate.

(Q1) How many isotopism classes of k × n Youden rectangles are there?

(Q2) What is the order of the autotopism group of each k × n Youden rectangle?

(Q3) If some condition is relaxed, how many objects satisfying the relaxed conditions are there?

3.2 Feasible parameter combinations

A necessary (but not sufficient) condition for the existence of a Youden rectangle is that λ = k(k−1)
n−1 is an

integer. We exclude k = 1, k = n−1 and k = n, as being trivial, since all Latin rectangles for those values

are Youden rectangles. We call non-trivial parameter values satisfying the divisibility condition feasible.

The smallest feasible parameter combinations for nontrivial Youden rectangles are given in Table 1. Note

that if (k, n) are feasible parameters for a Youden rectangle, then so are (n− k, n).

n\k 3 4 5 6 7 8 9 10 11 12 16

7 E E

11 E E

13 E X

15 X X

16 E? X

19 X X

21 E X

23 X X

Tab. 1: All feasible parameter combinations for Youden rectangles with 7 ≤ n ≤ 23. An E indicates full enumeration

in the present paper, and an X indicates feasible parameters but no complete enumeration.

We have attempted to generate the Youden rectangles for all parameter combinations in Table 1, but in

the remaining cases the number of partial objects was too large and the computation had to be stopped

due to lack of storage space. The fact that we could handle one case for n = 21 illustrates the fact that

growing n is not the only challenge for complete enumeration, but rather an interplay between n and k.

For parameter sets where there do not exist Youden rectangles, we have enumerated k×n near Youden

rectangles, where the intersection sizes between symbol sets in columns (as noted above) are either λ1 =
⌊

k(k−1)
n−1

⌋

or λ2 =
⌈

k(k−1)
n−1

⌉

.
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For near Youden rectangles there are no simple divisibility conditions which have to be satisfied, like

the ones for SBIBDs, and as we shall see we find numerous examples for all small parameters. However,

a theorem of Brown [8] implies that for n = 17, k = 6, near Youden rectangles do not exist. So, while

near Youden rectangles are much less restricted than Youden rectangles, the existence question is still

non-trivial.

3.3 Implementation and Execution

We generated all non-isotopic rectangles by consecutively adding all possible columns, while observing

that none of the conditions were violated. At suitable points, we reduced our list of partial objects by

isotopism. Also, at selected stages, the list of partial objects was culled by running checks on whether

they were at all extendible to a full Youden rectangle. We note here that using the definition in terms of

constant sized column intersections, rather than the definition in terms of each symbol pair appearing a

constant number of times, makes it possible to reduce the list of partial objects much more effectively. We

also observe that for partial objects, it is not possible (at least not straightforwardly) to reduce the list of

partial objects with respect to species (main classes). At this stage, therefore, it is natural to employ the

equivalence notion of isotopism.

The algorithms used were implemented in C++ and run in a parallelized version on the Kebnekaise

supercomputer at High Performance Computing Centre North (HPC2N).

The algorithm is divided into two parts. The first extends a given partial rectangle with k rows and t

columns by one column, such that the new rectangle satisfies both the Latin condition and the balance

condition. More specifically, we first add a column with k different symbols. We then check that in the

extended k × (t + 1) rectangle, no symbols appear more than once in any row. We also check that the

number of shared symbols between the added column and the t first columns is λ. In the case of generating

near Youden rectangles, we instead check that all intersection sizes with the new column fall into one of

the two allowed values. By checking all possible added columns, we find all extensions of the given k× t

rectangle.

The second part of the algorithm checks whether a received k × (t+ 1) rectangle could be chosen as a

normalized representative of an isotopism class.

When a full Youden rectangle has been received, we check the order of the autotopism group. The

group of possible autotopism actions on a k × n Youden rectangle is Sk × Sn × Sn, so potentially, the

number of actions we need to check is k! · n! · n!.

Since we consider normalized rectangles this number can be reduced to n · k! · (n − k)!, since once

we have chosen the first column (n options) and row permutation πr (k! options) we fix k symbols in the

symbol permutation πs (so (n− k)! options remain).

The running time grows quickly as the rectangle parameters grow. We completely enumerated Youden

rectangles of sizes 3×7, 4×7, 5×11 and 4×13 in a few minutes on a standard desktop computer. On the

other hand, computation on sizes 6×11 and 5×21 required high performance computers and significantly

more time. Using a parallelized version of the algorithms, enumerating 6 × 11 Youden rectangles took

about 6000 core hours, which is a bit less than 1 year. The 5 × 21 case required several hundred core

years.

Our methods and code can be applied to larger parameter values as well, but the number of partial

rectangles, which is far larger than those for complete rectangles, become unmanageable. The running

time per partial object has not been the bottleneck for our program, so there has been no reason to employ
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(n, k, λ) (7,3,1) (7,4,2)

#YR 1 6

1 0 2

|Aut| 3 0 3

21 1 1

Tab. 2: The number of Youden rectangles with n = 7 sorted by autotopism group order.

