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Inspired by Lelek’s idea from [Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199 – 214], we

introduce the novel notion of the span of graphs. Using this, we solve the problem of determining the maximal safety

distance two players can keep at all times while traversing a graph. Moreover, their moves must be made with respect

to certain move rules. For this purpose, we introduce different variants of a span of a given connected graph. All

the variants model the maximum safety distance kept by two players in a graph traversal, where the players may

only move with accordance to a specific set of rules, and their goal: visit either all vertices, or all edges. For each

variant, we show that the solution can be obtained by considering only connected subgraphs of a graph product and

the projections to the factors. We characterise graphs in which it is impossible to keep a positive safety distance at all

moments in time. Finally, we present a polynomial time algorithm that determines the chosen span variant of a given

graph.

Keywords: strong span of a graph, direct span of a graph, Cartesian span of a graph, safety distance

1 Introduction

In the times of the global pandemic which we have witnessed starting in 2020, two of the basic public

safety measures that were introduced worldwide were social distancing and keeping a safety distance in

public spaces. In this paper, we solve the problem of computing a maximal possible safety distance two

people can keep at all times.

Our concept is based on Lelek’s span of a continuum which is introduced in Lelek (1964). This notion

became extremely popular in continuum theory and many papers appeared, for an example see Hoehn

(2011), where more references can be found. In Hoehn (2011), Hoehn proved that there are continua

with zero span that are not chainable, which solved one of the most famous open problems in continuum

theory. In the present paper, we show that this is not the case in the graph theoretical equivalent of the

span, i.e., among other things we show that paths are the only graphs with zero span.

Imagine two players, say Alice and Bob, moving through a graph. They would both like to visit all

vertices and/or all edges of the graph whilst keeping the maximum possible safety distance from each

other. One way to describe the players’ movements is to represent their positions at a fixed moment t in

time by a pair (at, bt), where both at and bt are vertices of the graph. After that either one or both players

can choose to move to an adjacent vertex or stay at the current one.
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2 Iztok Banič and Andrej Taranenko

Figure 1 shows an example of the graphG, and the location (the walk) of both players at five consecutive

moments in time, shown by the graph W . For each moment in time Alice’s location and Bob’s location

are represented by the red and the blue arrow, respectively. At the time t0, Alice is at the vertex r1 and

Bob is at the vertex r3, so their locations can be represented by the pair (r1, r3). At this specific time,

the players are keeping safe at the distance 2. Next, at the time t1, Alice moves to the vertex r2, whilst

Bob stays at the vertex r3 (this can be represented by the pair (r2, r3), and the players are at the distance

1). At the time t2, Alice moves to the vertex r3 and Bob moves to the vertex r4; thus obtaining the pair

(r3, r4) and maintaining the safety distance 1. Similarly, at the time t3, Alice stays at the vertex r3 and

Bob moves to the vertex r2; thus obtaining the pair (r3, r2) and maintaining the safety distance 1. Finally,

at the time t4, Alice moves to the vertex r4, whilst Bob moves to the vertex r1 (this can be represented by

the pair (r4, r1), and the players are at the distance 2). So in this example the walk of both players at five

consecutive points in time can be represented by the tuple ((r1, r3), (r2, r3), (r3, r4), (r3, r2), (r4, r1)).
Note, in this example all the vertices are visited by both players and the maximal distance they were able

to maintain at all times was one.

r1 r2 r3 r4

t0 t1

t2

t3

t4

W

G

Alice’s position

Bob’s position

Fig. 1: An example of two visitors’ walks in a gallery.

In general, we are interested in keeping the maximal possible safety distance between both players

amongst all possible walks through the given graph G. For a given connected graph W that represents

a walk (consecutive points in time are presented by adjacent vertices) the two mappings from V (W ) to

V (G) which show the location of the corresponding player must map adjacent vertices to either the same

vertex (meaning the player did not move) or to adjacent vertices (meaning the player moved to an adjacent

vertex). Such mappings are called weak homomorphisms.

Moreover, we assume that both players desire to visit all vertices and/or all edges of the graph. In what

follows, we present a formal notion for the described situations for three different sets of movement rules

at any observed point in time:
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traditional movement rules: both players are independently allowed to move to an adjacent vertex or

stay at their current location,

active movement rules: both players must move to an adjacent vertex, or

lazy movement rules: exactly one player is allowed to move to an adjacent vertex.

Our problem of keeping a safety distance between two players is reminiscent of the classic cop and

robber game on graphs, see Bonato and Nowakowski (2011) for the book on the topic and for more

references. In such a game, a cop (or several) and a robber are put on a graph. At each point in time all

parties involved can move according to the movement rules. The goal is that the cop captures the robber

in a finite number of steps. In our somewhat dual concept to this one, two players desire to maintain the

maximal possible safety distance at all times. Also, in similar types of dynamic graph parameters the two

players usually follow opposite goals (e.g. the cop wants to catch the robber, the robber does not want

to be caught). In our problem, both players have the same goal of keeping the maximum possible safety

distance.

We proceed as follows. In Section 2 basic definitions and notations are presented. In Section 3 we

define different vertex and edge span variants of a graph and prove that each span can be obtained from a

corresponding graph product. We continue with Section 4, where we characterise 0-span graphs for each

variant. Moreover, we present an infinite family of graphs for which the vertex and edge variants of the

corresponding span are equal. Finally, we show that for a given connected graph H any span variant of

H can be computed in polynomial time. We conclude the paper with several open problems.

2 Preliminary results

Our terminology and notation mostly follow West (2001) for basic concepts of graph theory and Hammack

et al. (2011) for concepts related to product graphs. For any undefined terminology we refer the reader to

the mentioned references, however for completeness of this paper some concepts are defined here.

