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The problem of finding a spanning tree in an undirected graph with a maximum number of leaves is known to be
NP-hard. We present an algorithm which finds a spanning tree with at leastk leaves in timeO∗(3.4575k) which
improves the currently best algorithm. The estimation of the running time is done by using a non-standard measure.
The present paper is one of the still few examples that employthe Measure & Conquer paradigm of algorithm analysis
in the area of Parameterized Algorithmics.
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1 Introduction
In this paper, we address the following combinatorial problem in graphs:

k-LEAF SPANNING TREE

Given: An undirected graphG(V,E), and the parameterk.
We ask: Is there a spanning tree forG with at leastk leaves?

This problem has found notable applications, for instance in the design of ad-hoc sensor networks [8, 34],
in network design (see, e.g., [28]) and in computational biology (refer to [27]). According to [23], our
problem is also known as the traveling tourist problem, as itmodels finding the shortest walk that leads
to all attractions (modeled itself by a network) or allows atleast to look at them (when only visiting the
neighborhood of the attraction).

In a spanning tree withk leaves the non-leaf vertices form a connected dominating set with n − k

vertices in any graph onn vertices. The corresponding graph parameter, giving the smallest number of
vertices forming a connected dominating set in a graph, was introduced in [30]. Hence, finding a spanning
tree with a maximum number of leaves is equivalent to finding aminimum connected dominating set. In
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particular in application areas, the problem we deal with ishence also known as MINIMUM CONNECTED

DOMINATING SET. The computational difficulty (i.e., NP-completeness) of our problem has long been
established; we refer to [14] for a discussion of such types of results. However, it should be noticed that
with respect to parameterized complexity theory (the focusof the present paper), the two problem variants
(i.e., MINIMUM CONNECTED DOMINATING SET versus MAXIMUM LEAF SPANNING TREE) turn out
to have a completely different flavor. The same comment applies to approximability (as discussed in the
next paragraph).

Generally speaking, while MAXIMUM LEAF SPANNING TREE can be approximated up to a constant
factor, this is not to be expected for MINIMUM CONNECTED DOMINATING SET. The MAXIMUM LEAF

SPANNING TREE problem already has been widely studied with regard to its approximability. R. Solis-
Oba [33] obtained a 2-approximation running in polynomial time. H.-I. Lu and R. Ravi [26] provided a
3-approximation that runs in almost linear time. P. S. Bonsma and F. Zickfeld [10] could show that the
problem is3

2
-approximable when the input is restricted to cubic graphs.Surprisingly, similar results were

actually achieved also for the corresponding problem on directed graphs; we refer to N. Schwartges [31]
and also to the conference paper [32] for a discussion of the related findings. Conversely, for MINIMUM

CONNECTEDDOMINATING SET, the best known approximation algorithms only reach an approximation
factor ofH(∆(G))+ 2, where∆(G) is the maximum degree of graphG andH is the harmonic function;
see [23]. That paper also proves that it is hard to improve theapproximation guarantee ofH(∆) for any
graph (reasoning about asymptotically large order and maximum degree), unless some inclusions between
complexity classes hold that are considered to be unlikely.

running time O∗(9.49k) O∗(8.12k) O∗(6.75k) O∗(4k) O∗(3.72k) O∗(3.4575k)
klam value 20 22 24 33 35 37

Tab. 1: klam values for different record-claiming algorihms for producing leafy trees in undirected graphs.

Concerning parameterized algorithms for our problem, there is a sequence of papers culminating in the
one of J. Kneis, A. Langer and P. Rossmanith [24]. This fairlysimple branching algorithm achieves a
running time ofO∗(4k). Prior to this, already several papers have been published on this parameterized
problem, with running times ofO∗(9.49k) (by P. S. Bonsmaet al.[9]), ofO∗(8.12k) (by V. Estivill-Castro
et al.[16]) and ofO∗(6.75k) (by P. S. Bonsma and F. Zickfeld [11]). All these bounds have been obtained
by using combinatorial arguments. The best kernelization result is due to [16], where the authors presented
a kernel of (at most)3.75k vertices.(i) Such seemingly minor improvements of the bases are of notable
importance, as these will render inputs amenable to solutions that have been previously completely out
of reach. For instance, M. Fellowset al. [18] raised the question if it is possible to develop an algorithm
for our problem that runs in timeO∗(f(k)) for some functionf such thatf(50) < 1020; the maximal
value ofk still allowing for f(k) < 1020 is also known as the klam value of the according algorithm. It
is instructive to compare the klam values of different algorithms for MAXIMUM LEAF SPANNING TREE,
as compiled in Table 1. So, over the last decade, we are slowlyapproaching an affirmative answer of the
question posed by M. Fellowset al.[18]. The problem to determine if there exists a connected dominating
set in a given graph that is of size at mostk′, nowk′ being the parameter. is known to be W[2]-complete;
see [15]. Hence, assuming that the parameterized complexity classesFPT and W[2] do not collapse

(i) The randomized algorithm by I. Koutis and R. Williams [25] claiming a running time ofO∗(2k) is believed to be flawed.
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(which is considered unlikely, similar to the P versus NP question), there is no parameterized algorithm
for this problem.

