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An edge-colored graph is rainbow if no two edges of the graph have the same color. An edge-colored graph G° is
called properly colored if every two adjacent edges of G° receive distinct colors in G€. A strongly edge-colored graph
is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph G rainbow
vertex pair-pancyclic if any two vertices in G are contained in a rainbow cycle of length ¢ for each £ with3 < ¢ < n.
In this paper, we show that every strongly edge-colored graph G° of order n with minimum degree § > % +1is
rainbow vertex pair-pancyclicity.
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1 Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph consisting of a
vertex set V(G) and an edge set E = E(G). We use d(v) to denote the number of edges incident with
vertex v in G and §(G) = min{d(v) : v € E}. An edge-coloring of G is a mapping ¢ : E(G) — S,
where S is a set of colors. A graph G with an edge-coloring c is called an edge-colored graph, and
denoted by G¢. For any e € E(G), e has color k if ¢(e) = k. For any subset By C E, ¢(E1) is the set
{c(e) : e € Eq}. We use d¢(v) (or briefly d°(v)) to denote the number of different colors on the edges
incident with vertex v in G¢ and §°(G) = min{d°(v) : v € V(G°)}. An edge-colored graph G° is called
properly colored if every two adjacent edges of G° receive distinct colors in G¢. Edge-colored graph G*¢
is rainbow if no two edges of G¢ have the same color. A strongly edge-colored graph is a proper edge-
colored graph such that every path of length 3 is rainbow. It is clearly that d(v) = d°(v) forall v € V(G¢)
in a strongly edge-colored graph G, or equivalently, for every vertex v in strongly edge-colored graph
G°, the colors on the edges incident with v are pairwise distinct. An edge-colored graph G° is called
rainbow Hamiltonian if G° contains a rainbow Hamiltonian cycle and rainbow vertex(edge)-pancyclic if
every vertex (edge) in G° is contained in a rainbow cycle of length [ for each [ with 3 <[ < n. We call an
edge-colored graph G¢ rainbow vertex pair-pancyclic if any two vertices in G¢ are contained a rainbow
cycle of length [ for each [ with 3 <[ < n. further, we call a cycle C I-cycle if the length of the cycle C
is [. For notation and terminology not defined here, we refer the reader to Bondy and Murty (2008).
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The classical Dirac’s theorem states that every graph ' is Hamiltonian if §(G) > %. Inspired by this
famous theorem, Hendry (1990) show that every graph G of order n with minimum degree § > ”T“ is
vertex-pancyclic. During the past few decades, the existence of cycles in graphs have been extensively
studied in the literatures. We recommend Abouelaoualim et al. (2010); Chen (2018); Chen and Li (2021,
2022); Chen et al. (2019); Czygrinow et al. (2021); Ehard and Mohr (2020); Fujita et al. (2019); Guo et al.
(2022); Kano and Li (2008); Li et al. (2022) for more results.

For edge-colored graphs, Lo (2014) proved the following asymptotic theorem about properly colored
cycles.

Theorem 1.1 (Lo (2014)) For any € > 0, there exists an integer ng such that every edge-colored graph
G* with n vertices and §°(G) > (% + e)n and n > ng contains a properly edge-colored cycle of length |
Jorall 3 <1 < n, where 6°(G) is the minimum number of distinct colors of edges incident with a vertex

in G¢.

Cheng et al. (2019) considered the existence of rainbow Hamiltonian cycles in strongly edge-colored
graph and proposed the following two conjectures.

Conjecture 1.2 (Cheng et al. (2019)) Every strongly edge-colored graph G° with n vertices and degree
at least "T'H has a rainbow Hamiltonian cycle.

Conjecture 1.3 (Cheng et al. (2019)) Every strongly edge-colored graph G¢ with n vertices and degree
at least 5 has a rainbow Hamiltonian path.

To support the above two conjectures, they presented the following theorem.

Theorem 1.4 (Cheng et al. (2019)) Let G be a strongly edge-colored graph with minimum degree 9, if
o> @, then G has a rainbow Hamiltonian cycle.

Wang and Qian (2021) showed that every strongly edge-colored graph G¢ on n vertices is rainbow
vertex-pancyclicif § > %" Li and Li (2022) further considered the rainbow edge-pancyclicity of strongly
edge-colored graphs and proposed the following theorem.