Let G be a connected graph and v be a vertex of G. The eccentricity of the vertex v, denoted ecc(v),
is the maximum distance from v to any vertex of G. That is, ecc(v) = max{dG(v, u) | u ∈ V (G)}.
The radius of G, denoted rad(G), is the minimum eccentricity among the vertices of G. Therefore,

rad(G) = min{ecc(v) | v ∈ V (G)}. The diameter of G, denoted diam(G), is the maximum eccentricity

among the vertices of G, thus, diam(G) = max{ecc(v) | v ∈ V (G)}.
For graphs G and H we will use the notation G ⊆ H to denote that G is a subgraph of H . Moreover,

G ⊆C H denotes that G is a connected subgraph of H . For a set U of vertices of a graphG we denote by

〈U〉G the subgraph of G induced by the set U .

Let H be a graph and let G ⊆ H . The graph H − G is defined by V (H − G) = V (H) \ V (G) and

E(H −G) = E(H) \ {uv ∈ E(H) | u ∈ V (G)}.
Let H be a graph. A graph K ⊆ H is a component of H , if K is connected and for any connected

graph G ⊆ H it holds that if V (G) ∩ V (K) 6= ∅, then G ⊆ K.

In this paper, we deal with weak homomorphisms which are a generalisation of homomorphisms. For

a good overview of results on homomorphisms we refer the reader to Hell and Nešetřil (2004).

LetG andH be any graphs. A function f : V (G) → V (H) is a weak homomorphism fromG toH if for

all u, v ∈ V (G), uv ∈ E(G) implies f(u)f(v) ∈ E(H) or f(u) = f(v). We will use the more common

notation f : G → H to say that f : V (G) → V (H) is a weak homomorphism. A weak homomorphism
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f : G → H is surjective if f(V (G)) = V (H). A weak homomorphism f : G → H is edge surjective

if it is surjective and for every uv ∈ E(H) there exists an edge xy ∈ E(G) such that u = f(x) and

v = f(y). For a weak homomorphism f : G → H , the image f(G) of the graph G is the graph defined

by V (f(G)) = {f(u) | u ∈ V (G)} and E(f(G)) = {f(u)f(v) | uv ∈ E(G) and f(u) 6= f(v)}.
Let f : G→ H be a weak homomorphism fromG to H and let K ⊆ G. The restriction f |K : K → H

is defined by f |K(u) = f(u) for any u ∈ V (K).
Note that if f : G → H is a weak homomorphism, then f(G) ⊆ H . The following lemma is a

well-known result. Since the proof is short, we give it anyway.

Lemma 2.1 Let f : G → H be a weak homomorphism. If G is a connected graph, then also f(G) is a

connected graph.

Proof: Note that since f : G→ H is a weak homomorphism, it follows that

df(G)(f(u), f(v)) ≤ dG(u, v)

for any u, v ∈ V (G). Therefore, there is a path in f(G) from f(u) to f(v) for any u, v ∈ V (G). ✷

LetG andH be any graphs. In the present paper, we deal with the following three products ofG andH ,

see Hammack et al. (2011). The Cartesian productG✷H is defined by V (G✷H) = V (G)×V (H) and

E(G✷H) = {(u1, v1)(u2, v2) | u1 = u2 and v1v2 ∈ E(H) or u1u2 ∈ E(G) and v1 = v2}. The direct

product G×H is defined by V (G×H) = V (G)× V (H) and E(G×H) = {(u1, v1)(u2, v2) | u1u2 ∈
E(G) and v1v2 ∈ E(H)}. The strong product G ⊠ H is defined by V (G ⊠ H) = V (G) × V (H) and

E(G⊠H) = E(G✷H) ∪E(G ×H).
Let G and H be any graphs. The functions p1 : V (G) × V (H) → V (G) and p2 : V (G) × V (H) →

V (H), defined by p1(u, v) = u and p2(u, v) = v for each (u, v) ∈ V (G)× V (H) are called the first and

the second projection functions, respectively. We also refer to them as the projection functions or simply,

the projections.

Observation 2.2 Hammack et al. (2011) Let G and H be any graphs. In each of the product graphs

G×H , G✷H and G⊠H both projections are weak homomorphisms.

At the end of the section, we define a distance between two homomorphisms, which will be used in

Section 3 to introduce all the variants of the spans of graphs.

Definition 2.3 Let f, g : G→ H be weak homomorphisms. We define

mG(f, g) = min{dH(f(u), g(u)) | u ∈ V (G)}

to be the distance from f to g.

Observation 2.4 Let f, g : G→ H be weak homomorphisms. Note that

mG(f, g) ≤ diam(H),

if G is connected. If G is not connected, then mG(f, g) may equal ∞.

Lemma 2.5 If f, g : G→ H are surjective weak homomorphisms and G is connected, then

mG(f, g) ≤ rad(H).
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Proof: LetG be a connected graph and f, g : G→ H be surjective weak homomorphisms. Let u ∈ V (H)
be such that ecc(u) = rad(H), i.e. u is a vertex of H with eccentricity equal to the radius of H . Since f

is surjective, there is a vertex v ∈ V (G) such that f(v) = u. Therefore dH(f(v), g(v)) ≤ rad(H). This

implies that mG(f, g) ≤ rad(H). ✷

Definition 2.6 Let H be a connected graph and let Z be a graph such that V (Z) ⊆ V (H)× V (H). We

define

εH(Z) = min{dH(x, y) | (x, y) ∈ V (Z)}.

3 Span - definitions and basic properties

Here we introduce six different variants of a span of a given connected graph: the strong edge span, the

strong vertex span, the direct edge span, the direct vertex span, the Cartesian edge span, and the Cartesian

vertex span.

All the variants model the maximum safety distance kept by two players moving through a graph, where

the players may only move with accordance to a specific set of rules. Moreover, for each set of rules we

define the vertex and the edge span variant. In the vertex variant of a span, all vertices of the graph must

be visited at least once by both players, and in the edge variant of a span all edges must be traversed by

both at least once (and therefore also all vertices).