As the number of leaves of a maximum leaf spanning tree can be computed by a parameterized algo-
rithm, the corresponding graph-theoretic number has been also employed in the development of param-
eterized algorithms for several other NP-hard optimization problems that may be solved in polynomial
time for graphs of bounded maximum leaf number; see [17]. This area of research is called parameter
ecology and also motivates the development of faster parameterized algorithms for our problem.

MAXIMUM LEAF SPANNING TREE is also a meaningful question for directed graphs, which canbe
also stated in the standard terminology of directed graphs [1]: find an out-branching withk leaves. Here an
out-branchingO in a directed graphG yields a spanning tree in the underlying undirected graphUD(G)
andO contains a unique vertexr (the root) that has in-degree zero (inO). Due to the uniqueness ofr, the
arcs are directed inO from the root to the leaves, which are the vertices of out-degree zero. The algorithm
of J. Kneis, A. Langer and P. Rossmanith [24] solves also thisproblem in timeO∗(4k). Moreover, in
J. Daligaultet al. [13], an upper-bound ofO∗(3.72k) is shown. Hence, we are currently in the unusual
situation that the running time for search tree algorithms for the directed case is no worse than the one
obtained in the undirected case. By using rules that are specific for the undirected case, we are able to
derive improved running times valid for the undirected caseonly.

Having shown a graph problem to be NP-complete, there is a third way of dealing with this problem,
apart from developing (polynomial-time) approximation algorithms or parameterized algorithms (that are
superpolynomial in the parameter). Namely, one could try tofind algorithms that are moderately expo-
nential in the numbern of vertices of a graph (or even in the number of edges). This area of algorithmic
research is also known as exact (moderately) exponential-time algorithms; see [22]. For vertex selection
problems like MINIMUM CONNECTED DOMINATING SET, there is nearly always a rather trivial brute-
force algorithm that tests all vertex subsets. Hence, the question is if it is possible to beat this trivial
O∗(2n) algorithm by replacing it with algorithms whose running time can be upper bounded byO∗(cn)
for somec < 2. For MINIMUM CONNECTED DOMINATING SET, the algorithm of F. V. Fomin, F.
Grandoni and D. Kratsch [21] (yielding a running time ofO∗(1.9407n)) was subsequently improved by a
new one: H. Fernauet al. [19] gave an algorithm with running timeO∗(1.8966n) for undirected graphs.
In passing, we will also improve on that result in this paper.

For a summary of the most recent results, we refer to Table 2.

1.1 Our Framework: Parameterized Complexity

A parameterized problemP is a subset ofΣ∗ × N, whereΣ is a fixed alphabet andN is the set of all
non-negative integers. Therefore, each instance of the parameterized problemP is a pair(I, k), where
the second componentk is called theparameter. The languageL(P ) is the set of allYES-instances ofP .
We say that the parameterized problemP is fixed-parameter tractable[15] if there is an algorithm (also
known as aparameterized algorithm) that decides whether an input(I, k) is a member ofL(P ) in time
f(k)|I|c, wherec is a fixed constant andf(k) is a function independent of the overall input length|I|.
We can also writeO∗(f(k)) for this running time bound. One can certify membership in the classFPT
of fixed-parameter tractable problems as follows: present apolynomial-time transformation that, given an
instance(I, k), produces another instance(I ′, k′) of the same problem, where|I ′| andk′ are bounded by
some functiong(k); in this case,(I ′, k′) is also called a(problem) kernel.
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1.2 Our Contributions

We developed the simple and elegant algorithm of [24] further. This way, we can improve on the running
time towardsO∗(3.4575k). This is due to two reasons:1. We could improve the bottleneck case in the al-
gorithm analysis of J. Daligaultet al.[13] by new branching rules.2. Due to using amortized analysis, we
were able to prove a tighter upper-bound on the running time.For this analysis we use a non-standard mea-
sure, akin to theMeasure&Conquer-approach in exact (non-parameterized) algorithmics; seeF. V. Fomin
and D. Kratsch [22]. Notice however that there are only few examples for usingMeasure&Conquerin
parameterized algorithmics. In addition, we analyze our algorithm with respect to the number of vertices
n and obtain also small improvements for the MINIMUM CONNECTEDDOMINATING SET problem. This
seems to be one the first published successful attempts to analyze the samealgorithm both with respect
to the standard parameterk and with respect to the number of verticesn, apart from [7]. We mention
that the approaches of [13, 19] are going to some extent into the same direction. The basic scheme of the
algorithms is similar. Nevertheless, our running time shows that our results are different. Moreover, the
first paper [13] does not make use ofMeasure&Conquertechniques and the second one [19] follows a
non-parameterized route. So, we conclude this paper by a moderately exponential-time re-analysis of our
suggested algorithm along the lines of our parameterized analysis. This shows that there is an algorithm
solving MAXIMUM LEAF SPANNING TREE in timeO∗(3.4575k) and in timeO∗(1.89615n).