(n, k, λ) (11,5,2) (11,6,3)

#YR 79 416 995 467 440

1 77 694 995 421 832

2 1 423 40 831

3 199 4 454

4 45 124

|Aut| 5 4 121

6 38 62

10 3 3

12 7 10

55 1 1

60 2 2

Tab. 3: The number of Youden rectangles with n = 11 sorted by autotopism group order.

more sophisticated generation methods or equivalence checks. Instead the number of partial objects for

large parameters became so large that disc space became the limiting factor.

4 Basic Computational Results

We now turn to the results and analysis of our computational work.

4.1 The Number of Youden Rectangles

Our first result is an enumeration of Youden rectangles. In Tables 2 to 5, we present data on the number

of non-isotopic Youden rectangles, sorted by the order of the autotopism groups.

It is relevant to compare these numbers with the number of Latin rectangles. When no reduction at all

is applied, there are 782 137 036 800 Latin rectangles of size 4 × 7, and only 512 Youden rectangles of

the same size (note that this number is not given in any of the tables in the present paper). In [18], the

numbers of reduced n × k Latin rectangles are given for k ≤ n, 1 ≤ n ≤ 11, that is, the number of

Latin rectangles whose first row is the identity permutation and the first column is 0, 1, . . . , k − 1, and

there are 1 293 216 reduced Latin rectangles of size 4× 7. Finally, there are 1398 4× 7 non-isotopic Latin

rectangles [17], to be compared with only 6 non-isotopic Youden rectangles of the same size. As we can

see, the proportion of Latin rectangles that additionally satisfy the balance condition is small.

We note again that the 3 × 7 and 4 × 7 Youden rectangles were completely classified by Preece [24],

and that our enumerative results are in accordance with his classification.
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(n, k, λ) (13,4,1)

#YR 20

1 12

|Aut| 3 7

39 1

Tab. 4: The number of Youden rectangles with n = 13, k = 4 sorted by autotopism group order.

(n, k, λ) (21,5,1)

#YR 3 454 435 044

1 3 454 384 100

2 37 394

3 13 349

5 14

6 109

|Aut| 7 4

9 55

14 6

18 7

21 1

42 3

63 1

126 1

Tab. 5: The number of Youden rectangles with n = 21, k = 5 sorted by autotopism group order.



10 Gerold Jäger, Klas Markström, Denys Shcherbak, Lars-Daniel Öhman

0 1 2 3 4 5 6 7 8 9 10 11 12

1 4 5 6 2 9 10 11 0 7 8 12 3

2 5 7 8 9 11 0 3 4 12 1 6 10

3 6 8 9 10 0 7 4 12 1 11 2 5

Fig. 2: The 4× 13 Youden rectangle Y with |Aut(Y )| = 39.

The most common autotopism group order for Latin rectangles is 1 (see [18]). From the tables, we

see that clearly the most common autotopism group order for Youden rectangles is also 1, but that there

are also rare examples of rather symmetric Youden rectangles. One such example, a Youden rectangle

of size 4 × 13, whose autotopism group order is 39 is presented in Figure 2. The autotopism group acts

transitively on the columns of this Youden rectangle, that is, for any pair C1 and C2 of columns, there is

an autotopism that takes C1 to C2.

As is well known, taking a (n, k, λ) difference set as first column and producing the remaining columns

by developing this first column, that is, consecutively adding 1 to each entry, will produce a Youden

rectangle. The autotopism group of the resulting Youden rectangle will then act transitively on the set of

columns. We conclude that for n = 7, 11, 13, the very symmetric Youden rectangles we found, where

the order of the autotopism group is divisible by the number of columns, correspond to those Youden

rectangles generated from difference sets. The situation for n = 21 seems to be a bit more involved, since

we see autotopism groups of orders 21, 42 (in fact, three such), 63 and even 126. A complete analysis of

these Youden rectangles is beyond the scope of this paper, and we leave this as an open question.

For larger parameters, that is, where there exist more than one corresponding SBIBD, it would also

have been interesting to group Youden rectangles according to which SBIBD they give if the ordering in

the columns is ignored.

4.2 Near Youden Rectangles

In Tables 6 to 10, we list complete data for the number of isotopism classes of near Youden rectangles

(NYR) from n = 5 to n = 9 for sets of parameters where there are no Youden rectangles, sorted by the

order of the autotopism groups. We also display the number of NYRs which are self-conjugate as Latin

rectangles, i.e., if we interchange the roles of columns and symbols we get a NYR in the same isotopism

class.

We have excluded the cases k = 1, k = n − 1 and k = n, since as observed above, for these cases all

Latin rectangles are Youden rectangles as well. We also excluded the case k = 7, n = 9, for which the

number of partial rectangles was deemed too large for a straight-forward run of our program.

In Tables 11 to 14, we list data for the number of isotopism classes of near Youden rectangles from

n = 10 to n = 13 for as large k as was feasible, with the same restrictions on parameter values as for

n = 5, . . . , 9.

Observation 4.1. There exist NYRs for all parameters with n ≤ 10.

This follows from our enumeration together with the observation that if a k × n NYR is completed to

an n× n Latin square then the new n− k rows also form an (n− k)× n NYR.

