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Homomorphically full graphs are those for which every homomorphic image is isomorphic to a subgraph. We extend
the definition of homomorphically full to oriented graphs in two different ways. For the first of these, we show that
homomorphically full oriented graphs arise as quasi-transitive orientations of homomorphically full graphs. This in
turn yields an efficient recognition and construction algorithms for these homomorphically full oriented graphs. For
the second one, we show that the related recognition problem is GI-hard, and that the problem of deciding if a graph
admits a homomorphically full orientation is NP-complete. In doing so we show the problem of deciding if two given
oriented cliques are isomorphic is GI-complete.
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1 Introduction and Background
Oriented graphs can be considered to arise in one of two ways: as a special class of digraphs defined by
a restriction on the existence of directed 2-cycles, or from simple graphs by assigning a direction to each
edge. The distinction between these perspectives has consequences in the study of homomorphisms of
oriented graphs. For example, each leads to a different definition of vertex colouring of oriented graphs
(see the work of Feder et al. (2003) and Sopena (2016)). We use the term antisymmetric digraph to
specifically refer to digraphs with the restriction that there are no directed 2-cycles, and the term oriented
graph otherwise, including when the distinction between perspectives is unimportant.

For standard graph theoretic notation we refer the reader to the seminal text by Bondy and Murty (2008).
We generally use Greek capital letters to refer to graphs and Latin capital letters to refer to antisymmetric
digraphs and oriented graphs.

A homomorphism of a graph Γ to a graph Λ is a function ϕ : V (Γ) → V (Λ) such that xy ∈ E(Γ)
implies ϕ(x)ϕ(y) ∈ E(Λ). When ϕ is a homomorphism of Γ to Λ we write ϕ : Γ → Λ. When the
existence of a homomorphism (rather than a particular homomorphism) is of interest we write Γ → Λ.
The definition of a homomorphism of a digraph G to a digraph H is identical.
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A homomorphism of Γ to Λ induces a mapping of A(Γ) to A(Λ). A homomorphism ϕ : Γ → Λ
is called complete when both ϕ and the induced mapping of A(Γ) to A(Λ) are surjective. If there is a
complete homomorphism of Γ to Λ, then Λ is called a homomorphic image of Γ. The corresponding
definitions are the same for digraphs.

If Λ is a subgraph of Γ, then a homomorphism ϕ of Γ to Λ is called a retraction when ϕ(h) = h for
every vertex h ∈ V (Λ). If there is a retraction of Γ to Λ, then Λ is called a retract of Γ. A retract of
Γ is necessarily an induced subgraph of Γ, but the converse is false. The corresponding definitions for
digraphs are identical.

Vertices x and y of a graph G are called neighbourhood comparable when N(x) ⊆ N(y) or N(y) ⊆
N(x). Notice that if N(x) ⊆ N(y), then there is a retraction of G to G − x. A graph Γ is called
homomorphically full when every homomorphic image of Γ is isomorphic to a subgraph of Γ. The homo-
morphically full graphs were first characterized by Brewster and MacGillivray (1996).

Theorem 1.1 Brewster and MacGillivray (1996) Let Γ be a graph. The following statements are equiva-
lent:

(a) Γ is homomorphically full.

(b) If x and y are non-adjacent vertices of Γ, then x and y are neighbourhood comparable

(c) Every homomorphic image of Γ is isomorphic to a retract of Γ.

(d) Every homomorphic image of Γ is isomorphic to an induced subgraph of Γ.

(e) Γ contains neither 2K2 nor P4 as an induced subgraph.

(f) Γ is the comparability graph of an up-branching.

Homomorphic images of simple graphs are implicitly understood to be simple graphs. If a homomor-
phic image of a simple graph could be a graph with loops, then there would be no homomorphically full
simple graphs: a single vertex with a loop would be a homomorphic image of every graph.

Analogous to the definition of graphs, we say an oriented graph or antisymmetric digraph G is ho-
momorphically full when every homomorphic image of G is isomorphic to a subgraph of G. The two
perspectives on how an oriented graph G arises are germane in understanding its homomorphic images
and the meaning of this definition. When G is an antisymmetric digraph, a homomorphic image of G is
a digraph H (which may have directed 2-cycles) for which there is a complete homomorphism G → H .
When G is an oriented graph, a homomorphic image of G is an oriented graph H for which there is a
complete homomorphism G → H . In this case, two vertices joined by a directed path of length 2 (a
2-dipath) must map to different vertices of H .