MAXIMUM LEAF SPANNING TREE parameterized algorithm exact exponential-time
undirected graphs O∗(3.4575k) (*) O∗(1.89615n) (*)
directed graphs O∗(3.72k) [13] O∗(1.9044n) [6]

Tab. 2: Records for producing leafy trees

We summarize the various results known for maximum spanningtree problems in Table 2, including
the given appropriate references; a star (*) indicates thatthe corresponding results are obtained in this
paper.

1.3 Terminology

We are considering simple undirected graphsG(V,E) with vertex setV and edge setE ⊆ {{u, v} |
u, v ∈ V }. We adhere to standard terminology, but we will explain mostof it below for the sake of
self-containment of this paper. Edges of simple undirectedgraphs can be viewed as two-element vertex
sets, as “simple” prohibits loops and multi-edges. An edge{x, y}might also be written asx y.

The neighborhoodof a vertexv ∈ V is NG(v) := {u | {u, v} ∈ E} and thedegreeof v is
dG(v) = |NG(v)|. The closed neighborhoodis NG[v] = NG(v) ∪ {v}. For someV ′ ⊆ V , let
N(V ′) := (

⋃

v∈V ′ N(v)) \ V ′, NV ′(v) := {u ∈ V ′ | {u, v} ∈ E}, dV ′(v) = |NV ′(v)|, and
EV ′(v) := {{u, v} ∈ E | u ∈ V ′}; whenV ′ = V or E′ = E, we might suppress the subscript.
G[V ′] andG[Ẽ] are the graphs induced by the vertex setV ′ and the edge set̃E, respectively. Hence,
G[V ′] is defined asG(V ′, E′) with E′ = {xy ∈ E | x, y ∈ V ′}, andG[Ẽ] is equivalent toG(Ṽ , Ẽ) with
Ṽ = {x ∈ V | ∃e ∈ Ẽ : x ∈ e}.

A sequence of verticesp = v1, . . . , vn is called apath from v1 to vn in G(V,E) if, for all 1 ≤ i < n,
vivi+1 ∈ E. The pathp is acycleif v1 = vn. The pathp is simpleif, for all 1 ≤ i < j ≤ n, vi 6= vj . A
graphG(V,E) is connectedif, for all u, v ∈ V , there is a path fromu to v. An edge cut-setis a subset
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Ê ⊆ E such thatG(V,E \ Ê) is not connected. Atree is a subset of edgesT ⊆ E such thatG[T ]
is connected and cycle-free. For simplicity, we occasionally identify G[T ] with T , so that we can write
dT (v) to denote the degree of vertexv within the treeT . A spanning treeis a tree such that

⋃

e∈T e = V .
It is well-known that a graph is connected if and only if it admits a spanning tree. As connectedness can be
decided in linear time, for the purpose of solving our problem, it is sufficient to consider graph instances
that are connected.

We conclude with some terminology that is less standard, following the concepts introduced by Kneis
et al. in [24]. A treeT ′ extendsanother treeT if T ⊆ T ′. We will write T ′ ≻ T if T ′ extendsT . An
edgee = xy ∈ E is called abridge if there is no path fromx to y in G[E \ {e}]. For anyE′ ⊆ E let
leaves(E′) := {v ∈ V | dE′(v) = 1} andinternal(E′) := {v ∈ V | dE′(v) ≥ 2}. The following
simple assertion is important for our strategy:

Lemma 1 LetG(V,E) be an undirected graph with at least three vertices andk ≥ 1 be an integer.G
admits a spanning tree with at leastk leaves if and only ifG is connected and there exists a spanning tree
T ⊆ E with at leastk leaves and a vertexr ∈ V with dT (r) ≥ 2.

Proof: As G admits a spanning tree,G is connected. LetT be some spanning tree ofG. AsG contains
at least three vertices,T must contain a non-leafr. ✷

1.4 Overall Strategy
In the rest of the paper, we address the following annotated version of our problem:
ROOTEDk-LEAF SPANNING TREE

Given: An undirected connected graphG(V,E), a vertexr ∈ V calledroot, and the parameterk.
We ask: Is there a spanning treeT for G with |leaves(T )| ≥ k with dT (r) ≥ 2?

According to Lemma 1, an algorithm solving this problem willalso solvek-LEAF SPANNING TREE(with
a polynomial overhead) by considering everyv ∈ V as the root, sorting out the trivial case whenG has at
most two vertices first.

All throughout the algorithm, we will maintain a treeT ⊆ E whose vertices areVT :=
⋃

e∈T e. Let
V T := V \ VT . T is always part of the solution. During the course of the algorithm, T will have two
types of leaves:leaf nodes (LN)andbranching nodes (BN). The former ones will also appear as leaves in
the solution. The latter ones can be leaves or internal vertices. Generally, we decide this by branching as
far as reduction rules do not enforce exactly one possibility. Internal nodes(IN) are already determined
to be non-leaves inT .