We note that for k = 2 any NYR may be interpreted as a 2-regular graph. Such graphs can be easily

enumerated by hand, and our data for this case is verified by such a manual count.
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(n, k, λ1, λ2) (5,2,0,1) (5,3,1,2)

# NYR 1 2

#self-conjugate 1 2

|Aut| 2 0 1

10 1 1

Tab. 6: The number of near Youden rectangles with n = 5 sorted by autotopism group order.

(n, k, λ1, λ2) (6,2,0,1) (6,3,1,2) (6,4,2,3)

#NYR 2 2 34

#self-conjugate 2 2 29

1 0 0 9

2 0 0 11

4 0 0 5

|Aut| 6 0 2 3

12 1 0 4

18 0 0 1

36 1 0 1

Tab. 7: The number of near Youden rectangles with n = 6 sorted by autotopism group order.

(n, k, λ1, λ2) (7,2,0,1) (7,5,3,4)

# NYR 2 5 205

# self-conjugate 2 2 778

1 0 4 889

|Aut| 2 0 307

4 0 8

14 1 1

24 1 0

Tab. 8: The number of near Youden rectangles with n = 7 sorted by autotopism group order.
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(n, k, λ1, λ2) (8,2,0,1) (8,3,0,1) (8,4,1,2) (8,5,2,3) (8,6,4,5)

# NYR 3 4 285 6 688 21 956 009

# self-conjugate 3 3 212 3 608 11 000 012

1 0 0 173 6 204 21 905 896

2 0 0 78 381 48 865

3 0 0 0 37 0

4 0 0 15 29 1 208

5 0 0 0 0 24

6 0 2 0 18 0

|Aut| 8 0 0 11 6 144

10 0 0 0 0 6

12 0 0 0 5 0

16 1 1 4 5 36

24 0 0 0 2 0

30 1 0 0 0 0

32 0 0 4 0 6

48 0 1 0 1 0

64 1 0 0 0 4

Tab. 9: The number of near Youden rectangles with n = 8 sorted by autotopism group order.

(n, k, λ1, λ2) (9,2,0,1) (9,3,0,1) (9,4,1,2) (9,5,2,3) (9,6,3,4)

# NYR 4 11 5 342 2 757 904 731 801 066

# self-conjugate 4 11 2 955 1 388 084 98 054 401

1 0 3 4 881 2 750 174 731 727 683

2 0 1 355 7 148 69 733

3 0 1 20 290 3 079

4 0 0 54 177 312

6 0 4 15 86 213

8 0 0 3 7 0

|Aut| 9 0 1 3 6 16

12 0 0 8 6 18

18 1 0 2 8 5

36 1 0 0 1 4

40 1 0 0 0 0

54 0 1 0 0 1

72 0 0 1 1 0

108 0 0 0 0 2

324 1 0 0 0 0

Tab. 10: The number of near Youden rectangles with n = 9 sorted by autotopism group order.
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(n, k, λ1, λ2) (10,2,0,1) (10,3,0,1) (10,4,1,2) (10,5,2,3)

# NYR 5 80 9 722 1 913 816

# self-conjugate 5 59 5 388 962 300

1 0 48 9 288 1 907 844

2 0 23 331 5 952

3 0 4 72 0

4 0 0 9 0

5 0 0 2 4

6 0 2 2 0

|Aut| 10 0 3 9 16

12 0 0 9 0

20 1 0 0 0

42 1 0 0 0

48 1 0 0 0

100 1 0 0 0

144 1 0 0 0

Tab. 11: The number of near Youden rectangles with n = 10 sorted by autotopism group order.

(n, k, λ1, λ2) (11,2,0,1) (11,3,0,1) (11,4,1,2)

# NYR 6 852 1 598

# self-conjugate 6 501 865

1 0 759 1 597

2 0 75 0

3 0 12 0

6 0 5 0

|Aut| 11 0 1 1

22 1 0 0

48 1 0 0

56 1 0 0

60 1 0 0

180 1 0 0

192 1 0 0

Tab. 12: The number of near Youden rectangles with n = 11 sorted by autotopism group order.
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(n, k, λ1, λ2) (12,2,0,1) (12,3,0,1) (12,4,1,2)

# NYR 9 11 598 262

# self-conjugate 9 6 183 167

1 0 11 174 182

2 0 333 46

3 0 35 16

4 0 13 4

6 0 27 10

8 0 2 0

|Aut| 12 0 5 4

18 0 3 0

24 1 4 0

54 1 0 0

64 1 0 0

70 1 0 0

72 0 2 0

120 1 0 0

144 1 0 0

216 1 0 0

768 1 0 0

388 1 0 0

Tab. 13: The number of near Youden rectangles with n = 12 sorted by autotopism group order.
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(n, k, λ1, λ2) (13,2,0,1) (13,3,0,1)

# NYR 10 169 262

# self-conjugate 10 86 362

1 0 167 541

2 0 1 626

|Aut| 3 0 69

6 0 24

13 0 1

26 1 0

39 0 1

60 1 0

72 1 0

80 1 0

84 1 0

144 1 0

252 1 0

300 1 0

320 1 0

1296 1 0

Tab. 14: The number of near Youden rectangles with n = 13 sorted by autotopism group order.