3.1 Strong span

For the strong span variant the players may move with accordance to the traditional movement rules.

These rules can be described using weak homomorphisms from some path to a connected graph on which

the game is played, since paths can be seen as time parameters of walks.

We now define the strong edge and the strong vertex span of a graph.

Definition 3.1 Let H be a connected graph. Define

σ⊠

E (H) = max{mP (f, g) | f, g : P → H are edge surjective weak homomorphisms and P is a path}.

We call σ⊠
E (H) the strong edge span of the graphH .

Define

σ⊠

V (H) = max{mP (f, g) | f, g : P → H are surjective weak homomorphisms and P is a path}.

We call σ⊠
V (H) the strong vertex span of the graph H .

Observation 3.2 Note that for any connected graph H , the sets

{mP (f, g) | f, g : P → H are edge surjective weak homomorphisms and P is a path}

and

{mP (f, g) | f, g : P → H are surjective weak homomorphisms and P is a path}

are non-empty subsets of non-negative integers and are bounded from above by rad(H). Therefore,

σ⊠
V (H) and σ⊠

E (H) are well-defined. Note also that

σ⊠

E (H) ≤ σ⊠

V (H) ≤ rad(H).
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Note that in the above definition, paths may be replaced by any connected graph, as seen in the following

proposition. This proves that the concept of spans of a graph is an application of the notion of spans

of continua from Lelek (1964) where spans are defined by going through all continua, i.e., compact

connected metric spaces G, and not just through all arcs (paths P ). In the theory of continua these two

are not equivalent, since there are continua that are not path connected.

Proposition 3.3 Let H be a connected graph. Then

σ⊠

V (H) = max{mG(f, g) | f, g : G→ H are surjective weak homomorphisms

and G is connected}

and

σ⊠

E (H) = max{mG(f, g) | f, g : G→ H are edge surjective weak homomorphisms

and G is connected}.

Proof: Let

A = {mP (f, g) | f, g : P → H are surjective weak homomorphisms and P is a path}

and

B = {mG(f, g) | f, g : G→ H are surjective weak homomorphisms and G is connected}.

Since A ⊆ B, it follows that maxA ≤ maxB. To show that maxB ≤ maxA, let G be any connected

graph and f, g : G → H be any surjective weak homomorphisms. We show that there is a path P

and surjective weak homomorphisms f ′, g′ : P → H such that mG(f, g) = mP (f
′, g′). Let W =

(w0, w1, . . . , wk), where wiwi+1 ∈ E(G) for each i ∈ {0, 1, . . . , k− 1}, be any walk through all vertices

ofG, letP be a path with the vertex set {p0, p1, . . . , pk}, where pipi+1 ∈ E(P ) for each i ∈ {0, 1, . . . , k−
1}, and let h : P → G be defined by h(pi) = wi for each i ∈ {0, 1, . . . , k}. Note that f ◦ h and g ◦ h are

surjective weak homomorphisms from P to H such that mP (f ◦ h, g ◦ h) = mG(f, g). This proves that

σ⊠

V (H) = max{mG(f, g) | f, g : G→ H are surjective weak homomorphisms

and G is connected}

The proof of

σ⊠

E (H) = max{mG(f, g) | f, g : G→ H are edge surjective weak homomorphisms

and G is connected}

is analogous to the proof above, with additional assumption that the walk W is a walk through all edges

of the graph. ✷

For any connected graphH , the following two theorems show that it suffices to consider only connected

subgraphs Z of H ⊠H and the projections p1, p2 : H ⊠H → H when determining the corresponding

span of a graph. In particular, Z can be viewed as the subgraph of H ⊠H induced by all vertices (u, v)
such that at some point during the game onH , Alice occupies u while Bob occupies v. Thus, p1(Z) (resp.

p2(Z)) represents the subgraph of H traversed by Alice (resp. Bob) throughout the duration of the game,

while εH(Z) represents the minimum distance between Alice and Bob.
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Theorem 3.4 If H is a connected graph, then

σ⊠

V (H) = max{εH(Z) | Z ⊆C H ⊠H with p1(V (Z)) = p2(V (Z)) = V (H)}.

Proof: We define

A = {εH(Z) | Z ⊆C H ⊠H with p1(V (Z)) = p2(V (Z)) = V (H)} and

B = {mG(f, g) | f, g : G→ H are surjective weak homomorphisms and G is connected}.

We will show that max(A) = max(B) by proving that A = B. First we show that A ⊆ B. Let r ∈ A

be arbitrary. Let Z be a connected subgraph of H ⊠H such that p1(V (Z)) = p2(V (Z)) = V (H) and

εH(Z) = r. Let G = Z, f = p1|G and g = p2|G. Then

1. G is a connected graph,

2. f, g : G→ H are surjective weak homomorphisms, and

3.

mG(f, g) = min{dH(f(u), g(u)) | u ∈ V (G)}

= min{dH(p1(u), p2(u)) | u ∈ V (Z)}

= min{dH(x, y) | (x, y) ∈ V (Z)}

= εH(Z) = r.

Therefore, r ∈ B and we have proved that A ⊆ B.

To show that B ⊆ A, let r ∈ B be arbitrary. Let G be a connected graph and let f, g : G → H

be surjective weak homomorphisms such that mG(f, g) = r. Define ψ : V (G) → V (H ⊠ H) by

ψ(u) = (f(u), g(u)) for all u ∈ V (G). We claim that ψ is a well-defined weak homomorphism. It is

obvious that ψ(u) ∈ V (H ⊠H) for any u ∈ V (G). Let uv ∈ E(G). The following cases are possible:

1. f(u) = f(v) and g(u) = g(v). Here ψ(u) = ψ(v).

2. f(u)f(v) ∈ E(H) and g(u) = g(v). Here ψ(u) = (f(u), g(u)) = (f(u), g(v)) and ψ(v) =
(f(v), g(v)). Therefore ψ(u)ψ(v) ∈ E(H ⊠H).