The algorithm will also produce a third kind of leaves:floating leaves (FL). These are vertices from
V T which are already determined to be leaves, but are not yet attached to the treeT . If a vertex is
neither a branching node, nor a leaf node, nor a floating leaf,nor an internal node, we call itFREE.
We will refer to the different possible roles of a vertex by a labeling functionlab : V → D, with
D := {IN,FL,BN, LN,FREE}. A given treeT ′ defines a labelingVT ′ → D to which we refer bylabT ′.
Let

• INT ′ := {v ∈ VT ′ | dT ′(v) ≥ 2},

• LNT ′ := {v ∈ VT ′ | dV
T ′
(v) = 0, d(v) = 1} and

• BNT ′ = VT ′ \ (INT ′ ∪ LNT ′).
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Then for any ID∈ D \ {FL,FREE}, we have IDT ′ = lab−1
T ′ (ID). We always ensure thatlabT and

lab are the same onVT whereT is the tree constructed by the algorithm. We suppress the subscript if
we are refering to this tree. The subscript might be suppressed if T ′ = T . If T ′ ≻ T , then we assume
that INT ⊆ INT ′ and LNT ⊆ LNT ′ . So, the labels IN and LN remain once they are fixed. For the
other labels, we have the following possible label transitions in the course of the algorihm: FL→ LN,
BN→ {LN, IN} and FREE→ D \ {FREE}.

Henceforth, we assume|V | > 4, as smaller instances can be easily resolved.

1.5 Parameterized Measure&Conquer

The number of leaves in the corresponding recursion tree provides a good estimate for the running time
of branching algorithms that are designed to explore a largesearch space. This is based on the fact that
there are at most twice as many nodes in a recursion tree of some computation as there are leaves in
that tree, as nodes with exactly one child are merged with that child in this kind of reasoning. Assuming
now a polynomial amount of work associated to each node of therecursion tree, the overall running time
is dominated by the number of leaves of the recursion tree, inparticular when using theO∗-notation.
Traditionally, to each node of the recursion tree, an (annotated) instance is associated, which would be in
our case, a graph, a current parameter budgetk, and vertex sets BN, LN,FL. Progress of the recursion
would be measured by reducing the current parameter budget.To the root node of the recursion tree,
the original instance would be associated; in particular, the parameter budget would be initialized with
the parameter value associated to this instance. As can be seen by this type of explanations, the word
“parameter” plays a sort of double role here. This is alleviated by a shift of perspective as provided by
parameterizedMeasure&Conquer.

There, a so-called measure (also known as potential function) is instantiated with the parameter value
associated to this instance. This measure will henceforth be used to keep track of the progress that the
branching algorithm makes. The measure does not only capture the “current parameter”, but also struc-
tural information obtained during the execution of the algorithm. In other words, this structural informa-
tion does not necessarily refer to the case that some objectsare fixed to be in the future solution. It can
comprise much more, for instance, degree-one vertices, four-cycles, etc. Clearly, we have to show that
the budget never increases on applying reduction rules and even decreases in case of recursive calls. But
additionally, once our budget has been completely consumed, i.e., when the measure drops down to or be-
low zero, we must be able to give an appropriate answer in polynomial time. As in general we accounted
for more than only parts of a future solution, taking into account structural details of the graph, this might
become a hard and tedious task. If we are able to fulfill all thementioned conditions, we can prove a
running time of the formO∗(ck). Further examples of this approach are collected in the PhD thesis of
one of the authors [2], and several publications using this approach have appeared [3, 4, 5, 20, 7].

Following usual conventions in this area, we will call the object named recursion tree in this subsection
a search treehenceforth.

2 Reduction Rules & Observations

2.1 Reduction Rules

Most often, so-called reduction rules are the main buildingblocks of polynomial-time algorithms achiev-
ing a problem kernel. In our case, we are not so much interested in deriving a kernel, referring to [11]
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for the currently best kernelization algorithm instead. Rather, our reduction rules are part of a search
tree algorithm that we describe in details later. At this stage, it is important to keep in mind that the
search tree will construct a (rooted) treeT within the graph to which we refer in the following rules. The
leaf nodes ofT that are not yet decided to become leaf nodes in the final spanning tree we are going
to construct are collected into the set BN of branching nodes. Moreover, we have a possible empty set
of floating leaves FL. Hence, when we speak about the correctness of the proposed reduction rules, we
argue always in the sketched situation. So, more formally, as an instance can be now viewed as given by
I = (G(V,E), T,BN,FL), a rule is sound if the following is true: for any such instance I, the instance
r(I) = (r(G(V,E)), r(T ), r(BN), r(FL)) produced by applying ruler to I (the effect of such an appli-
cation is described below in each case) satisfies:I admits a spanning treeT ′ with T ′ ≻ T , with at leastk
leaves if and only ifr(I) admits a spanning treeT ′′ with T ′′ ≻ r(T ) with at leastk leaves.