We see that for fixed n and growing k, at least for n = 7, n = 11 and n = 13, the number of near

Youden rectangles grows faster than the number of Youden rectangles. The same holds for fixed k and

growing n. As with Youden rectangles, most of the small near Youden rectangles have trivial autotopism

groups.

We also note that for small n we always find self-conjugate near Youden rectangles, even though their

number is typically smaller than the number of all near Youden rectangles.

Question 4.2. Assume that a near Youden rectangle exists for given n and k. Does there always exist a

self-conjugate near Youden rectangle for the same parameter combination?

5 Relations to Triple Arrays and Related Row-Column Designs

In this section, we present data and give some new theoretical results on the connection between Youden

rectangles and double, triple and sesqui arrays.

5.1 Theoretical background

A (v, e, λrr, λcc, λrc : r×c) triple array is an r×c array on v symbols satisfying the following conditions:

(TA1) No symbol is repeated in any row or column.

(TA2) Each symbol occurs e times (the array is equireplicate).

(TA3) Any two distinct rows contain λrr common symbols.
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(TA4) Any two distinct columns contain λcc common symbols.

(TA5) Any row and column contain λrc common symbols.

If we relax condition (TA5), which is sometimes called adjusted orthogonality, the array is called a

double array, and if condition (TA5) is expressly forbidden to hold, but all other conditions hold, we

have a proper double array. If we relax condition (TA4), the array is called a sesqui array, and an array

satisfying every condition except (TA4) we call a proper sesqui array. Our use of the term proper in this

context should not be confused with how it is sometimes used to stress that the blocks of a block design

all have the same size. Triple arrays were introduced by Agrawal [3], though examples were known

previously, and a good general introduction to triple and double arrays is given in [19]. Sesqui array were

introduced in [5].

In discussing these designs we will find a new class of Latin rectangles useful.

Definition 5.1. A Latin rectangle with integer parameters (n, k, λ), with λ = k(k−1)
n−1 calculated from n

and k as for a Youden rectangle, where the column intersections have sizes λ− 1, λ and λ+1 is called a

triple-intersection Latin rectangle.

Note that these objects are defined only for such (n, k, λ) that allow Youden rectangles with these

parameters, and that we require the intersection sizes to actually take on all these three values.

In [27] it was suggested that triple arrays could be constructed by taking an arbitrary Youden rectangle,

removing one column and all symbols present in that column, and then exchanging the roles of columns

and symbols. The argument employed used distinct representatives. However, in [32], the method was ob-

served to be flawed, as the distinct representatives argument did not work, and an explicit counterexample

was given. For ease of reference, we phrase the construction as follows.

Construction 5.2. For a given Youden rectangle Y and a column C0, let A be the array received from Y

by first removing column C0 and all occurrences in Y of symbols present in C0, and then exchanging the

roles of columns and symbols.

We say that a Youden rectangle Y is compatible with an array A if Y gives A via this construction for

some suitable choice of column, and we say that Y yields A.

Construction 5.2 was further investigated in [22], yielding among other the following results, reformu-

lated to suit the terminology employed in the present paper:

Theorem 5.3 (Proposition 2 in [22]). Using Construction 5.2, any Youden rectangle always yields an

array that satisfies conditions (TA1), (TA2) and (TA4), regardless of the choice of column.

In particular, when applied to a (n, k, λ) Youden rectangle, Construction 5.2 yields an equireplicate

r × c = k × (n − k) array on v = n − 1 symbols, with replication number e = k − λ and column

intersection size λcc = λ. We see then that Construction 5.2 may never (by definition of a proper sesqui

array) yield a proper sesqui array, but it is possible that we would get the transpose of a proper (n−k)×k

sesqui array.

Theorem 5.4 (Theorem 3 in [22]). Using Construction 5.2, any Youden rectangle with λ = 1 always

yields a proper double array for any choice of column.

Theorem 5.5 (Theorem 7 in [22]). For any triple array T with v = r + c− 1 and λcc = 2, there exists a

Youden rectangle (with k = r, n = v + 1, λ = 2) that yields T using Construction 5.2.
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It was also conjectured in [22] that Theorem 5.5 would hold for triple arrays with λcc larger than 2.

When applying Construction 5.2 to near Youden rectangles or triple-intersection Latin rectangles, re-

moving a column together with all the symbols present in that column will leave a k × (n− 1) equirepli-

cate array with some empty cells. For a near Youden rectangle, the empty cells are distributed so that

the number of empty cells in a column is either λ1 or λ2. For a triple intersection Latin rectangle, the

corresponding numbers of empty cells are λ− 1, λ or λ + 1. If more than one value occurs for the num-

ber of empty cells in a column, the array will not be equireplicate after exchanging the roles of columns

and symbols, since the number of appearances of a symbol in the resulting array will be the number of

non-empty cells in the corresponding column.

For near Youden rectangles Proposition 2.3 implies that the resulting array will never be equireplicate.

However, the following theorem follows rather easily from results in [22].

Theorem 5.6. For any (v, e, λrr, 1, λrc : r × c) triple array T with v = r + c− 1, there is a compatible

r × (v − c) triple-intersection Latin rectangle Y with column intersection sizes 0, 1 and 2.