3. f(u) = f(v) and g(u)g(v) ∈ E(H). Here ψ(u) = (f(u), g(u)) = (f(v), g(u)) and ψ(v) =
(f(v), g(v)). Therefore ψ(u)ψ(v) ∈ E(H ⊠H).

4. f(u)f(v) ∈ E(H) and g(u)g(v) ∈ E(H). Here ψ(u) = (f(u), g(u)) and ψ(v) = (f(v), g(v)).
Therefore ψ(u)ψ(v) ∈ E(H ⊠H).

It follows that ψ is a well-defined weak homomorphism from G to H ⊠H . Let Z = ψ(G). Since G is

connected, it follows that Z is a connected subgraph of H ⊠H . Next we show that p1(V (Z)) = V (H)
and p2(V (Z)) = V (H). Let x ∈ V (H). Since f and g are surjective weak homomorphisms, there are

u, v ∈ V (G) such that f(u) = x and g(v) = x. Then p1(f(u), g(u)) = x and p2(f(v), g(v)) = x and

we are done.
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Since

εH(Z) = min{dH(x, y) | (x, y) ∈ V (Z)}

= min{dH(f(u), g(u)) | u ∈ V (G)}

= mG(f, g) = r,

it follows that r ∈ A. Hence,B ⊆ A and we have proved thatA = B. It follows that max(A) = max(B).
Using Proposition 3.3 the assertion follows immediately. ✷

Theorem 3.5 Let H be a connected graph. Then

σ⊠

E (H) = max{εH(Z) | Z ⊆C H ⊠H with p1(Z) = p2(Z) = H}.

Proof: We define

A = {εH(Z) | Z ⊆C H ⊠H with p1(Z) = p2(Z) = H} and

B = {mG(f, g) | f, g : G→ H are edge surjective weak homomorphisms and G is connected}.

Similarly to the proof of Theorem 3.4 we prove the assertion by proving that A = B. To show that

A ⊆ B, let r ∈ A be arbitrary. Let Z ⊆C H ⊠H be such that p1(Z) = p2(Z) = H and εH(Z) = r. Let

G = Z, f = p1|G and g = p2|G. Then

1. G is a connected graph,

2. f, g : G→ H are edge surjective weak homomorphisms, and

3.

mG(f, g) = min{dH(f(u), g(u)) | u ∈ V (G)}

= min{dH(p1(u), p2(u)) | u ∈ V (Z)}

= min{dH(x, y) | (x, y) ∈ V (Z)}

= εH(Z) = r.

Therefore, r ∈ B and we have proved that A ⊆ B. To show that B ⊆ A, let r ∈ B. Let G be a

connected graph and let f, g : G→ H be edge surjective weak homomorphisms such that mG(f, g) = r.

Let Z be the graph defined by

V (Z) = {(f(u), g(u)) | u ∈ V (G)}

and, for any two vertices (u, v) and (u′, v′) of the graph Z , (u, v)(u′, v′) ∈ E(Z) if and only if one of the

following three conditions is satisfied:

1. uu′ ∈ E(H) and v = v′, or

2. vv′ ∈ E(H) and u = u′, or
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3. uu′ ∈ E(H) and vv′ ∈ E(H).

Define ψ : V (G) → V (Z) by ψ(u) = (f(u), g(u)) for all u ∈ V (G). Note that ψ is an edge surjective

weak homomorphism from G to Z . Therefore, Z = ψ(G) and since G is connected, by Lemma 2.1 the

graph Z is also connected. Therefore, Z ⊆C H ⊠H . Since

εH(Z) = min{dH(x, y) | (x, y) ∈ V (Z)}

= min{dH(f(u), g(u)) | u ∈ V (G)}

= mG(f, g) = r,

it follows that r ∈ A. Hence,B ⊆ A and we have proved thatA = B. It follows that max(A) = max(B).
Using Proposition 3.3 the assertion follows immediately. ✷

3.2 Direct span

For the direct span variant the players may only move according to the active movement rules. This rule

can be described using aligned weak homomorphisms.

We now define the direct edge and the direct vertex span of a graph.

Definition 3.6 Let f, g : G → H be weak homomorphisms. We say that f and g are aligned weak

homomorphisms, if for any uv ∈ E(G),

f(u)f(v) ∈ E(H) ⇐⇒ g(u)g(v) ∈ E(H).

Definition 3.7 Let H be a connected graph. Define

σ×

E (H) = max{mP (f, g) | f, g : P → H are edge surjective aligned weak homomorphisms

and P is a path}.

We call σ×

E (H) the direct edge span of the graph H .

Define

σ×

V (H) = max{mP (f, g) | f, g : P → H are surjective aligned weak homomorphisms

and P is a path}.

We call σ×

V (H) the direct vertex span of the graph H .

Observation 3.8 Note that for any connected graph H ,

σ×

E (H) ≤ σ×

V (H) ≤ rad(H).

Observation 3.9 Note that,

σ×

E (H) = max{mG(f, g) | f, g : G→ H are edge surjective aligned weak homomorphisms

and G is connected}
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and

σ×

V (H) = max{mG(f, g) | f, g : G→ H are surjective aligned weak homomorphisms

and G is connected}

can be proved similarly as Proposition 3.3.

For any connected graph H , the following theorem shows that it is not necessary to consider all cor-

responding weak homomorphisms from all possible connected graphs G. Instead it suffices to consider

only connected subgraphs of H ×H and the projections p1, p2 : H ×H → H .

Theorem 3.10 If H is a connected graph, then

σ×

V (H) = max{εH(Z) | Z ⊆C H ×H with p1(V (Z)) = p2(V (Z)) = V (H)}

and

σ×

E (H) = max{εH(Z) | Z ⊆C H ×H with p1(Z) = p2(Z) = H}.