To see the overall correctness of the proposed algorithm andits running time analysis, it is also nec-
essary that the measure never increases by any such operation. This will be shown in Lemma 10. One
helpful observation for this (that can be seen already at this stage) is also the fact that neither our reduction
rules nor our branching rules (stated below) will ever change the status of a vertex from an internal node
to a leaf node (be it free or not) or vice versa.

We assume that reduction rule(i) is applied before(i+1). The rules(1)-(3) also appeared in a previous
paper coauthored by a superset of the present authors [19]. For the sake of completeness, we not only
state but also prove the correctness of all reduction rules that we need in this paper.

(1) If there is an edgee ∈ E \ T with e ⊆ VT , then deletee.

(2) Everyu ∈ BN with d(u) = 1 becomes a leaf node and everyu ∈ FREE withd(u) = 1 becomes a
floating leaf.

(3) If there is a vertexu ∈ BN such that the removal ofEV T
(u) in G[V \ FL] or G[V ] creates two

components, thenu becomes internal.

(4) If there are free verticesu, v such that there is a bridge{u, v} ∈ E \ T in G[V ], whereC1, C2 are
the two components created by deleting{u, v} and if |V (C1)| > 1 and|V (C2)| > 1, then contract
{u, v}. The new vertex is also free.

(5) Delete{u, v} ∈ E if u andv are floating leaves.

(6) Delete{u, v} ∈ E \ T if dV (u) = 2, u ∈ BN and at least one of the following two cases apply:
a) dV (v) = 2, or b) v ∈ FL.

(7) Delete{u, v} if u ∈ BN with dV (u) = 2, NV T
(u) = {v} anddVT

(v) ≥ 2; see Figure 1(a).

(8) If u, x1, x2 form a triangle,x1 is free and{h} = NV (x1) \ {x2, u} such thatdV (h) = 1 (see
Figure 1(b)) thenx1 becomes a floating leaf andh will be deleted.

(9) If h ∈ V T is a free vertex such thata) NV T
(h) = {q} andd(q) = 1 or b) dV T

(h) = 0 (see
Figure 1(c)) thenh becomes a floating leaf andq is deleted in casea).

Lemma 2 The reduction rules are sound.
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(a) RR(7)
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(b) RR(8)

h

q

(c) RR(9)

Fig. 1: Bold edges are fromT . Dotted edges may be present or not.

Proof: Let T ′ be a spanning tree withT ′ ≻ T such that|leaves(T ′)| ≥ k.

(1) Any edgee ∈ E \ T with e ⊆ VT added toT would introduce a cycle.

(2) In this case,u must be a leaf node inT ′ due to its degree constraint.

(3) If EV T
(u) is an edge cut-set inG[V ], thenu must be internal as we are looking for a spanning tree.

AssumeEV T
(u) is an edge cut-set inG[V \FL] but not inG[V ]. If labT ′(u) = LN, i.e.,u is a leaf

node inT ′, then there must be az ∈ FL with dT ′(z) ≥ 2. Thus,z ∈ INT ′ , a contradiction.

(4) Let G′ be the graph which emerges by contracting{u, v}. We can assume that we havedT ′(u) ≥ 2
anddT ′(v) ≥ 2 due to connectivity. By contracting{u, v} in T ′, we get a solution forG′. If G′ has
a spanning treeT ∗ ≻ T with k leaves, then the same is true forG; namely, the vertex obtained by
identifyingu andv cannot be a leaf node inT ∗, as each of the componentsCi contains at least two
vertices anduv was a bridge inG; so, we can form an extensionT ′′ fromT ∗ with |leaves(T ′′)| ≥ k

by making bothu andv internal inT ′′ and keeping all other edges fromT ∗.

(5) If {u, v} is part of a solutionT ′ thenT ′ ∼= K2. This contradicts|V | > 2.

(6.a) Considere := {u, v} ∈ E \T with u ∈ BN anddV (u) = dV (v) = 2. For the sake of contradiction,
suppose thate ∈ T ′ and that neitheru norv are leaves inT ′. By removinge, u andv become leaves
andT ′ is split into two componentsT ′

1 andT ′
2. As e is not a bridge and sinceT ′ is spanning, there

is ae′ := {a, b} ∈ E \ (T ∪ e) such thatT ∗ = T ′
1 ∪ T ′

2 ∪ {e
′} is connected. Due to adjoininge′,

at most two leaves (inT ′) will become internal (inT ∗). Hence,|leaves(T ∗)| ≥ |leaves(T ′)|. It
is possible thatlab(a) = FL, but if it was true that for every such edgee′ one of its endpoints is
a floating leaf, then we could have applied(3), asEV T

(v) would be an edge cut-set inG[V \ FL].
Since Rule(3) takes priority,lab(a) = FL is excluded.