The proof of this theorem uses the following result, where the RL-form R of a triple array T mentioned

in the cited source is the array that results from exchanging the roles of columns and symbols in T .

Theorem 5.7 (Corollary 1 in [22]). In the RL-form R of a triple array T with v = r + c − 1, for any

two columns C1 and C2, the sum of the number of common non-empty rows and the number of common

symbols of C1 and C2 is constant, namely e, the replication number.

Proof Proof of Theorem 5.6: Since the parameters of T are not all independent of each other (in partic-

ular, when v = r+ c− 1, it holds that λcc = r− e, see [19]), we may also observe that when exchanging

the roles of symbols and columns in a T , there will be r − e = λcc empty cells in each column in R (the

number of rows in T in which the corresponding symbol does not appear). Reasoning similarly, there will

be r − λcc empty cells in each row of R (the number of columns in T where the corresponding symbol

does not appear).

For λcc = 1, Theorem 5.7 then implies that in R, each pair of columns shares 0 symbols (when their

empty cells lie in the same row) or 1 symbol (when their empty cells lie in different rows).

With this information, given a triple array T , we can construct a Youden rectangle Y compatible with

T by first exchanging the roles of columns and symbols in T , yielding the array R, and then adding a new

column C0 with a set S of r new symbols, s1, s2, . . . sr in this order. To fill the empty cells in row i in R,

we then use the r− 1 symbols S \ {si}, in any order. This is the right number of symbols, since there are

r − 1 empty cells in every row of R, and there will be no repeated symbol in any row or column.

The intersections between columns in Y may now have three different sizes. As observed above, pairs

of columns in R shared either 0 symbols or 1 symbol, and after adding symbols to form Y , these numbers

may have gone up by at most 1, since only one new symbol was added in each column.

An example of the construction in the above proof is given in Figure 3. Since Theorem 5.6 shows that

the same transformation that we applied to Youden rectangles could yield interesting row-column designs

when applied to a triple-intersection Latin rectangle, we have also included this in our computational

studies.

5.2 Computational Results for Youden Rectangles

In this section, we report on how many Youden rectangles yielded triple arrays, proper double arrays, or

transposes of proper sesqui arrays, for all parameters (n, k, λ) for which we have complete data, except
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0 2 1 4 5 6 8 7 10

11 3 8 5 6 7 9 1 2

5 7 4 9 3 11 0 10 8

1 0 3 2 10 4 6 9 11
(a) A 4× 9 triple array T .

0 2 1 3 4 5 7 6 8

7 8 1 3 4 5 2 6 0

6 4 2 0 1 8 3 7 5

1 0 3 2 5 6 7 4 8
(b) The corresponding array R with the roles of symbols and rows

in T interchanged

9 0 2 1 10 3 4 5 7 6 11 8 12

10 9 7 8 1 11 3 4 5 2 6 12 0

11 6 9 10 4 2 0 12 1 8 3 7 5

12 1 0 3 2 5 9 6 10 11 7 4 8
(c) A triple-intersection Latin rectangle compatible with T .

Fig. 3: Example of the construction in the proof of Theorem 5.6.

for (21, 5, 1) Youden rectangles, where the computing time required was too great.

We ran checks even for properties guaranteed by Theorems 5.3, 5.4 and 5.5. Computational results

were compatible with those of these theorems, which can be taken as an independent indication of the

correctness of the computations.

5.2.1 Triple Arrays

Among the possible parameters for Youden rectangles for which we have complete data, there are just

two sets of parameters where there is a chance of producing triple arrays, namely (11, 5, 2) and (11, 6, 3).
All Youden rectangles with λ = 1 are excluded by Theorem 5.4, and (7, 4, 2) would give a 4 × 3 triple

array, the existence of which was excluded in [19].

In Table 15 for triple arrays and Table 17 for proper double arrays we give the following information:

1. The number of Youden rectangles that give a triple or double array via Construction 5.2 for at least

one of its columns.

2. The total number of columns for which the construction yields a triple or double array (that is,

Youden rectangles counted with ‘multiplicities’).

3. The number of non-isotopic triple or proper double arrays we observe appearing as a result of this

operation.

The 5×6 triple arrays (and by taking transposes, also the 6×5 triple arrays) were completely classified

into 7 isotopism classes in [23]. As predicted by Theorem 5.5, all 7 triple arrays appear in Table 15.
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(n, k, λ) # compatible YR # compatible columns # TA

(11,5,2) 52 52 7

(11,6,3) 826 826 7

Tab. 15: The number of Youden rectangles giving triple arrays.

Observation 5.8. Each of the Youden rectangles with n = 11 that yields a triple array does so using a

unique column.

The 7 different triple arrays do not appear equally often. With classes numbered as in [23], the triple

arrays appear with the frequencies given in Table 16. The orders of the autotopism groups of the triple

arrays (in the row labelled TA |Aut|) are taken from [23]. It seems that it is easier to produce those triple

arrays that have smaller autotopism groups.