Proof: The proof follows the same line of thought as the proofs of Theorems 3.4 and 3.5. The only

differences are in the construction of the corresponding connected subgraphs of (in this case) H ×H . ✷

3.3 Cartesian span

For the Cartesian span variant the players may only move according to the lazy movement rules. These

rules can be described using opposite weak homomorphisms.

We now define the Cartesian edge and the Cartesian vertex span of a graph.

Definition 3.11 Let f, g : G → H be weak homomorphisms. We say that f and g are opposite weak

homomorphisms, if for any uv ∈ E(G),

f(u)f(v) ∈ E(H) ⇔ g(u) = g(v).

Definition 3.12 Let H be a connected graph. Define

σ✷

E(H) = max{mP (f, g) | f, g : P → H are edge surjective opposite weak homomorphisms

and P is a path}.

We call σ✷

E(H) the Cartesian edge span of the graphH .

Define

σ✷

V (H) = max{mP (f, g) | f, g : P → H are surjective opposite weak homomorphisms

and P is a path}.

We call σ✷

V (H) the Cartesian vertex span of the graph H .

Observation 3.13 Note that for any connected graph H ,

σ✷

E(H) ≤ σ✷

V (H) ≤ rad(H).
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Observation 3.14 Note that,

σ✷

E(H) = max{mG(f, g) | f, g : G→ H are edge surjective opposite weak homomorphisms

and G is connected}

and

σ✷

V (H) = max{mG(f, g) | f, g : G→ H are surjective opposite weak homomorphisms

and G is connected}

can be proved similarly as Proposition 3.3.

For any connected graph H , the following theorem shows that it is not necessary to consider all cor-

responding weak homomorphisms from all possible connected graphs G. Instead it suffices to consider

only connected subgraphs of H ✷H and the projections p1, p2 : H ✷H → H .

Theorem 3.15 If H is a connected graph, then

σ✷

V (H) = max{εH(Z) | Z ⊆C H ✷H with p1(V (Z)) = p2(V (Z)) = V (H)}

and

σ✷

E(G) = max{εH(Z) | Z ⊆C H ✷H with p1(Z) = p2(Z) = H},

Proof: Again, the proof follows the same line of thought as the proofs of Theorems 3.4 and 3.5. The only

differences are in the construction of the corresponding connected subgraphs of (in this case) H ✷H . ✷

4 0-span graphs and graphs with equal vertex and edge span

variant

In this section we focus on 0-span graphs; i.e., graphs in which it is impossible to keep a positive safety

distance at all points in time in any of the above introduced models. We also construct an infinite family

of graphs for which the corresponding vertex and edge span variants are equal.

First we give and prove the following characterisations of graphs with strong vertex span, strong edge

span, direct vertex span and direct edge span equal to 0. In the first result that follows, we prove the

assertion formally, by constructing a corresponding subgraph with (edge) surjective projections and then

present the same result in the language of Alice and Bob moving on a graph. For the later results we only

prove them in the setting of players in the graph.

Theorem 4.1 Let H be any connected graph. The following statements are equivalent.

1. σ⊠
E (H) = 0.

2. σ⊠
V (H) = 0.

3. |V (H)| = 1.
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Proof: Let |V (H)| = 1. Then V (H) = {u} for some u and, obviously, σ⊠
V (H) = σ⊠

E (H) = 0. Next,

let σ⊠
E (H) = 0 or σ⊠

V (H) = 0. We show that |V (H)| = 1. Suppose that |V (H)| > 1. Let u, v ∈ V (H)
such that uv ∈ E(H).

If V (H) = {u, v}, then let Z be defined as follows. Let V (Z) = {(u, v), (v, u)} and E(Z) =
{(u, v)(v, u)}. Then εH(Z) = 1 and, therefore, σ⊠

V (H) > 0 and σ⊠
E (H) > 0.

Let |V (H)| > 2, u0v0 ∈ E(H) and let G be the graph defined by V (G) = {u0, v0} and E(G) =
{u0v0}. Also, let H1, H2, . . ., Hm be the components of H −G. Since V (H) 6= {u0, v0}, it follows that

m > 0. For each i ∈ {1, 2, . . . ,m}, let

Ui = N(u0) ∩ V (Hi)

and

Vi = N(v0) ∩ V (Hi).

We define a graph Z as follows. Let

V (Z) =

(

m
⋃

i=1

V (Hi ⊠G)

)

∪

(

m
⋃

i=1

V (G⊠Hi)

)

∪ {(u0, v0), (v0, u0)}

and

E(Z) =

(

m
⋃

i=1

E(Hi ⊠G)

)

∪

(

m
⋃

i=1

E(G⊠Hi)

)

∪ {(u0, v0)(v0, u0)}∪

m
⋃

i=1

((

⋃

u∈Ui

{(u, v0)(u0, v0)}

)

∪

(

⋃

v∈Vi

{(v, u0)(v0, u0)}

))

∪

m
⋃

i=1

((

⋃

u∈Ui

{(v0, u)(v0, u0)}

)

∪

(

⋃

v∈Vi

{(u0, v)(u0, v0)}

))

.