If e := {u, v} ∈ T ′ andu or v is a leaf inT ′, then the proof of(6.b) applies, possibly exchanging
the roles ofu and ofv.

(6.b) Supposee := {u, v} ∈ T ′. In this case, we know thatdV (u) = 2, u ∈ BN andv is a leaf inT ′.
As e is not a bridge by(3) and(4), there is ane′ = {v, x} ∈ E \ T ′ with x 6= u andx 6∈ FL. Let
T ∗ := (T ′ \ {e}) ∪ {e′}. Note that|leaves(T ∗)| ≥ |leaves(T ′)| asu is a leaf inT ∗ but not inT ′

andv is a leaf both inT ′ and inT ∗.
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(7) Let q ∈ NVT
(v) \ {u} and assumee := {u, v} ∈ T ′. Thene′ := {v, q} 6∈ T ′ asq ∈ VT .

Let T ∗ = (T ′ \ {e}) ∪ {e′}. Then|leaves(T ∗)| ≥ |leaves(T ′)| aslabT∗(u) = LN.

(8) LetG∗ be the reduced graph. InT ′, x1 must be internal. Observe that we can assume thatdT ′(x1) =
2 (✾). Otherwise,{u, x1}, {x1, x2}, {x1, h} ∈ T ′, {u, x2} 6∈ T ′ and, w.l.o.g.,u is internal as
|V | > 4. Then simply delete{x1, x2} from T ′ and adjoin{u, x2}. This way we can ensure (✾).
Due to (✾), we conclude thatG∗ has a spanning tree withk leaves iffG has one.

(9.a) Note that we havedT ′(h) = 2 since otherwiseT ′ contains a cycle or is not connected. LetG∗ be
the reduced graph. Analogously as in(8), we can show thatG∗ has a spanning tree withk leaves
iff G has one.

(9.b) If dT ′(h) > 1, thenT ′ would possess a cycle. ✷

Lemma 3 Reduction rule(1) does not create any bridge inE \ T .

Proof: Suppose an edgee = {u, v} 6∈ T is deleted by(1) and a second edgee′ = {x, y} ∈ E \ T
becomes a bridge inG[E \ {e}]. ThenG′ := G[E \ {e, e′}] consists of two componentsG1 andG2

such that, w.l.o.g.,r, x ∈ V (G1) andy ∈ V (G2). Thus, there is a simple pathP = rh1 . . . hℓy in
G such thathi 6= x, y (1 ≤ i ≤ ℓ) and there is aj, where1 ≤ j ≤ ℓ, with, w.l.o.g.,hj = u and
hj+1 = v. As u, v ∈ VT there is a simple pathP ′ in G1[T ] from u to v such thate, e′ 6∈ E(P ′). Let
P̂ = rh1 . . . hj−1P

′hj+2 . . . hℓy. P̂ is a path inG′ which connectsr andy avoidinge ande′. Thus,e′ is
not a bridge inG[E \ {e}]. ✷

From now on, we assume thatG is reduced according to the given reduction rules in any further dis-
cussion of our branching algorithm.

2.2 Observations
If N(internal(T )) ⊆ internal(T ) ∪ leaves(T ), we callT an inner-maximaltree. This notion gave rise
to the following crucial lemma in the paper of J. Kneis, A. Langer and P. Rossmanith [24]:

Lemma 4 ([24] Lemma 4.2) If there is a treeT ′ with leaves(T ′) ≥ k such thatT ′ � T and x ∈
internal(T ′) then there is a treeT ′′ with leaves(T ′′) ≥ k such thatT ′′ � T , x ∈ internal(T ′′) and
EV (x) ⊆ T ′′.

Due to the previous lemma, we can restrict our attention to inner-maximal spanning trees. And in fact
the forthcoming algorithm will only construct such trees. Then for av ∈ internal(T ) we have that
EV (v) ⊆ T as by Lemma 4 we can assume thatT is inner-maximal. Thus, in the very beginning we have
T = EV (r).

Lemma 5 Letv ∈ BNT andNV T
(v) = {u}. If none of the reduction rules(1)-(9) applies, thenu is free

anddV T
(u) ≥ 2.

Proof: Note thatdV (v) = 2. Moreover,u 6∈ IN ∪ BN ∪ FL due toT ’s inner-maximality,(1) and(6.b).
Thus,u is free. IfdV T

(u) = 0 then(9.b) could be applied. IfdV T
(u) = 1 then either we can apply(3)

(if {u, v} is a bridge) or(6.a) or (7) depending on whetherdVT
(u) ≥ 2 or not. ✷
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We are now going to define some functionco : BN→ V . Forv ∈ BN, let

co(v) =

{

v : dV T
(v) ≥ 2,

u : NV T
(v) = {u}.