TA class 1 2 3 4 5 6 7

TA |Aut| 60 12 12 6 4 3 3

# 5× 6 YR 3 5 5 8 11 10 10

# 6× 5 YR 23 62 62 115 168 198 198

Tab. 16: The number of Youden rectangles giving each of the 7 classes of 5× 6 triple arrays.

We investigated the autotopism group orders of the Youden rectangles that produced triple arrays, but

we observed no obvious patterns.

5.2.2 Proper Double Arrays

We also checked which Youden rectangles produced proper double arrays, and the results are given in

Table 17. As predicted by Theorem 5.4, we see that all Youden rectangles with λ = 1 produced proper

double arrays, for each column. For other values of λ, there is some indication that the proportion of

compatible Youden rectangles decreases with growing λ, and that the most common case is that even in a

compatible Youden rectangle, only one column is compatible.

(n, k, λ) # compatible YR # compatible columns # DA

(7,3,1) 1 7 1

(7,4,2) 6 18 2

(11,5,2) 44 012 64 949 17 642

(11,6,3) 31 782 790 32 335 774 24 663

(13,4,1) 20 260 192

Tab. 17: The number of Youden rectangles giving proper double arrays.

We note also that for parameter pairs (n, k, λ1), (k, n− k, λ2), the double arrays produced by the first

have dimensions k × (n − k) and taking transposes yields an (n − k) × k double array, and vice versa.

Despite this, we see different numbers of double arrays appearing through the construction both for the
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pair (7, 3, 1), (7, 4, 2) and the pair (11, 5, 2), (11, 6, 3). This would seem to indicate that there are double

arrays that cannot be constructed using Construction 5.2.

We note that on the basis of these data, we can answer in the negative a question posed in [22], namely

whether every Youden rectangle gives a double array using Construction 5.2 for some column. We phrase

this as an observation. For examples for v = 11, see Figure 4.

Observation 5.9. There are Youden rectangles that cannot be used to produce double arrays by removing

a column and all the symbols in that column, and then interchanging the roles of symbols and columns.

0 1 2 3 4 5 6 7 8 9 10

1 0 5 6 7 10 4 9 3 8 2

2 5 0 9 8 3 10 4 6 1 7

3 6 8 10 0 1 2 5 7 4 9

4 7 9 0 10 8 5 3 2 6 1
(a) An 11× 5 Youden rectangle which does not give a double array

for any column

0 1 2 3 4 5 6 7 8 9 10

1 0 9 4 7 8 10 5 3 6 2

2 3 4 7 5 6 1 8 10 0 9

3 6 7 1 8 4 5 9 2 10 0

4 7 0 9 10 1 2 3 6 5 8

5 8 6 10 0 9 7 2 4 3 1
(b) An 11 × 6 Youden rectangle which does not give a double array

for any column

Fig. 4: Examples for Observation 5.9.

5.2.3 Transposes of Proper Sesqui Arrays

Using Construction 5.2, we checked for transposes of proper sesqui arrays, and the results are presented

in Table 18.

(n, k, λ) # compatible YR # compatible columns # SAT

(7,3,1) 0 0 0

(7,4,2) 1 3 1

(11,5,2) 0 0 0

(11,6,3) 8 234 8 234 34

(13,4,1) 0 0 0

Tab. 18: The number of Youden rectangles giving transposes of proper sesqui arrays.

We observe that transposes of sesqui arrays are relatively rare, and that the compatible (11, 6, 3)Youden

rectangles are only compatible for one single column each. The one compatible (7, 4, 2) Youden rectangle
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0 1 2 3 4 5 6

1 2 3 4 6 0 5

2 4 5 6 0 3 1

3 5 6 1 2 4 0

S S D S
(a) The Youden rectangle.

0 1 4

1 4 2

2 3 5

3 5 0
(b) The trans-

posed sesqui

array.

Fig. 5: The unique 4× 7 Youden rectangle compatible with the transpose of a sesqui array, with compatible columns

marked by S, and a column compatible with a double array marked by D.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 7 6 8 9 10 5 2 4

2 5 7 9 0 3 1 8 10 4 6

3 6 8 10 9 1 2 4 0 7 5

4 7 6 0 8 9 10 1 2 5 3

T D D D D

Fig. 6: Example of a 5× 11 Youden rectangle with maximum compatibility with respect to triple and proper double

arrays. The column marked with T is compatible with a triple array, and the four columns marked with D are

compatible with proper double arrays.

is given in Figure 5, together with the resulting transposed sesqui array.

5.2.4 Compatibility with Several Designs

In our data, we found some specimens of Youden rectangles exhibiting very good compatibility properties.

To begin with, in Figure 5, we give a (7, 4, 2) Youden rectangle which is compatible both with transposes

of sesqui arrays, and with a proper double array.

Further, some of the Youden rectangles that gave triple arrays of dimensions 5× 6 and 6× 5 also gave

proper double arrays for some other columns. Examples with maximum number of columns compatible

with double arrays are given in Figures 6 and 7.

Even for Youden rectangles with λ 6= 1, we found Youden rectangles that for each column are compat-

ible with some proper double array.