Theorem 1.5 (Li and Li (2022)) Let G¢ be a strongly edge-colored graph on n vertices. If 6(G¢) >
%, then G€ is rainbow edge-pancyclic. Furthermore, for every edge e of G€, one can find a rainbow
l-cycle containing e for each | with 3 < I < n in polynomial time.

In this paper, we consider the rainbow vertex pair-pancyclicity of strongly edge-colored graph. Our
main result is as follows.

Theorem 1.6 Let G be a strongly edge-colored graph with n vertices and minimum degree . If § >
%" + 1, then G° is rainbow vertex pair-pancyclicity.

2 Proof of Theorem 1.6

First, we introduce some useful notations. Given a rainbow cycle C in graph G*, a color s is called a
C-color (resp., C-color) if s € ¢(C) (resp., s ¢ ¢(C)). Correspondingly, we call an edge e a C-color
edge (resp., C-color edge) if c(e) € ¢(C) (resp., c(e) ¢ ¢(C)). Two adjacent vertices u and v are called
C-adjacent (resp., C-adjacent) if c(uv) € ¢(C) (resp., c(uv) ¢ ¢(C)). For two disjoint adjacent subsets
Vi and V3 of V(G), let E(V1, Va) denote the set of edges between V; and Vo. We denote the subsets
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of E(V1, Va) consisting of the C-color edges (resp., C-color edges) by Ec(V1,Va) (resp., E5(V1, V2)).
Similarly, for two subgraphs H; and Ha, we denote the set of C'-color edges (resp., C-color edges)
between V' (H1) and V (Hz) by Ec(H1, Hz) (resp., E5(H1, Hz)). For any two vertices v; and v; of
cycle C = vyvs ... vy, we identify the two subscripts ¢ and j if ¢ = j (mod [). Let v;C"v; be the
path v;v;4+1...vj_1v; and v;C~v; the path v;v;_1...v;41v;, respectively. For any vertex v € V(G¢), let
C'N (v) be the set of colors used by the edges incident with v.

From the definition of strongly edge-coloring, we can easily get the following observation.

Obervation 2.1 Each cycle of length at most 5 in a strongly edge-colored graph is rainbow.

Proof of Theorem 1.6: Recall that the colors on the edges incident with v are pairwise distinct for each
vertex v of a strongly edge-colored graph. So we do not distinguish the colors of adjacent edges in the
following. If n < 8, GG is complete since § > %" + 1, and so the result clearly holds. Thus we suppose
that n > 9. Let a and b be two arbitrary vertices of G. If a and b are adjacent, then a and b are contained
in a rainbow cycle of length [ for each | with 3 < [ < n from Theorem 1.5. So we consider that a and
b are not adjacent. Since & > %" + 1, we have that @ and b are contained in a 4-cycle which is rainbow
from Observation 2.1. Suppose to the contrary that the result is not true. Then there is an integer [ with
4 <] < n—1such that there is a rainbow [-cycle containing a and b, but there is no rainbow (I 4 1)-cycle
containing both a and b. Let C' := vyv5 ... v;v1 be a rainbow [-cycle containing a and b.

Without loss of generality, we assume that c(v;v;11) = i for 1 <4 <. For 1 < i <1, let N; be the set
of the vertices of C' which are adjacent to v;, that is, N; = N(v;) N V(C). We then proof the following
claim.

Claim1 [ > %12 In particular, | > 7 when n > 9.

Proof. Since G is strongly edge-colored, for any v; € Ny, the color j does not occur in C'N (v1). So the
number of C-colors not contained in C'N (vy) is at least | N1 | — 1, and therefore, the number of C-colors
contained in C'N (v1) is at most [ — (|N1| — 1). Since 1 and [ are C-colors in C'N (v1), we have that the
number of C-colors contained in E(vy, V(G) \ V(C))isatmostl — (|N1| —1) =2 =1 — |Ny| — 1.
Hence, we have |E¢(v1, V(G) \ V(C))| <1 — |Ny| — 1. Since |E(v1, V(G) \ V(C))| > § — | N1|, we
have that

|Eg (v, VIG)\ V(O)| = [E(v1, V(G) \ V()] = [Ec(v1, V(G) \ V(C))]
2 (6= [MNi]) = (I = [N1| = 1)
=0—-1+1.