Note thatco is well defined on a reduced instance as we havedV T
(v) ≥ 1 (otherwise it becomes a leaf

node(2)). Note that we havedV T
(co(v)) ≥ 2 because eitherdV T

(v) ≥ 2 or dV T
(v) = 1. In the latter

case,NFREE(v) = NV T
(v) = {u}, such thatdV T

(u) ≥ 2 by Lemma 5. This property will be used
frequently.

The next lemma has been shown by [24] and is presented using the introduced definitions of this paper.

Lemma 6 ([24] Lemma 5) Let v ∈ BNT such thatNV T
(v) = {u}. If there is no spanning treeT ′ ≻ T

with k leaves andlabT ′(v) = LN, then there is also no spanning treeT ′′ ≻ T with k leaves,labT ′′(v) =
IN andlabT ′′(u) = LN.

Observe that for a vertexv with co(v) 6= v once we setlab(v) = IN then it is also valid to setlab(co(v)) =
IN. By Lemma 6 we must only ensure that we also consider the possibility lab(v) = LN.

A Further Reduction Rule With the assertion of Lemma 5 in mind, we state another reduction rule:

(10) If w ∈ BN with x1 ∈ NFREE(w) such that a free degree one vertexq is adjacent tox1 and if further

a) there existsv ∈ BN with NV T
(v) = {x1, x2} and{x1, x2} ∈ E, see Figure 2(b), or

b) there existsv ∈ BN with co(v) 6= v andNV T
(co(v)) = {x1, x2}, see Figure 2(e),

then setlab(v) = LN.

Lemma 7 Rule(10) is sound.

Proof: We have to consider both cases of the rule separately.

a) Let T ′ ≻ T be a spanning tree withlabT ′(v) = labT ′(co(v)) = IN. ConsiderT ∗ := (T ′ \
{x1 v, x2 v}) ∪ {wx1, x1 x2}, see Figures 2(b) and 2(c). AslabT ′(x1) = labT∗(x1) = IN and
labT∗(v) = LN we have|leaves(T ∗)| ≥ |leaves(T ′)|. Hence, we do not have to consider
lab(v) = lab(co(v)) = IN.

b) We can skip the possibilitylab(v) = lab(co(v)) = IN. Assume the contrary. In that case con-
siderT ∗ := (T ′ \ {v co(v)}) ∪ {x1 w}, see Figures 2(e) and 2(f). Then we have|leaves(T ∗)| ≥
|leaves(T ′)| asx1 must be internal. Note thatlabT∗(v) = LN.

✷

The next lemmas refer to the case where there is av ∈ BNT with dV T
(co(v)) = 2. In the following,

we use the abbreviationN := {co(v), x1, x2}.

Lemma 8 LetT ⊆ E be a given tree such thatv ∈ BNT andNV T
(co(v)) = {x1, x2}. LetT ′, T ∗ be op-

timal spanning trees under the restrictionsT ′ ≻ T ,T ∗ ≻ T , labT ′(v) = LN, labT∗(v) = labT∗(co(v)) =
IN andlabT∗(x1) = labT∗(x2) = LN.
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Fig. 2: Bold edges are fromT . Dotted edges may be present or not.

1. If there is az ∈ ((N(x1) ∩N(x2)) \ N ), then|leaves(T ′)| ≥ |leaves(T ∗)|.

2. If co(v) = v, y ∈ N(x2) \ N , z ∈ N(x1) \ N with labT∗(z) = IN, then |leaves(T ′)| ≥
|leaves(T ∗)| .

3. If co(v) 6= v and if there is az ∈ ((N(x1)∪N(x2))\N ) with labT∗(z) = IN, then|leaves(T ′)| ≥
|leaves(T ∗)|.

Proof:

1. Firstly, supposeco(v) = v. ConsiderT+ := (T ∗ \ {v x1, v x2}) ∪ {z x1, z x2}, see Figures 3(a)
and 3(b). We havelabT+(v) = LN and z can be the only vertex besidesv wherelabT+(z) 6=
labT∗(z). Thus,z could be the only vertex withlabT+(z) = IN and labT∗(z) = LN. Therefore,
|leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|. Secondly, ifco(v) 6= v then considerT# :=
(T ∗ \ {v co(v), co(v)x2}) ∪ {z x1, z x2} instead ofT+.

2. ConsiderT+ := (T ∗ \{v x1, v x2})∪{z x1, y x2}, see Figures 3(c) and 3(d). We havelabT+(v) =
LN and at most fory we could havelabT∗(y) = LN and labT+(y) = IN. Hence,|leaves(T ′)| ≥
|leaves(T+)| ≥ |leaves(T ∗)|.

3. W.l.o.g.,z ∈ N(x1) \ N . ConsiderT# := (T ∗ \ {v co(v)}) ∪ {z x1}. We havelabT#(v) = LN
and therefore|leaves(T ′)| ≥ |leaves(T#)| ≥ |leaves(T ∗)|.
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✷

Lemma 9 LetT ⊆ E be a given tree such thatv ∈ BNT andNV T
(co(v)) = {x1, x2}. LetT ′, T ∗ be op-

timal spanning trees under the restrictionsT ′ ≻ T ,T ∗ ≻ T , labT ′(v) = LN, labT∗(v) = labT∗(co(v)) =
IN andlabT∗(x1) = LN.