Figure 2 shows an example of how the vertices and edges are added to Z for any component Hi. It is

clear that Z is connected and that p1(Z) = p2(Z) = H (and therefore also p1(V (Z)) = p2(V (Z)) =
V (H)). Since for any vertex u ∈ V (H) it holds true that (u, u) 6∈ V (Z), therefore εH(Z) > 0. It follows

that σ⊠
V (H) > 0 and σ⊠

E (H) > 0. ✷

The part from the proof of Theorem 4.1, where |V (H)| > 2, can be stated in the setting of players

on the graph, as follows. Remember, the traditional movement rules apply. We will show that Alice and

Bob can visit all vertices and edges without ever being on the same vertex by providing their movements

through H , and therefore neither σ⊠
E (H) = 0 nor σ⊠

V (H) = 0. First, Alice and Bob start on different

vertices of the graph, say the vertex u is where Alice starts, and v is Bob’s beginning location. Alice can

visit all vertices of H in a breadth-first search (BFS) order with respect to the starting vertex u. For each

vertex w in the BFS order, Alice first moves from u to w. Then for each neighbour x of the vertex w,

she moves to x and back to w. Finally, she returns to u. In this manner she visits all edges of the graph

and therefore also all vertices. If at any point in time Alice has to move to Bob’s vertex, they simply

swap vertices by moving along the same edge at the same time, otherwise Bob does not move while

Alice is moving. After Alice has finished moving, Alice and Bob swap roles and Bob executes the same
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Z

H

H
Hi

G
Hi

G

u0 v0

u0

v0
(u0, v0)

(v0, u0)

Hi ⊠ G

G⊠ Hi

u

u

(u, v0)

(v0, u)

(u0, v)

v

v

(v, u0)

Fig. 2: Sketch of the construction of the graph Z in the case of strong spans.

procedure, while Alice remains at the same vertex, unless she swaps positions with Bob along the same

edge. Clearly, at any point in time, Alice and Bob are at distance at least 1 and therefore σ⊠
V (H) > 0 and

σ⊠
E (H) > 0.

Theorem 4.2 If H is the one-vertex graph or rad(H) = 1, then

σ⊠

E (H) = σ⊠

V (H).

Proof: The case when H is the one-vertex graph follows directly from Theorem 4.1. Now let H be such

that rad(H) = 1. Also from Theorem 4.1 it follows that σ⊠
V (H) 6= 0 and σ⊠

E (H) 6= 0. Since rad(H) = 1,

using Observation 3.2 we immediately obtain that σ⊠
V (H) = σ⊠

E (H) = 1. ✷

Note that for a path Pn, for any integer n, it holds that σ⊠
V (Pn) = σ⊠

E (Pn). Moreover, for any n > 1,

σ⊠
V (Pn) = σ⊠

E (Pn) = 1. Also, for any n > 3, rad(Pn) > 1. Therefore there are graphs H such that

rad(H) > 1 and σ⊠
V (H) = σ⊠

E (H). Hence, we present the following open problem.

Problem 4.3 Find all connected graphs H for which σ⊠
E (H) = σ⊠

V (H).

Note, for any tree T visiting all vertices requires visiting all edges, therefore σ⊠
E (T ) = σ⊠

V (T ).

Theorem 4.4 Let H be any connected graph. The following statements are equivalent.

1. σ×

E (H) = 0.

2. σ×

V (H) = 0.

3. |V (H)| = 1.
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Proof: The proof is similar to the proof of Theorem 4.1 with the only difference being in the case

|V (H)| > 2. For this case we provide the proof in the language of players’ movements through the

graph and show that they can visit all vertices and edges without ever being on the same vertex, thus

neither σ×

E (H) = 0 nor σ×

V (H) = 0.

Alice and Bob can move to visit every vertex and edge of the graph in a similar manner as described

after the proof of Theorem 4.1 with a small change. This time, Alice and Bob start on different end-

vertices of the same edge, say e = uv, moreover assume u is where Alice starts, and v is where Bob

starts. During every move Alice makes, her movements are the same as described in the mentioned case

above, Bob must also move, since active movement rules apply. Instead of remaining at the same vertex

at each move Alice makes, Bob alternates between the vertices v and u. If at any point in time Alice and

Bob both want to move to the same vertex (u or v), they can avoid such moves by retracing all their steps

to the starting positions and then swapping vertices. After Alice has visited all edges and vertices, they

retrace their steps to the starting position and their roles are again reversed. Bob can now visit all vertices

and edges in a similar fashion without meeting Alice at the same vertex. This implies that in the case

where |V (H) > 2| neither σ×

E (H) = 0 nor σ×

V (H) = 0. ✷

Theorem 4.5 If H is the one-vertex graph or rad(H) = 1, then

σ×

E (H) = σ×

V (H).

Proof: The case when H is the one-vertex graph follows directly from Theorem 4.4. Now let H be

such that rad(H) = 1. Again, from Theorem 4.4 it follows that σ×

V (H) 6= 0 and σ×

E (H) 6= 0. Since

rad(H) = 1, using Observation 3.8 we immediately obtain that σ×

V (H) = σ×

E (H) = 1. ✷

Problem 4.6 Find all connected graphs H for which σ×

E (H) = σ×

V (H).

Again, since for any tree T visiting all vertices requires visiting all edges, the equality above holds true

for trees.

Next we give and prove the following characterisation of graphs with the Cartesian vertex span and

Cartesian edge span equal to 0.

Theorem 4.7 Let H be any connected graph. The following statements are equivalent.

1. σ✷

E(H) = 0.

2. σ✷

V (H) = 0.

3. There is a positive integer n such that H is an n-path.

Proof: Let H = Pn be a path on n vertices, for an arbitrary positive integer n. Denote the vertices

of Pn by v0, v1, . . . , vn−1, such that for any i ∈ {0, . . . , n − 2} the vertices vi and vi+1 are adja-

cent. We show that σ✷

V (H) = 0. Using Theorem 3.15, let Z ⊆C H ✷H be such that p1(V (Z)) =
p2(V (Z)) = V (H) and εH(Z) = σ✷

V (H). Note, the set {(vi, vi) | i ∈ {0, 1, . . . , n − 1}} is a

cut set of Pn ✷Pn which divides the graph Pn ✷Pn into two connected components, one with the

vertex set V< = {(vi, vj) | i < j and i, j ∈ {0, 1, . . . , n − 1}} and the other with the vertex set

V> = {(vi, vj) | i > j and i, j ∈ {0, 1, . . . , n − 1}}. Towards contradiction suppose σ✷

V (H) > 0.
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This implies that for any i ∈ {0, 1, . . . , n − 1} the vertex (vi, vi) does not belong to V (Z). Since

p1(V (Z)) = V (H) there exists a vertex (v0, vj) ∈ V (Z) with j > 0. Moreover, (v0, vj) belongs to the

set V<. Similarly, since p1(V (Z)) = V (H) there also exists a vertex (vn−1, vl) ∈ V (Z) with l < n− 1
and this vertex belongs to V>. But then (v0, vj) and (vn−1, vl) belong to two distinct connected compo-

nents, a contradiction to the fact that Z is connected. Therefore, σ✷

V (H) = 0 and using Observation 3.13

also σ✷

E(H) = 0.