For a graph Γ and non-adjacent vertices u, v ∈ V (Γ), let Γuv denote the graph produced by identifying
u and v into a single vertex named uv . The homomorphism ϕ : Γ → Γuv that sends u and v to uv

and fixes all other vertices is a complete homomorphism. As such, Γuv is a homomorphic image of Γ.
We call such a homomorphism elementary. Every homomorphism can be expressed as a composition
of elementary homomorphisms. These statements remain true when considered for oriented graphs and
antisymmetric digraphs. However for oriented graphs we are restricted to considering pairs of vertices
that are neither adjacent nor the ends of a 2-dipath. In any case, to check whether a graph, oriented graph,
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or antisymmetric digraph is homomorphically full it is enough to check that the target of each elementary
homomorphism is isomorphic to a subgraph.

Let H be the directed path on three vertices. With Theorem 1.1 one can verify that the underlying
graph (i.e., the path on three vertices) is homomorphically full. Interpreting H as an antisymmetric
digraph, there is an elementary homomorphism that identifies the two ends of the directed path. The
resulting homomorphic image, the directed 2-cycle, is not isomorphic to any subgraph of H and so H
is not homomorphically full. On the other hand, interpreting H as an oriented graph, the vertices at the
end of the path cannot be identified by an elementary homomorphism. In this case the only homomorphic
image of H is H itself. And so we conclude H is homomorphically full.

Let G be a directed graph. We say that an ordered pair of non-adjacent vertices, u, v ∈ V (G) are
neighbourhood comparable when N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v) or N+(v) ⊆ N+(u) and
N−(v) ⊆ N−(u). As with graphs, we observe that if u and v are neighbourhood comparable, then, we
have G− u ∼= Guv , presuming N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v). The implied isomorphism here
is, in some sense, trivial. Each vertex other than v maps to itself and v maps to uv . This occurs as there is
a retraction G → Guv where uv in Guv is relabelled as v.

An oriented graph or antisymmetric digraph G is homomorphically full if and only if for all u and v
that can be identified by an elementary homomorphism we have that Guv is isomorphic to a subgraph
of G. And so, similar to the case for graphs, if for an oriented graph or antisymmetric digraph G every
pair of vertices that can be identified by an elementary homomorphism is neighbourhood comparable,
then G is necessarily homomorphically full. We will see that the converse of this statement holds for
homomorphically full antisymmetric digraphs but not for homomorphically full oriented graphs.

Our remaining work proceeds as follows. In Section 2 we fully classify homomorphically full anti-
symmetric digraphs as those that are quasi-transitive and whose underlying graph is homomorphically
full. In doing so we provide a theorem for homomorphically full antisymmetric digraphs analogous to
Theorem 1.1. These results imply that homomorphically full antisymmetric digraphs can be identified in
polynomial time. And also that one may decide in polynomial time if a graph is an underlying graph of a
homomorphically full antisymmetric digraph. In Section 3 we show for oriented graphs that neighbour-
hood comparability does not fully characterize homomorphic fullness. This work leads us to study, in
Section 4, the problem of deciding if an oriented graph is homomorphically full. Though the analogous
problems for graphs and antisymmetric digraphs are Polynomial, we show the problem to be GI-hard for
oriented graphs. We continue studying the complexity of problems related to homomorphic fullness of
oriented graphs in Section 5. We find that deciding if a graph admits a homomorphically full orientation
is NP-complete. We conclude in Section 6 with discussion and further remarks.

Since the presence or absence of multiple edges in Γ or Λ does not matter in the definition of a ho-
momorphism of Γ to Λ, we consider only graphs in which there are no multiple edges. By contrast, the
presence of loops matters. A homomorphism of a graph can map adjacent vertices to a vertex with a loop.
These statements remain true when we replace graphs with oriented graphs (under either interpretation).
To simplify matters, herein we assume that all graphs and oriented graphs are irreflexive. We comment
more on the nature of this problem for graphs that may have loops as part of our further remarks in Section
6.
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2 Homomorphically Full Antisymmetric Digraphs
We begin our study of homomorphically full antisymmetric digraphs by examining their underlying
graphs.

Lemma 2.1 If G is a homomorphically full antisymmetric digraph, then its underlying graph U(G) is
homomorphically full.

Proof: Let G be a homomorphically full antisymmetric digraph. Notice that each of G and U(G) have
the same set of elementary homomorphisms. For uv /∈ A(G), if Guv is isomorphic to a subgraph of G
then U(Guv) is necessarily isomorphic to a subgraph of U(G). As G is homomorphically full, for each
uv /∈ A(G) we have that Guv is isomorphic to a subgraph of G. Therefore for each uv /∈ E(U(G)) the
graph U(G)uv is isomorphic to a subgraph of U(G). Thus U(G) is homomorphically full. 2

We note that the converse of this lemma is false. As discussed in our introductory remarks, an undi-
rected path on three vertices is homomorphically full, but the directed path on three vertices is not a
homomorphically full antisymmetric digraph.