Similarly, we can also deduce that |Ex(vs, V(G) \ V(C))| > 0 — 1+ 1forall 1 < i < [. For any two
vertices v; and v;41 with 1 < ¢ < [, if there exists a vertex w € V(G) \ V(C) such that both v;w and
Vi1 W are C-color edges, then both a and b are contained in a rainbow (I + 1)-cycle C := v;wv;+1CTv;,
a contradiction. Thus, for any common neighbor w € V(G) \ V(C) of v; and v;1, either v;w or v; 41w
is not a C-color edge. Then we have that |Es(vi, w)| + |Eg(vig1,w)| < 1. Therefore, we have

n > |Ba(vi, V(G)\ V(C)| + |Eg(visr, VIG)\V(C))| +1>2(6 — 1+ 1) +1 =26 — 1 +2.

Hence,
2 + 12
1>20 n+2>2-(?n+1)—n+2:n T
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This completes the claim. g

Let H = K}, be the maximal rainbow complete graph in G¢[V(G) \ V(C')] such that every edge in
H is C-colored, and let R = G°[V(G) — (V(C) U V(H))]. Itis clearly that for any w € V(H), if
there is a vertex v; € V/(C) such that v;w is a C-color edge, then c(v;w) ¢ ¢(H) since G€ is a strongly
edge-colored graph.

For two C-color edges v;wq and v ws with wy,wy € V(H) and 1 < ¢ < j < [, if w; = wy and
Jj —t =1, we say v;w; and vjwy are forbidden pair of type 1; if wy # wo, both a and b are contained in
v;C7vj, and 2 < j — i < k, we say v;w; and vjwy are forbidden pair of type 2. Clearly, if E5(C, H)
has a forbidden pair of type 1, then there exists a rainbow (I + 1)-cycle C" := v;wyv;C " v; containing
both @ and b, and if E5(C, H) has a forbidden pair of type 2, then there exist a rainbow (I + 1)-cycle
C" := v;wi Hwyv;C T v; containing both a and b, where wy Hws is a path of length |E(v;CTv;)| — 1
with endpoints w; and ws in H.

Claim 2 k£ > 3.

Proof. For each w € V(H), let
Sw = |Eg(w,O)|, 5w = [Ec(w, C),
tw =|Bg(w, R)|,tw = |Ec(w, R)|.

We have N
Sw+ Sw+ tw +tw+ (k—1) > 0. )

If there is an integer ¢ with 1 < ¢ < [ such that v;w € E(G®), then the colors ¢ — 1 and ¢ can not appear
in C'N(w). Thus the number of C-colors not contained in C N (w) is at least S, + $,,, which implies that

Sw+tw§l_(§w+5w)7

and so, we have
Sw + 25, +ty <L 2)

Let v;,, Vi, ..., vi;, be the vertices on C' which are a-adjacent to w. Without loss of generality, we
suppose that 1 < 41 < 4y < ... < @5, < I. Thenij; 1 —i; > 2foreach1 < j < 5, — 1 and
iz, — i1 < 1—2. LetI = {iy — 1,i1,i2 — 1,i9,...,i5, — 1,45, }. Clearly, we have |I| = 25,, and
INCN(w) = ¢. Thus, we can deduce that

25 + 8w +tw = || + 8w + tw <. 3)
Since |[V(R)| =n — 1 — k, we have t,, + tw <n—1—k. Together with inequalities (2) and (3), we have
35w + 35w+ 3tw 4ty <l+l+n—Il—k=n+1—k.

§= Y 5S= Y sT= 3 RT= 3t

weV (H) weV (H) weV (H) weV (H)

Let

Then, _ _
3S+35+3T+T <k(n+1-k). 4
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Since £ is maximal, each vertex of R has at most £ — 1 number of C-color edges to H, which implies that
T= Y tw<(k—1)(n-1-k). 5)

Recall that w € V(H). By (1) and the arbitrariness of w, we have

k6 < > (Sutswttw+te+ (k—1))
weV (H) (6)

=S+ S+T+T+k(k-1).
Combining inequalities (4), (5) and (6), we can get the following inequality

3k6 < 38 + 35 + 3T + 3T + 3k(k — 1)
<k(n+1l—k)+2(k—1)(n—1—k)+3kk—1)
<n(3k—2)+1(2—Fk) -k

1

If K = 1, then [ > n, a contradiction. If k¥ = 2, then § < 2"3_ , again a contradiction. So we have k > 3.