Next, we show that σ✷

V (H) = 0 or σ✷

E(H) = 0 implies that there exists a positive integer n such that

H is an n-path. Suppose that H is not an n-path for any positive integer n. This means that H contains a

cycle or it is a tree that contains a vertex of degree at least 3. For these two cases we show that Alice and

Bob can visit all vertices and edges without ever being in the same vertex at the same time and therefore

σ✷

V (H) > 0 and σ✷

E(H) > 0.

Suppose H contains a cycle C. Let Alice and Bob start at two different vertices of the cycle C, say

u and v, respectively. Since lazy movement rules apply, Alice’s movements can be similar to the ones

described after the proof of Theorem 4.1, while Bob remains still at all times, unless Alice needs to move

to Bob’s current position. Since they cannot both move at the same time, Bob avoids Alice as follows.

Alice does not move, Bob moves to another adjacent vertex of the the cycle C, stays there, and from there

Alice can move to her desired vertex. After Alice has visited all vertices and edges, she can retrace her

steps to move to the starting position, and so can Bob. After that Bob executes his moves using the same

procedure as Alice before, and Alice can avoid using Bob’s previous strategy. Since they were never at

the same vertex at the same time, σ✷

V (H) > 0 and σ✷

E(H) > 0.

Finally, let H be a tree that contains a vertex of degree at least three, say u0, and let u1, u2, u3 be three

distinct neighbours of u0. Note, sinceH is a tree, the vertices u1, u2 and u3 induce a graph with no edges.

Let Alice start in the vertex u1, and Bob in the vertex u0. While Alice visits all vertices (and therefore

edges, since H is a tree) of H − u0 and returns to u1, Bob stays in u0. Now, Alice and Bob can swap

positions and still obey the lazy movement rules as follows. Bob moves to u2 while Alice stays at u1, then

Bob stays at u2 and Alice moves to u0 and after that to u3. Now Alice stays at u3, now Bob can move

to u0 and after that to u1. After this Alice can move to u0, visit the remaining vertices and edges (while

Bob does not move) and then return to u0. Now the roles of Alice and Bob are exchanged, where they can

apply the same procedure and Bob can visit all vertices and edges ofH . Again, Alice and Bob were never

at the same vertex at the same time, therefore σ✷

V (H) > 0 and σ✷

E(H) > 0. This concludes the proof. ✷

Theorem 4.8 Let H be a connected graph. If H is a path or rad(H) = 1, then

σ✷

E(H) = σ✷

V (H).

Proof: The case where H is a path follows directly from Theorem 4.7. Assume that H is not a path and

rad(H) = 1. From Theorem 4.7 it follows that σ✷

V (H) 6= 0 and σ✷

E(H) 6= 0. Since rad(H) = 1, using

Observation 3.13 we immediately obtain that σ×

V (H) = σ×

E (H) = 1. ✷

Problem 4.9 Find all connected graphs H for which σ✷

E(H) = σ✷

V (H).

As well as in the strong and direct span variants, this equality holds true for any tree.
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5 Algorithm for computing the maximal safety distance

In this section we show that regardless of the type of movement rules, the maximal safety distance two

players can keep at all times can be determined in polynomial time. Note, the algorithms are written in

general and we assume that the goal - whether the players must visit all vertices or all edges of the given

graph - is known. Therefore in appropriate places only one of the two possible conditions needs to be

checked.

Algorithm 5.1: existsSafeWalkAtGivenDistance(H ,D, R)

Input: graph H , required distance D, movement rules R

Output: true if two players can keep the maximal distance at least D while traversing all

vertices/edges of H under movement rules R, and false, otherwise

/* create the corresponding product */

1 if R is traditional movement rules then

2 G = H ⊠H

3 else

4 if R is active movement rules then

5 G = H ×H

6 else

7 G = H ✷H

/* create the corresponding induced subgraph */

8 I = ∅
9 foreach (u, v) ∈ V (G) do

10 if dH(u, v) ≥ D then

11 I = I ∪ {(u, v)}

12 GI = 〈I〉G

/* check if any component projects to V (H) or to H */

13 foreach component C of GI do

14 if C projects to V (H) or to H then

15 return true

16 return false

Theorem 5.1 Algorithm 5.1 correctly identifies whether two players can traverse all vertices/edges of a

given graphH whilst maintaining a safety distance at least D in polynomial time.

Proof: Depending on the movement rules R, we use the results from Theorems 3.4, 3.5, 3.10 and 3.15

which imply that it suffices to check only subgraphs of the corresponding products. Denote the corre-

sponding product by ⋆. Moreover, if there exists a connected subgraph Z ⊆C H ⋆ H with the (edge)

surjective projections such that εH(Z) ≥ D, then for every vertex (u, v) ∈ V (Z) it holds true that
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dH(u, v) ≥ D (the distance condition). Lines 1-12 of Algorithm 5.1 compute the maximal induced sub-

graph GI of H ⋆ H in which for every vertex the distance condition is true. Clearly, Z is a subgraph of

some component of GI . In lines 13-16 we check whether a componentC projects to V (H) (in case play-

ers need to traverse all vertices) or to H , when the players must visit all edges of H . If such a component

exists, then the whole component can be taken as the graph Z . If no such component exists, the players

cannot maintain the desired distance at least D.