Recall that a directed graph is quasi-transitive when for each vertex w, there is complete adjacency
between the in-neighbours and the out-neighbours of w. Quasi-transitive directed graphs were first studied
and subsequently fully classified by Ghouila-Houri (1962). A graph is an underlying graph of a quasi-
transitive digraph if and only if it is a comparability graph. Further, every comparability graph is the
underlying graph of some quasi-transitive digraph.

Theorem 2.2 An antisymmetric digraph is homomorphically full if and only if it is quasi-transitive and its
underlying graph is homomorphically full. Further, every homomorphically full graph is the underlying
graph of a homomorphically full antisymmetric digraph

Proof: Let G be an antisymmetric directed graph whose underlying graph is homomorphically full.
If G is not quasi-transitive, then there exists a vertex w such that there is not complete adjacency

between the in-neighbours and the out-neighbours of w. That is, there exists u, v ∈ V (G) such that uwv
is an directed path of length 2 (a 2-dipath). The elementary homomorphism that identifies u and v is
complete. As such Guv is a homomorphic image of G. However Guv is not isomorphic to any subgraph
of G; it contains a directed 2-cycle. Therefore G is not a homomorphically full antisymmetric digraph.

Assume now that G is quasi-transitive. Consider a pair of non-adjacent vertices u, v ∈ V (G). Since
U(G) is homomorphically full, we have, without loss of generality, that N(u) ⊆ N(v). Since G is quasi-
transitive, it follows that N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v). Therefore Guv

∼= G− u. That is, Guv

is isomorphic to a subgraph of G. Therefore G is a homomorphically full antisymmetric digraph.
Let Γ be a homomorphically full graph. By Theorem 1.1, Γ has no induced P4, and hence is a cograph.

Every cograph is a comparability graph. As proven by Ghouila-Houri (1962), every comparability graph
is the underlying graph of a quasi-transitive digraph. 2

As with graphs, homomorphically full antisymmetric digraphs can be classified using neighbourhood
comparability, homomorphic images and retracts. We note, however, that such a classification does not
exist for oriented graphs. We explore this further in Section 3.

Theorem 2.3 Let G be an antisymmetric digraph. The following statements are equivalent:

(a) G is a homomorphically full antisymmetric digraph.
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(b) G is quasi-transitive and its underlying graph is homomorphically full.

(c) Every pair of non-adjacent vertices of G are neighbourhood comparable.

(d) Every homomorphic image of G is isomorphic to a retract of G.

(e) Every homomorphic image of G is isomorphic to an induced subgraph of G.

Proof: Let G be a homomorphically full antisymmetric digraph.
Assume G is a homomorphically full antisymmetric digraph. By Lemma 2.1, we have that U(G) is

homomorphically full. By Theorem 2.2 it follows that G is quasi-transitive. That is, (a) ⇒ (b).
Assume G is quasi-transitive and its underlying graph is homomorphically full. By Theorem 1.1 it

follows that every pair of non-adjacent vertices of U(G) is neighbourhood comparable. Since G is quasi-
transitive, it follows that G has no induced 2-dipath. Therefore every pair of non-adjacent vertices of G
are neighbourhood comparable. That is, (b) ⇒ (c).

Assume every pair of non-adjacent vertices of G are neighbourhood comparable. Let H be a homo-
morphic image of G. Let ϕ : G → H be a complete homomorphism. Since ϕ is complete it suffices
to assume it is an elementary homomorphism. Since ϕ is an elementary homomorphism we have that
H ∼= Guv for some pair of non-adjacent vertices u and v. Since u and v are neighbourhood comparable,
it follows without loss of generality that Guv

∼= G − u. Thus there exists a retraction G → G − u. And
so it follows that every homomorphic image of G is isomorphic to a retract of G. That is, (c) ⇒ (d). By
definition, every retract of G is isomorphic to an induced subgraph of G. Thus (d) ⇒ (e).