In Figure 8, we give the unique 4× 7 Youden rectangle where each column is compatible with a double

array. For any column, the resulting double array is isotopic to the one given in Figure 8(b). The Youden

rectangle in Figure 8(a) has the largest autotopism group order, i.e., 21, and the autotopism group acts

transitively on the columns. As observed above, this Youden rectangle can therefore be produced from

a difference set. The double array has an autotopism group of order 3, which acts transitively on the

columns.

For n = 11, the situation is a bit more complicated. In Figure 9, we give the two 5 × 11 examples we

found, and in Figure 10, we give the unique 6× 11 example.

The Youden rectangle in Figure 9(a) has an autotopism group of order 55, which acts transitively on

the columns, and so comes from a difference set. All columns yield a double array isotopic to the one
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0 1 2 3 4 5 6 7 8 9 10

1 0 4 10 5 7 8 2 3 6 9

2 3 6 9 7 8 0 10 1 5 4

3 6 9 5 10 0 4 1 2 8 7

4 7 3 6 8 9 2 5 10 1 0

5 8 7 0 3 2 10 6 9 4 1

D T

Fig. 7: Example of a 6× 11 Youden rectangle with maximum compatibility with respect to triple and proper double

arrays. The column marked with T is compatible with a triple array, and the column marked with D is compatible

with a proper double array.

0 1 2 3 4 5 6

1 2 4 5 3 6 0

2 4 3 6 5 0 1

3 5 6 1 0 2 4
(a) The Youden rectangle.

0 1 3

1 2 5

2 4 0

3 5 4
(b) The double ar-

ray.

Fig. 8: The unique 4× 7 Youden rectangle where each column is compatible with a double array.

0 1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 3 8 9 4 10 0

2 5 3 8 9 6 4 10 7 0 1

3 6 8 7 0 4 9 1 10 2 5

4 7 9 0 5 10 1 3 2 6 8
(a)

0 1 2 3 4 5 6 7 8 9 10

1 0 5 6 7 3 4 2 9 10 8

2 5 0 8 9 4 10 6 1 3 7

3 6 8 0 10 7 2 9 4 5 1

4 7 9 10 0 8 5 3 6 1 2
(b)

Fig. 9: The only two 5× 11 Youden rectangles where each column is compatible with a proper double array.
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0 1 2 3 4 5 6 7 8 9 10

1 2 6 4 7 8 3 5 9 10 0

2 6 3 7 5 9 4 8 10 0 1

3 4 7 8 9 0 5 10 1 2 6

4 7 5 9 10 1 8 0 2 6 3

5 8 9 0 1 6 10 2 3 4 7

Fig. 10: The unique 6× 11 Youden rectangle where each column is compatible with a proper double array.

0 1 2 3 4 6

1 2 5 6 7 8

2 5 3 8 9 4

3 6 8 7 0 9

4 7 9 0 5 1

Fig. 11: The double array produced from the 5 × 11 Youden rectangle with autotopism group order 55 given in

Figure 9(a).

in Figure 11. The autotopism group order of this double array is 5, and it acts transitively on 5 of the

columns, but keeps column 5 fixed.

The Youden rectangle in Figure 9(b) has an autotopism group of order 60, which acts transitively on

two groups of columns, with 5 and 6 columns, respectively. All columns in the group with five columns

yield the double array in Figure 12(a), and all columns in the group with six columns yield the double

array in Figure 12(b). The autotopism group order of these double arrays are 12 and 10, respectively, and

the group action for the first one is transitive on the columns, while the autotopism group for the second

one acts transitively on all columns except the second column, which is fixed.

Finally, the Youden rectangle in Figure 10 has an autotopism group of order 55, which acts transitively

on the columns, and so comes from a difference set. All columns yield the same double array, given in

Figure 13, which has an autotopism group of order 5, which acts transitively on the columns.

It is interesting to note that the Youden rectangles in Figures 8–10 that produce a single double array

(up to isotopism) for all columns have autotopism groups that act transitively on the columns. For an

investigation of this topic, we refer the interested reader to [21].

0 1 2 5 6 9

1 5 4 0 3 7

2 3 6 4 0 8

3 6 8 7 9 1

4 7 5 9 8 2

0 1 2 3 7 8

1 0 3 4 9 5

2 5 6 9 8 0

3 6 5 7 2 4

4 7 8 6 1 9

Fig. 12: The double arrays produced from the 5 × 11 Youden rectangle with autotopism group order 60 given in

Figure 9(b).
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0 1 2 3 5

1 2 6 4 8

2 6 3 7 9

3 4 7 8 0

4 7 5 9 1

5 8 9 0 6

Fig. 13: The double array produced from the 6 × 11 Youden rectangle with autotopism group order 55 given in

Figure 10.

(n, k) (7,3) (7,4)

# TILR 43 872

1 18 756

|Aut| 2 21 101

3 1 10

4 0 3

6 2 1

14 1 1

Tab. 19: The number of triple-intersection Latin rectangles (TILR) with n = 7 sorted by autotopism group order.

5.3 Computational Results for triple-intersection Latin Rectangles

As we noted earlier, triple-intersection Latin rectangles both provide the missing source for the λ = 1
triple arrays and could potentially lead to additional row-column designs. In order to investigate this

connection we have also generated all triple-intersection Latin rectangles with n = 7, but for larger n we

deemed full enumeration infeasible. The number of such rectangles is given in Table 19, sorted by the

order of the autotopism groups.