Denote by n the number of vertices of the graphH , also assume the distances between any two vertices

ofH have been previously determined. The desired productH⋆H and the subgraphGI can be determined

in O(n4) time. Also, the surjectivity of the first (second) projection of a component C to V (H) can be

checked by a simple loop checking whether every vertex of H appears as the first (second) coordinate

of some vertex of GI . In the worst case scenario, all components of GI must be checked, amounting

to checking at most O(n2) vertices. To check the edge surjectivity of the first (second) projection of a

componentC toH , for every edge ofGI we can label the edge ofH to which the first (second) projection

maps to. If for both projections there are no unlabelled edges ofH , then the projections are edge surjective.

This can be done in O(n4) time. This concludes the proof. ✷

Algorithm 5.2: span(H , R)

Input: graph H , movement rules R

Output: the maximal safety distance two players can maintain at all times while traversing all

vertices/edges the graph H under the movement rules R

1 for i = rad(H) down to 1 do

2 if existsSafeWalkAtGivenDistance(H, i, R)== true then

3 return i

4 return 0

Theorem 5.2 Algorithm 5.2 returns the span of the given graphH which corresponds to the given move-

ment rules R in polynomial time.

Proof: The assertion follows immediately using Lemma 2.5 which gives rad(H) as the upper bound for

any of the defined spans, and Theorem 5.1. At each step of the loop in Algorithm 5.2 the Algorithm 5.1

is called for the appropriate value. Since we are looking for the maximal possible safety distance, we can

start from the upper bound and check down to 0, thus we can stop the first time Algorithm 5.1 returns true.

Since the radius of H of order n is bounded from above by n, the for loop of the algorithm is executed at

most n times, using the fact that Algorithm 5.1 is polynomial, it follows that the corresponding span can

also be determined in polynomial time. ✷

6 Open problems

In addition to some open problems stated previously, we conclude the paper with the following open

problems.
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In Section 4 we characterise 0-span graphs for all possible variants. Also, we give infinite families of

graphs for which the chosen span is 1. The following question is a natural generalisation of these results.

Note, the same can be asked for any of the defined spans.

Problem 6.1 Let n be a positive integer. Characterise all connected graphsH (or find non-trivial families

of graphs H) with the strong vertex span σ⊠
V (H) = n.

Towards the solution of Problem 6.1, for each positive integer n, we now define a non-empty family Gn

of graphs such that for each G ∈ Gn the spans of G are at least n− 1 or n, depending on the chosen span.

Definition 6.2 Let n be a positive integer and let G be a connected graph with diam(G) ≥ n. We say

that G is n-friendly if for all u, v, w ∈ V (G),

d(u, v) = n and w ∈ N(u) =⇒ there is z ∈ N(v) such that d(w, z) = n.

We use Gn to denote the family of all n-friendly graphs.

A connected graph is called even if, for any vertex v ∈ V (G), there exists a unique vertex v′ ∈ V (G)
such that d(v, v′) = diam(G). An even graph is called harmonic-even, if uv ∈ E(G) whenever u′v′ ∈
E(G) for all u, v ∈ V (G), see Göbel and Veldman (1986); Klavžar and Kovše (2009) for results on even

and harmonic-even graphs.

Note:

• every harmonic-even graph G is diam(G)-friendly,

• if n ≥ 3, then every cycle Ck, where k ≥ 2n, is n-friendly, and

• if n ≥ 2, then every hypercube Qk, where k ≥ n, is n-friendly. For more information about

hypercubes see Hammack et al. (2011).

Observation 6.3 Let n be a positive integer and G be an n-friendly graph. Then the following hold true:

1. n ≤ σ⊠
E (G) ≤ σ⊠

V (G) ≤ rad(G),

2. n ≤ σ×

E (G) ≤ σ×

V (G) ≤ rad(G), and

3. n− 1 ≤ σ✷

E(G) ≤ σ✷

V (G) ≤ rad(G).

Moreover, if n = rad(G), then

1. σ⊠
E (G) = σ⊠

V (G) = rad(G),

2. σ×

E (G) = σ×

V (G) = rad(G).

To see that the assertions are true, it is sufficient to show that n ≤ σ⊠
E (G), n ≤ σ×

E (G) and n − 1 ≤
σ✷

E(G). To show n ≤ σ⊠
E (G), n ≤ σ×

E (G), Alice and Bob can use the following movement strategies. Let

Alice and Bob start at two vertices at distance n. Each time Alice moves from a vertex u to an adjacent

vertex w, Bob can move from v to a corresponding vertex z, thus maintaining the distance before the

move. This is possible since G is n-friendly. When Alice visits all edges of G, they swap roles. Note that

this solves the problem for traditional and active movement rules.
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To show that n − 1 ≤ σ✷

E(G), let Alice and Bob start at two vertices at distance n. Each time Alice

moves from a vertex u to an adjacent vertex w, Bob cannot move, therefore the distance between them is

at least n− 1. After every Alice’s move, if the distance to Bob is n− 1, then Alice does not move and Bob

moves from v to a corresponding vertex z which is again at distance n from Alice. If the distance between

the players if at least n after Alice’s move, then Bob does not move, and Alice moves. When Alice visits

all edges of G, they swap roles. This solves the case for lazy movement rules.

Since for any graph H it holds true that σ⊠
E (H) ≤ σ⊠

V (H) (similar result applies to all span variants),

it is natural to ask the following question (also for all span variants).

Problem 6.4 What is the maximum possible difference between σ⊠
V (H) and σ⊠

E (H)?
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S. Klavžar and M. Kovše. On even and harmonic-even partial cubes. Ars Combin., 93:77 – 86, 2009.

A. Lelek. Disjoint mappings and the span of spaces. Fund. Math., 55:199 – 214, 1964.

D. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ, 2001.