Finally, assume every homomorphic image of G is isomorphic to an induced subgraph of G. From the
definition of homomorphically full, it follows that G is homomorphically full. That is, (e) ⇒ (a). This
completes the proof. 2

Let G be a homomorphically full antisymmetric digraph and let u and v be a pair of non-adjacent
vertices. By Theorem 2.3 we can assume, without loss of generality, that Guv

∼= G − u. In some
sense, this isomorphism is trivial – vertices other than u and v may be mapped to themselves. Vertex
uv may be mapped to v. By changing the label of uv to v we arrive at a homomorphic image that is a
subgraph of G. The statement of Theorem 2.3 suggests that for antisymmetric digraphs we may remove
the word isomorphic from within the definition of homomorphically full. The same observation holds for
homomorphically full graphs. And in fact, the word isomorphism does not appear in the original definition
of homomorphically full given by Brewster and MacGillivray (1996). In the following section, we will
see that the existence of these trivial isomorphisms is not guaranteed for homomorphically full oriented
graphs.

3 Homomorphically Full Oriented Graphs
We turn now to the interpretation of oriented graphs as arising from simple graphs and the subsequent
definition of homomorphically full. Consider the oriented graphs in Figure 1. Since v and v′ are neigh-
bourhood comparable we have G− v′ ∼= Gvv′ . Though u and u′ are not neighbourhood comparable, one
can observe G − v′ − xu′ ∼= Guu′ . One can construct such an isomorphism by first noting that the sole
vertex of degree 2 in G − v′ − xu′ must map to the sole vertex of degree 2 in Guu′ . As these are the
only elementary homomorphisms of G, we conclude G is homomorphically full. The example shows that
a theorem for homomorphically full oriented graphs akin to Theorems 1.1 and 2.3 is not possible. That
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Fig. 1: A homomorphically full oriented graph with a pair of vertices that are not neighbourhood comparable

is, this example shows that the property of homomorphic fullness is not necessarily related to neighbour-
hood comparability, nor is it necessarily related to the existence of retracts or homomorphisms to induced
subgraphs.

Recall that an oriented clique is an oriented graph in which any two non-adjacent vertices are at directed
distance 2. The name oriented clique arises from the fact an oriented colouring (i.e., a homomorphism)
of such a graph assigns a different colour (i.e., image) for each vertex. Observe that oriented cliques have
no elementary homomorphisms. From this observation the following two facts follow.

Theorem 3.1 Every oriented clique is a homomorphically full oriented graph.

Theorem 3.2 Let G be a homomorphically full oriented graph. The core of G is an oriented clique.

Proof: Let G be a homomorphically full oriented graph and let H be the oriented graph with the fewest
vertices such that there is a homomorphism ϕ : G → H that is onto with respect to A(H). Observe that H
is necessarily an oriented clique as if otherwise, H has a pair of vertices u and v such that G → Huv . By
the definition of homomorphically full, H is isomorphic to a subgraph of G. Therefore H is isomorphic
to the core of G. 2

Let G be an homomorphically full oriented graph. As our definition of homomorphically full oriented
graph restricts homomorphism to targets that are oriented graphs, an elementary homomorphism of G
necessarily identifies a pair of non-adjacent vertices that are not the ends of a 2-dipath. That is, an
elementary homomorphism necessarily identifies vertices that are not at directed distance either 1 or 2.
We define the undirected closure of G, denoted cl(G), to be the graph formed from G by adding an edge
between any pair of vertices at the end of 2-dipath and then considering all arcs as edges. That is, we have
uv ∈ E(cl(G)) when u and v are at directed distance at most 2 in G. Note that for any u, v ∈ V (G) we
have that there exists an elementary homomorphism G → Guv if and only if there exists an elementary
homomorphism cl(G) → cl(G)uv .

Lemma 3.3 Let G be an oriented graph and let u and v be a pair of vertices that are neither adjacent
nor at directed distance 2. We have cl(G)uv ⊆ cl(Guv).
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Proof: Let G be an oriented graph. Let uv denote the vertex in both cl(Guv) and cl(G)uv formed by
identifying u and v. As cl(Guv) and cl(G)uv have the same vertex set, to show cl(G)uv ⊆ cl(Guv) it
suffices to show that for all xy ∈ E(cl(G)uv) we have xy ∈ E(cl(Guv)).

Consider first an arc xy ∈ E(cl(G)uv) such that x, y ̸= uv . Since xy ∈ E(cl(G)uv) and x, y ̸= uv ,
we have that x and y are adjacent in U(G) or there is a 2-dipath from x to y in G. Therefore x and y are
adjacent in cl(G) and so xy ∈ E(cl(Guv)).