In Table 20 we give the number of such rectangles that are compatible with some proper double array.

The maximum number of columns which are compatible with a double array is 2. Among the resulting

non-isotopic double arrays for (7, 3, 1) and (7, 4, 2), we see three different double arrays, when taking

transposes into account. The rectangles in Figure 14 are examples where the two compatible columns

yield non-isotopic arrays, as indicated by subscripts.

(n, k, λ) # compatible TILR # compatible columns # DA

(7,3,1) 6 8 2

(7,4,2) 97 104 2

Tab. 20: The number of triple-intersection Latin rectangles (TILR giving proper double arrays.

For triple-intersection Latin rectangles we have also found two examples which are compatible with

proper sesqui arrays, as indicated in Table 21. We also found transposes of proper sesqui arrays in the

case 4× 7, as indicated in Table 22, and here the maximum number of compatible columns was three. We

include all the resulting sesqui arrays here (in normalized form) in Figures 15 and 16, since such arrays
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0 1 2 3 4 5 6

1 2 0 5 3 6 4

2 3 4 6 0 1 5

3 4 5 2 6 0 1

D2 D1

0 1 2 3 4 5 6

1 0 3 5 6 4 2

2 3 4 6 0 1 5

D1 D3

Fig. 14: Two examples of triple-intersection Latin rectangles with two columns that are compatible with non-isotopic

proper double arrays. Subscripted D indicate the resulting non-isotopic double arrays, taking transposes into account.

are scarce in the literature. We note that we only find two non-isotopic sesqui arrays S1 and S2, when

taking transposes into account, and that S1 in fact recurs from Figure 5(b).

(n, k, λ) # compatible TILR # compatible columns # SA

(7,3,1) 2 2 2

(7,4,2) 0 0 0

Tab. 21: The number of triple-intersection Latin rectangles (TILR) giving proper sesqui arrays.

(n, k, λ) # compatible TILR # compatible columns # SAT

(7,3,1) 0 0 0

(7,4,2) 73 78 2

Tab. 22: The number of triple-intersection Latin rectangles giving transposes of proper sesqui arrays.

6 Concluding remarks

With the computing time and storage available to us at present, we have exhausted the possibilities of

complete enumeration of Youden rectangles. A further line of inquiry might be to enumerate some re-

stricted class of Youden rectangles, satisfying some stronger conditions. Such conditions would have to go

beyond the structure of the symbol intersections between columns, since by only employing the balance

condition, we can only distinguish between non-isotopic SBIBDs.

The new class of objects which we have named near Youden rectangles (with only two column inter-

section sizes λ1 and λ2) shows some promise with regard to two desirable properties. First, they exist

for far more parameter combinations than Youden rectangles. Second, they always have pairs of symbols

covered either λ1 or λ2 times where |λ1 − λ2| = 1, so it may be expected that they perform reasonably

well regarding statistical optimality. In a sense, they are as balanced as they can be. Investigating the

statistical properties of these designs is beyond the scope of this paper.

In relation to near Youden rectangles, we would like to pose the following question:

Question 6.1. For which combinations of k and n do near Youden rectangles exist?

As we noted earlier a result by Brown [8] implies that for n = 17, k = 6 a near Youden rectangle does

not exist.
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0 1 2 3 4 5 6

1 2 0 4 5 6 3

2 3 4 5 6 1 0

S1

0 1 3 4

1 2 4 5

2 3 5 0

(a) S1

0 1 2 3 4 5 6

1 2 4 0 5 6 3

2 3 1 4 6 0 5

S2

0 1 3 4

1 2 4 5

2 0 5 3

(b) S2

Fig. 15: The triple-intersection Latin rectangles of size 3× 7 that give proper sesqui arrays, together with the corre-

sponding sesqui arrays.

0 1 2 3 4 5 6

1 0 3 4 5 6 2

2 3 5 6 0 1 4

3 4 6 5 2 0 1

S1 S1 S2

0 1 4

1 4 2

2 3 5

3 5 0

(b) ST

1

0 1 4

1 4 0

2 3 5

3 5 2

(c) ST

2

Fig. 16: Example of a triple-intersection Latin rectangle of size 4 × 7 that gives transposes of proper sesqui arrays

for three compatible columns, together with the corresponding non-isotopic transposed sesqui arrays ST

1 and ST

2 .

In relation to triple, double and sesqui arrays, we would like to pose the following questions:

Question 6.2. For a given set of parameters, how many double arrays are there that cannot be constructed

from any Youden rectangle by removing a column and all the symbols in that column, and then exchanging

the roles of symbols and columns?

Question 6.3. For a given set of parameters, can every double, triple, and (transpose of) sesqui array be

obtained from a Youden rectangle or a triple-intersection Latin rectangle by Construction 5.2?

Here one could of course extend the set of allowed intersection sizes in the Latin rectangle all the way

up to k, so the focus is on whether a small span of intersection sizes suffices.

We hope to return to these questions in future work.
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