Claim 2 follows. O

Since H is a rainbow complete graph, we can deduce that

S+T <L (7

Claim3 S >+ 1.
Proof. Suppose, by way of contradiction, that S < [. Combining with inequality (6), we can get that
k6 <S+S+T+T+k(k—1)<l+l+(k-1)(n—1—k) +k(k—-1),
which implies that k(n — [ — 0) > n — 3l. Since § > %" +land! > %12 from Claim 1, we have

n—1—0<0. Thuswehave 3(n — 1 —§) > k(n — 1 — §) > n — 3l from Claim 2, and therefore § < %",
a contradiction. Claim 3 follows. ]

Without loss of generality, we suppose that a = v; and b = v,,,, where 2 < m < [ — 1, and let
P! = aCtb. Then we design an algorithm to generate a sequence of disjoint sub-paths P}, P} ..., P,%l
of C respect to P! and H.
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Algorithm AI

Input: a strongly edge-colored graph G¢, a rainbow cycle C' = vjvs ... 101, a path P! =
¥10V3...U, and a rainbow complete subgraph H = K}, of G° — V(C).
Output: a sequence of disjoint paths P, Py, ..., P, such that P is a subgraph of C.
1: Seti=1
2: While V(P!) # ¢ do
If E5(P',H)=¢
stop
Else Set d be the smallest subscript such that E5(vq, H) # ¢
If d + k > m then
Set P! = v4v441...0m
stop
Else If [Ex(vq, H)| > 2 then
Set Pil = VqUd+1..-Vd+k
If |E5(vd, H)| = 1 then
Set Pil = VqUd4-1---Vd+k+1
Set P! = P\ P}
Seti=17+1
3:return P, Py, ..., P}

Claim 4 |E5(P}, H)| < |V(P})| —1forany1 <i<h; -1,
and |Eg(Py  H)| <k+1if3< V(P )| <k+1

Eg(Py,, H)| < kif [V(Py,)] € {1,2},

Proof. For 1 < i < h; — 1, we distinguish the following two cases.

Case 1. |E5(vg, H)| > 2. Then we have P! = vqv441...va+k. Let wy and wo be two vertices in H such
that vgwy, vgws € Eg(vg, H). Since there exist no forbidden pairs of type 1 for any vertex w € V(H),
then we have |E5(va, H)| + |Eg(vay1, H)| < k. For any j with d + 2 < j < d 4+ k, if w; and v;
are a-adjacent, then v;w; and vqwo form a forbidden pair of type 2; if wo and v; are C~'-adjacent, then
vjwg and vgw; form a forbidden pair of type 2; if v; and w are é-adjacent for some w with w # w; and
w # wo, then vjw and vgw; form a forbidden pair of type 2. Therefore, we have |E5(v;, H)| = 0. Thus,

d+k
|Ea(P! H)| =) |Eg(v;, H)|
j=d

= |E5(’Ud,H)| + |E5(Ud+1,H)|
<k

= V(P - 1.

Case 2. |Ex(vq, H)| = 1. Then we have P} = v4v441...0q1k+1. Let wy be a vertex in H such that
vqwy € Eg(vq, H). We further distinguish the following three cases.

Case 2.1. |E5(vay1, H)| = 0. Forany w € V(H) \ {w}, we have that v; and w cannot be C-adjacent
forany d 4+ 2 < j < d + k + 1 since otherwise vjw and vqw; form a forbidden pair of type 2. Thus, we
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have |Ex(v;, H)| < 1and Skt |Es(vj, H)| < k — 1. Therefore,

j=d+2
d+k+1
|Ea(PH) = Y |Bg(v;, H)|
j=d
d+k+1
= |Eg(va, H)| + |Eg(vayr, H)| + Y |Eg(v;, H)|
j=d+2

<140+ (k—1)
=k
<|V(PH-1.

Case 2.2. |Ex(vgq1, H)| = 1. Let wy be a vertex in H such that vgy 1wy € Eg(va, H). Clearly,
w1 # wa. If vgio and wy are 6-adjacent, we have that v44 2wz and vgw; form a forbidden pair of type
2, a contradiction. If vg4o and w are é-adjacent for some w € V(H) with w # w; and w # wo,
then v44 2w and vgw; form a forbidden pair of type 2, again a contradiction. So, |Ez(vay2, H)| < 1.
For any j withd +3 < j < d+ k + 1, if wy and v; are é-adjacent, then v;wq and vgywy form a
forbidden pair of type 2; if wo and v; are a-adjacent, then v;ws and vgw; form a forbidden pair of type
2;if v; and w are 6-adjacent for some w € V(H) with w # w; and w # wy, then v;w and vgw; form
a forbidden pair of type 2. We obtain a contradiction in the above three cases, and therefore, we have
ZdJrkH |E&(vi, H)| = 0. Therefore,

j=d+3
d+k+1
|Ea(PLH)| = Y |Bg(v;, H)l
j=d
d+k+1
= |Ez(va, H)| + | Eg(vas1, H)| + |Eg(vare, H)| + Y |Eg(v;, H)|
j=d+3
<14+1+140
<k
< |V(PH) -1