Assume without loss of generality that x = uv . If one of uy or vy is an arc in G, then uvy is an arc in
Guv . Thus xy is an edge in cl(Guv . Otherwise, neither of uy or vy is an arc in G. Thus xy as an edge in
cl(G)uv could only have arisen from an edge of the form uy or vy in cl(G). Therefore, there is a 2-dipath
in G with one end at y and the other at one of u or v. Since u and v are not adjacent, this 2-dipath exists
in Guv . Therefore xy is an edge in cl(Guv). 2

Using Lemma 3.3 we find a connection between homomorphically full graphs and homomorphically
full oriented graphs.

Theorem 3.4 If G is a homomorphically full oriented graph, then cl(G) is homomorphically full.

Proof: Let G be an homomorphically full oriented graph. Consider cl(G) and u, v ∈ V (G) such that u
and v are not adjacent in cl(G). Since G is homomorphically full, it follows that Guv isomorphic to a
subgraph of G. That is, there exists a subgraph H of G such that Guv

∼= H . Since H is a subgraph of G,
it follows that cl(H) is a subgraph of cl(G). And so by Lemma 3.3 we have

cl(G)uv ⊆ cl(Guv) ∼= cl(H) ⊆ cl(G).

Thus, cl(G)uv is isomorphic to a subgraph of cl(G). Therefore cl(G) is homomorphically full. 2

Corollary 3.5 A homomorphically full oriented graph has at most one nontrivial component.

Proof: Let G be a homomorphically full oriented graph. Notice that U(G) and cl(G) have the same
number of nontrivial components. The result now follows from Theorems 1.1 and 3.4. 2

Statement (e) in Theorem 1.1 implies that homomorphically full graphs admit a forbidden subgraph
characterization. Similarly, statement (b) in Theorem 2.3 implies that homomorphically full antisymmet-
ric digraphs admit a forbidden subgraph characterization. We find this to not be the case for homomor-
phically full oriented graphs.

Theorem 3.6 Every oriented graph is an induced subgraph of an homomorphically full oriented graph.

Proof: By Lemma 3.1, it suffices to show that every oriented graph appears as an induced subgraph of
some oriented clique. Let G be an oriented graph with n vertices.

Let Bn be the oriented complete bipartite graph with bipartition ({a1, a2, . . . , an}, {b1, b2, . . . , bn})
obtained by orienting the edge aibj from ai to bj if i ≤ j and from bj to ai if i > j. One can verify that
Bn is an oriented clique.

Denote by B′
n the oriented clique obtained from the oriented clique Bn by adding arcs such that the

subgraph induced by {a1, a2, . . . , an} is isomorphic to G.
By construction, the oriented graph G is an induced subgraph of B′

n. The result now follows by our
previous remarks. 2
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Fig. 2: A homomorphically full oriented graph with a pair of vertices that are not neighbourhood comparable

As homomorphically full oriented graphs do not admit a forbidden subgraph orientation, one can won-
der if there is an efficient recognition algorithm for homomorphically full oriented graphs. We study this
problem in the following section.

4 Deciding if G is Homomorphically Full
We consider the problem of deciding if an oriented graph is in fact homomorphically full. The correspond-
ing decision problem for graphs and antisymmetric digraphs are Polynomial – it is enough to compare the
neighbourhoods of pairs of non-adjacent vertices. However the example in Figure 2 shows that such a
procedure does not suffice for homomorphically full oriented graphs. We see that u and u′ are not neigh-
bourhood comparable, yet Guu′ ∼= G − v. We use the example in Figure 2 to show that the problem of
deciding if an oriented graph is homomorphically full is GI-hard. We do this by first showing that the
problem of deciding if a pair of oriented cliques are isomorphic is GI-complete. For these ends we define
the following decision problems.

HOMFULL
Instance: An oriented graph G.
Question: Is G homomorphically full?

OCLIQUEISO
Instance: A pair of oriented cliques G and H .
Question: Is G ∼= H?

DAGISO
Instance: A pair of directed acyclic graphs G and H
Question: Is G ∼= H?

We begin by showing OCLIQUEISO is GI-complete. For our reduction, we require the following result
from Zemlyachenko et al.

Theorem 4.1 Zemlyachenko et al. (1985) DAGISO is GI-complete.
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Given an instance G,H of DAGISO we construct oriented cliques G⋆ and H⋆ such that G ∼= H if and
only if G⋆ ∼= H⋆.

We construct G⋆ using a pair of disjoint copies of G, say GL and GR, and a fixed regular tournament
T with 2n + 1 vertices. Let V (GL) = {uL

1 , u
L
2 , . . . , u

L
n} and V (GR) = {uR

1 , u
R
2 , . . . , u

R
n }. Construct

G⋆ by adding the following arcs to the oriented graph formed from the disjoint union of GL, GR and T :

• uL
i u

R
i for all 1 ≤ i ≤ n;

• uR
j u

L
k for all 1 ≤ j, k,≤ n, j ̸= k;

• uL
i t for all t ∈ V (T ) and all 1 ≤ i ≤ n; and

• tuR
i for all t ∈ V (T ) and all 1 ≤ i ≤ n.

Lemma 4.2 Let G and H be directed acyclic graphs. We have G ∼= H if and only if G⋆ ∼= H⋆.

Proof: Let G and H be directed acyclic graphs with n vertices. Let V (G) = {u1, u2, . . . un} and
V (H) = {v1, v2, . . . , vn} Let ϕ : G → H be an isomorphism. Using ϕ we construct an isomorphism
ϕ⋆ : G⋆ → H⋆ as follows:

• ϕ⋆(t) = t for all t ∈ V (T );

• ϕ⋆(uL
i ) = ϕ(ui)

L for all 1 ≤ i ≤ n; and

• ϕ⋆(uR
i ) = ϕ(ui)

R for all 1 ≤ i ≤ n.

Assume now that β⋆ : G⋆ → H⋆ is an isomorphism. It suffices to show that for all uL ∈ GL we have
β⋆(uL) ∈ V (HL). By observation d+(uL) ≥ 2n+2. Therefore d+(β⋆(uL)) ≥ 2n+2. In H⋆ for every
t ∈ V (T ) we have d+(t) = 2n. Further we have d+(vR) ≤ 2n−2. Therefore β⋆(uL) /∈ V (T )∪V (HR).
It then follows that β⋆(uL) ∈ HL. Thus restricting β⋆ to V (GL) gives an isomorphism GL → HL.
Therefore G ∼= H . 2

Theorem 4.3 OCLIQUEISO is GI-complete.

Proof: The reduction is from DAGISO. Given an instance G,H of DAGISO construct the instance
G⋆, H⋆ of OCLIQUEISO. Such a construction can be carried out in polynomial time. The result fol-
lows from Lemma 4.2 and Theorem 4.1. 2

Using Theorem 4.3, we show HOMFULL is GI-hard. Given an instance G1, G2 of OCLIQUEISO we
construct an instance Ĝ of HOMFULL such that G1

∼= G2 if and only if Ĝ is homomorphically full. We
construct Ĝ from a copy of J (as labelled as in Figure 2), a copy of G1 and two copies of G2, say G2 and
G′

2, by adding a new vertex q and the following arcs:

• qx for all x ∈ V (J); and arcs yq for y ∈ V (G1) ∪ V (G2) ∪ V (G′
2)

• y1y2, y2y′2 and y2y1 for all y1 ∈ V (G1), y2 ∈ V (G2) and y′2 ∈ V (G′
2).

• wy1 for all y1 ∈ V (G1).
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• vy2 for all y2 ∈ V (G2).

• uy′2 for all y′2 ∈ V (G′
2).

Lemma 4.4 Let G1 and G2 be oriented cliques. We have G1
∼= G2 if and only if Ĝ is homomorphically

full.

Proof: Let G1 and G2 be oriented cliques. By construction Ĝ has two elementary homomorphisms:
G → Guu′ and G → Gvv′ . As v and v′ are neighbourhood comparable, we have Gvv′ ∼= G− v′. Thus Ĝ
is homomorphically full if and only if Ĝuu′ is isomorphic to some subgraph of Ĝ.

Let ϕ : G2 → G1 be an isomorphism We extend ϕ as follows such that ϕ⋆ : Ĝuu′ → Ĝ − v′ is an
isomorphism. Let

• ϕ⋆(uu′) = w;

• ϕ⋆(v) = u;

• ϕ⋆(w) = v;

• ϕ⋆(v′) = u′;

• ϕ⋆(y2) = ϕ(y2) for all y2 ∈ V (G2);

• ϕ⋆(y1) = ϕ−1(y′1) for all y1 ∈ V (G1); and

• ϕ⋆(y′2) = y2 for all y′2 in V (G′
2).

Assume now Ĝ is homomorphically full. Consider Ĉ, the core of Ĝ. By Theorem 3.2, Ĉ is an oriented
clique. By observation we produce a copy of Ĉ by removing v′ and u′ from Ĝ. We see then that Ĉ
is an oriented clique with |V (G1)| + 2|V (G2)| + 4 vertices. We also observe that neither u′ nor v′ are
contained within a copy of Ĉ. Consider now Ĝruu′ . Identifying a pair of vertices if Ĝ cannot change the
core of Ĝ and so Ĉ is the core of Ĝuu′ . This implies that Ĝuu′ has as a subgraph an oriented clique with
|V (G1)|+ 2|V (G2)|+ 4 vertices.