Case 2.3. |E5(vay1, H)| > 2. Let Q! = P!\ {va} = vi41vdt2..-Va+k+1. Similar to the discussion
of Case 1, we have that |E5(Q}, H)| < [V(Q})| —1 = (k+ 1) —1 = k. Thus, |[E5(P},H)| =
|Eg(va, H)| + |Eg(Qi, H) < 1+ k =[V(PH] - L

Then we analysis the value of |Ex (P , H)|. If [V(P, )| = 1, the inequality |E5(P; ,H)| < k
clearly holds. If [V/(P )| = 2, thatis, P} = vgvay1, we have |Eg(vg, H)| + |Eg(vay1, H)| < k
since vg and vg11 are adjacent. Therefore, |Ex (P , H)| = Eg(va, H)| + |Eg(vay1, H)| < k. If
3< V(P < k+1, wehave |[E5(Py , H)| < k when |Eg(vg, H)| > 2 by the similar analysis of
the above Case 1 (taking m as d + k), and |E5 (P, , H)| < k + 1 when |Eg(vg, H)| = 1 by the similar
analysis of the above Case 2 (taking m as d + k + 1). The proof is thus completed. 0
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Let P2 = aC~b. Then we design another algorithm to generate a sequence of disjoint sub-paths
P?,P3, ..., P2 of Crespect to P? and H in the following.

Algorithm AII

Input: a strongly edge-colored graph G, a rainbow cycle C' = vyvs ... vv1, P2 = aC~b =
Vl410V[—1 ..Uy, and a rainbow complete subgraph H = K, of G¢ — V(C).
Output: a sequence of disjoint paths P7, P, ..., P2, such that P? is a subgraph of C.
1: Seti=1
2: While V(P?) # ¢ do
If E5(P2,H) = ¢
stop
Else Set d be the biggest subscript for which E5(vq, H) # ¢
If d — &k < m then
Set P? = v4v4-1...Um,
stop
Else If [Ex(vq, H)| > 2 then
Set Piz = VqUd—1---Vd—k
If |E5(’Ud, H)| =1 then
Set Pi2 = V4Ud—1---Vd—k—1
Set P2 = P?\ P?
Seti=1i+1
3: return P?, P3, ..., P},

Similar to Claim 4, we can get the following Claim.
Claim 5 |E5(P?, H)| < |V(P?)| —1forall1 <i < hy—1,
and |Eg(P2, H)| <k +1if3< |V(P2)| <k+1
According to the above claims, we have

|E(C, H)| = |Eg(aCb, H)| + |Eg(aC™b, H)| = |Eg(a, H)| = |Eg (b, H)]

Eg(Pp,, H)| < kif [V(P,)] € {1,2}

hi1—1
< 3" WV(PH| = (b = 1) + |Bz (P} H)|
1=1
ho—1
+ > V(PY| — (ha — 1) + |Eg(PE, H)|
i=1 ®)

— |Eg(a, H)| = |Eg (b, H)|
<= V@)l = V(P +1] = (hn + ha) +2
+[Bg(Pa,, H)| + |Eg(P;, H)| = |Eg(a, H)| - |Eg(b, H)|
== (VP )+ V(P )] = (b1 + ha) +3
+1Ea(Py,, H)| + |E (P, H)| — |Eg(a, H)| — | Eg(b, H)].

Claim6 S <[+ 2k — 4.
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Proof. We show that S < maz{2k + 2,1+ k — 1,14 2k — 4}, which implies S < | + 2k — 4 since | > 7
from Claim 1 and & > 3 from Claim 2.