As Ĝ is homomorphically full, Ĝuu′ is isomorphic to some subgraph of Ĝ − s for some vertex s ∈
V (Ĝ). Since Ĝ − u′ has a vertex of degree 2 (and Ĝuu′ does not), it cannot be that s = u′. If s ∈
V (G1) ∪ V (G2) ∪ V (G′

2) ∪ {q}, then Ĝ − s does not contain a copy of Ĉ. Therefore s = v′. Notice
that Ĝ− v′ and Ĝuu′ have the same number of arcs and the same number of vertices. And so there is an
isomorphism β : Ĝuu′ → Ĝ− v′.

Each of Ĝuu′ and Ĝ− v′ has a single vertex of degree three. Therefore β(v′) = u′. In Ĝuu′ , the vertex
v′ has a single out-neighbour: w. Therefore β(w) = v, as v is the lone out-neighbour of the image of
v′ under β. In Ĝuu′ , the vertex v′ has a pair of in-neighbours: q and uu′. By considering the direction
of the arc between q and uu′ we see β(q) = q and β(uu′) = w. Since β(q) = q and q has only four
out-neighbours (three of which we have already considered), it follows that β(v) = u. Since β is an
isomorphism, and all other vertices are accounted for, it must be that β(t) ∈ V (G1) ∪ V (G2) ∪ V (G′

2)
for all t ∈ V (G1) ∪ V (G2) ∪ V (G′

2). As β(w) = v it must be that β(y) ∈ V (G2) for all y ∈ V (G1).
And so restricting β to V (G1) gives an isomorphism G1 → G2. 2

Theorem 4.5 HOMFULL is GI-hard.
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Proof: The reduction is from OCLIQUEISO. Given an instance G1, G2 of OCLIQUEISO construct the
instance Ĝ of HOMFULL. Such a construction can be carried out in polynomial time. The result follows
from Lemma 4.4 and Theorem 4.3 2

5 Orientations of Homomorphically Full Graphs
Theorem 2.3 implies that one may decide in polynomial time if a graph is an underlying graph of some
homomorphically full antisymmetric digraph. In this section we consider the related problem for ho-
momorphically full oriented graphs. We begin by noticing a relationship between homomorphically full
graphs and homomorphically full oriented graphs.

Theorem 5.1 Every orientation of a homomorphically full graph is a homomorphically full oriented
graph.

Proof: Let G be an orientation of a homomorphically full graph. We proceed by verifying that any pair of
vertices that can be identified by an elementary homomorphism are neighbourhood comparable. Consider
u and v such that u and v are either non-adjacent nor the ends of a 2-dipath. If no such pair exists, then
G is an oriented clique, By Theorem 3.1, G is homomorphically full. As U(G) is homomorphically full,
Theorem 1.1 implies, without loss of generality, N(u) ⊆ N(v). Since u and v are not the ends of a
2-dipath we have

N+(u) ∩N−(v) = N+(v) ∩N−(u) = ∅.
Therefore N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v). That is, u and v are neighbourhood comparable. This
completes the proof. 2

Recall from Theorem 2.2 that the underlying graph of a homomorphically full antisymmetric graph is
a homomorphically full graph. From this we obtain the following corollary to Theorem 5.1.

Corollary 5.2 Every homomorphically full antisymmetric graph is a homomorphically full oriented graph.

The converse to Theorem 5.1 is false – every oriented clique is homomorphically full. The oriented
clique given in Figure 3 has an underlying graph that is not homomorphically full — there exist pairs of
non-adjacent vertices that are not neighbourhood comparable (see Theorem 1.1). However, the statement
of Theorem 3.4 implies that every homomorphically full oriented graph arises as a subgraph induced by
the arc set of a mixed graph whose underlying graph is homomorphically full. In the case of the oriented
graph in Figure 3, this mixed graph is a partial orientation of a complete graph.

We turn now to considering the problem of deciding if an undirected graph admits a homomorphically
full orientation.

FULLORIENT
Instance: A graph Γ.
Question: Does Γ admit an orientation that is homomorphically full?

We show FULLORIENT is NP-complete by way of reduction to the problem of deciding if a graph
admits an orientation as an oriented clique.

OCLIQUE
Instance: A simple graph Γ.
Question: Does Γ admit an orientation as an oriented clique?
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Fig. 3: An oriented clique on 7 vertices.

For our reduction, we require the following result of Kirgizov et al.

Theorem 5.3 Kirgizov et al. (2016) OCLIQUE is NP-complete.

Given an instance Γ, of OCLIQUE we construct an instance Γ̃ of FULLORIENT such that Γ admits
an orientation as an oriented clique if and only if Γ̃ admits an orientation that is homomorphically full.
Let V (Γ) = {v1, v2, . . . , vn}. Let Λ be a complete graph on n + 2 vertices with vertex set V (Λ) =
{v′1, v′2, . . . , v′n, s, t}. We construct Γ̃ from the disjoint union of Γ and a complete graph by adding the
following edges

• viv
′
i, for all 1 ≤ i ≤ n, and

• tvi for each 1 ≤ i ≤ n.

Lemma 5.4 Let Γ be a graph. The graph Γ admits an orientation as an oriented clique if and only if Γ̃
admits an orientation that is homomorphically full.

Proof: Let Γ be a graph. Notice that no two vertices of Γ̃ are neighbourhood comparable. Therefore Γ̃
has an orientation that is a homomorphically full oriented graph if and only if it has an orientation that is
an oriented clique.

Suppose Γ has an orientation as an oriented clique, G. Extend this orientation to Γ̃ by orienting the
edge between vi and v′i from vi to v′i, 1 ≤ i ≤ n; orienting Λ to be a transitive tournament, H , in which s
has in-degree 0 and t has out-degree 0; and orienting the edges between t and v1, v2, . . . , vn from t to vi,
1 ≤ i ≤ n.

Since G and H are oriented cliques, it remains to verify that there is a directed path of length at most
2 between each vertex of G and each vertex of H − t. For x ∈ V (H) − {t} and 1 ≤ i ≤ n there is
a 2-dipath x, t, vi. Thus this orientation of Γ̃ is an oriented clique, and hence is a homomorphically full
oriented graph.

Now suppose Γ̃ has an orientation G̃ that is a homomorphically full oriented graph. As noted above,
this orientation G̃ is an oriented clique. Let G and H respectively be the subgraphs of G̃ induced by the
vertex sets of Γ and Λ. Since there is no path of length 2 in Γ̃ joining a vertex of Γ and a vertex of Λ, no
2-dipath joining vertices of G contains a vertex of H . Therefore G is an oriented clique. And so Γ admits
an orientation as an oriented clique. 2
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Theorem 5.5 FULLORIENT is NP-complete.

Proof: The transformation is from OCLIQUE. Given an instance Γ of OCLIQUE construct the instance
Γ̃ of FULLORIENT. Such a construction can be carried out in polynomial time. The result follows from
Lemma 5.4 and Theorem 5.3 2

6 Further Remarks and Future Work
The study of homomorphisms oriented graphs often goes hand-in-hand with that of 2-edge-coloured
graphs. The literature is brimming of examples where similar looking results and methods appear for
these objects. For example, see results for homomorphisms of oriented and 2-edge coloured planar graphs
by Alon and Marshall (1998) and by Raspaud and Sopena (1994).

Emulating the results in Section 2 for 2-edge-coloured graphs would require extending the notion of
quasi-transitivity to 2-edge-coloured graphs. As shown by Duffy and Mullen (2023), the classification
of those graphs that admit a 2-edge-colouring with a property analogous to quasi-transitivity results in a
classification that is much less natural than that for oriented graphs. As such we expect discovering the
analogous results for 2-edge-coloured graphs to require significant work. Similarly, emulating the results
in Section 5 for 2-edge-coloured graphs will require significant work. It it unknown if a result analogous
to Theorem 5.3 holds for a 2-edge-coloured version of the problem.

The result of Theorem 1.1 assumes that both the input graph and the target graph of the homomorphism
are irreflexive. As shown by Huang and MacGillivray (2013), statements in this theorem corresponding to
(a) through (d) are also equivalent for reflexive graphs, but not for reflexive digraphs. Note that the defini-
tion of neighbourhood comparability differs slightly to account for the loops, as there is no assumption that
adjacent vertices must have the different images under a homomorphism. In the case of reflexive graphs,
statements (e) and (f) respectively become “G has none of C4, P4, 2K2 as an induced subgraph, i.e., G
is a threshold graph” and “G is the comparability graph of a threshold order”. The homomorphically full
reflexive semi-complete digraphs are characterized in the same paper. The complete characterization of
homomorphically full reflexive and irreflexive digraphs remains open.
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