Let h = hy + hy. By symmetry, we suppose hy > hy and |V (P, )| > [V(Pg))|. From Claim 3, we
have h > 1. Then we proceed our proof by distinguishing the following four cases.
Case 1. h; = 1 and hy = 0. From Algorithm All, we have Ex(aC~b, H) = ¢. Thus, E5(a, H) = ¢ and
Eg(b, H) = ¢. From Algorithm AL we have [V (P} )| > 2. If [V(P;, )| = 2, let u be the vertex distinct
from b in C' such that Ex(u, H) # ¢. Thus we have S = |Eg(u, H)| < k < 2k+2.If V(P )| > 3,
from Claim 4, we have S = E& (P,%1 ,H) <k+1< 2k + 2. The claim follows.
Case 2. h; > 2 and hy = 0. From Algorithm AI and AIl, we have Ex(a, H) = ¢, E5z(b,H) = ¢
and |[V(P; )| > 2. If [V(P} )| = 2, since E5(b, H) = ¢, we have |E5 (P ,H)| + |Ex(PZ,, H)| —
|Es(b, H)| = |Eg(Py,, H)| < k. Applying inequality (8), we have S <1 —2—2+43+k+0=[+k—1.
If |V (PL,)| > 3, from Claim 4, we have | Eq (P, H)|+|Eg (P2, H)| | Eg(b, H)| = |Eg(PL , H)| <
k + 1. Thus, by inequality (8), we have S <[!—-3-24+3+k+1+0=10+k—1. The claim follows.
Case 3. hy = 1 and hy = 1. By Claim 4 and 5, if [V(P}} )| € {1,2} and |V(P?))| € {1,2}, we have
S < |Ea(Py, H)| + |E5(PZ,, H)| < 2k < 2k + 2. If [V(P, )| > 3and [V(PZ,)| € {1,2}, we have
S <|Ez(PL, H)| +|Ez(P2, H)| < 2k+1 < 2k+2 If[V(P)| > 3and [V(PZ)| > 3, we have
S < |Es (P H)| + |Ez(PZ,, H)| < 2k + 2. The claim holds.
Case 4. h > 3 and hy > 1. We consider the following six cases.
Case4.1. [V(P} )| = 1and [V(PZ))| = 1. Itis clearly that

and
|E&(Py,, H)| + |E&(Py,, H)| — |Ez(b, H)| = |[Eg(b, H)| < k.

By inequality (8), we have
S=|Ez(C,H)| <1-2-3+3+k+0=1+k—-2<I+k— 1.
Case4.2. |V(P} )| = 2and [V(PZ))| = 1. Itis clearly that V(P?,) = {b}. From Claim 4, we have
Ea(PL,, H)| + |Ba(PL, )| — |Eg (b, H)| = |Eg(PL, H)| < k.
By inequality (8) and A > 3, we have
S<1-3-3+3+k+0=I+k-3<l+k-1
Case4.3. |V(P; )| > 3and |V(PZ,)| = 1. Itis clearly that V(P7 ) = {b}. From Claim 4, we have
Ea (P, H)| + |Ba(P,, H)| - |Eg(b, H)| = |Eg(PL, H)| < k+1.
By inequality (8) and h > 3, we have

S=|Bz(C,H)| <1—4-3+3+k+1+0=1+k-3<l+k—1.
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Case4.4. |V (P} )| = 2and |[V(PZ,))| = 2. From Claim 4 and 5, we have
|Ea (P, H)| + |Ea(PE,, H)| - [Ea(b, H)| < 2.
By inequality (8) and h > 3, we have
S=|Ez(C,H)| <1—-4—3+3+2k+0=1+2k—4<I+k—1.
Case4.5. |V (P, )| > 3and |V(PZ))| = 2. Itis clearly that
|Ez(Py, H)|+ |Eg(PZ, H)| — |E5(b,H)| <k+k+1=2k+1.
By inequality (8) and i > 3, we have
S=|Ez(C,H)| <1-5-3+3+2k+1+0=1+2k—4.
Case 4.6. [V (P, )| > 3and [V(PZ,)| > 3. From Claim 4 and 5, we have
|E5(PL H)| + |E5(PE, H)| — |Eg(b, H)| <k +1+k+1=2k+2
By inequality (8), we have
S=|Ez(C,H)| <1—6-3+3+2k+2+0=1+2k—4.
The Claim follows. O
From Claim 6, inequalities (5) (6) and (7), we can deduce that

k6 < S+S+T+T+k(k—1)
<U+2k—A+1+(k—1D)(n—1—k) +k(k—1)
=l+2k—4+k(n—-0)+2l—n.

Therefore, we have k(n — 1 — § 4+2) > n — 31 + 4. Since [ > 2£12 from Claim 1 and § > 2 + 1, we
have n — [ — § + 2 < 0. Then from Claim 2, we have

3n—1—064+2)>k(n—101—0+2)>n—3l+4,

which implies that § < 2”; 2, a contradiction. We complete the proof of Theorem 1.6. O
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