1. If co(v) = v, {x1, x2} ∈ E, N(x2) \ FL = {v, x1} and if there is az ∈ N(x1) \ N with
labT∗(z) = IN, then|leaves(T ′)| ≥ |leaves(T ∗)|.

2. If co(v) 6= v, N(x2) \ FL ⊆ {co(v), x1} and if there is az ∈ N(x1) \N with labT∗(z) = IN, then
|leaves(T ′)| ≥ |leaves(T ∗)|.

3. If labT∗(x2) = IN, dT∗(x2) = 2, EV T
(v) is not an edge cut-set inG[V ] nor G[V \ FL]. if in

addition there is az ∈ N(x1) \ N with labT∗(z) = IN, then|leaves(T ′)| ≥ |leaves(T ∗)|.

Proof:

1. ConsiderT+ := (T ∗ \ {v x1, v x2}) ∪ {x1 x2, z x1}. Note thatlabT+(v) = LN andx1 is the only
vertex where we havelabT∗(x1) = LN andlabT+(x1) = IN. Observe thatT+ is indeed a spanning
tree. It is impossible that we have created a cycle, becausex1 is the only non-FL neighbor ofx2 in
T+. Thus,|leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|.

2. ConsiderT# := (T ∗ \ {v co(v)}) ∪ {z x1} instead ofT+ from item1.

3. First assumeco(v) = v. ConsiderT+ := (T ∗ \ {v x1, v x2}) ∪ {z x1}, see Figures 3(e) and 3(f).
Due to Lemma 4T+ is a forest consisting of two treesT+

1 andT+
2 , wherev andx2 have become

leaf nodes. Thus|leaves(T+)| − 2 = |leaves(T ∗)|. AsEV T
(v) is not a edge cut-set there is some

e ∈ E \ (T+ ∪ EV (v)) such thatT++ := T+ ∪ {e} is connected. Furthermore,T+ has at most
two leaf nodes more thanT++ as the addition ofe might turn at most two leaf nodes into internal
nodes. Thus aslabT++(v) = LN, |leaves(T ′)| ≥ |leaves(T++)| ≥ |leaves(T ∗)|. Note also that
e can be choosen in a way that its addition will not turn any floating leaf of the current labeling of
T+ into an internal vertex as otherwise(3) applies.

If co(v) 6= v then considerT# := (T ∗\{v co(v), co(v)x2})∪{z x1} instead ofT+. AsEV T
(v) is

not an edge cut-set inG[V ], {v, co(v)} is not a bridge. Thus, there is ane ∈ E\(T#∪{{v, co(v)}})
such that|leaves(T#∪{e})| ≥ |leaves(T ∗)| andT#∪{e} is a spanning tree wherev is LN-node.
Note also that for the same reasons as in the caseco(v) = v, the edgee can be choosen such that
any floating leaf is preserved.

✷

In [24] the bottleneck case was when branching on a vertexv ∈ BN with at most two non-tree neighbors,
that isdV T

(v) ≤ 2. In the last two lemmas we considered this case. If the bottleneck case also matches
the conditions of Lemma 8 or 9 we either can skip some recursive call or decrease the yet to be defined
measure by an extra amount. Otherwise we show that the branching behavior is more beneficial. This is
a substantial ingredient for achieving a better running time upper bound.
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Algorithm 1: An algorithm solving k-LEAF SPANNING TREE

Data: A graphG(V,E), k ∈ N and a treeT ⊆ E.
Result: YES if there is a spanning tree with at leastk leaves andNO otherwise.

if κ(G) ≤ 0 or |BN|+ |LN| ≥ k then1

return YES2

else if G[V \ FL] is not connected or BN= ∅ then3

return NO4

else5

Apply the reduction rules exhaustively6

Choose a vertexv ∈ BN of maximum degree7

if dV T
(co(v)) ≥ 3 then8

〈v ∈ LN; v, co(v) ∈ IN〉 (B1)9

else10

(Note that now we must haveNV T
(co(v)) = {x1, x2})11

Choosev according to the following priorities:12

case ({x1, x2} ⊆ FL) or (B2.a)13

(x1 ∈ FREE& dV T \N (x1) = 0) or (B2.b)14

(x1 ∈ FREE& NV T \N (x1) = {z} & (dV T \N (z) ≤ 1 or z ∈ FL)) (B2.c)15

〈v ∈ LN; v, co(v) ∈ IN〉 (B2)16

case x1 ∈ FREE, x2 ∈ FL or (B3.a)17

x1, x2 ∈ FREE, NFL(x2) ⊆ {x1, co(v)} or (B3.b)18

x1, x2 ∈ FREE& dV T \N (x2) = 1 (B3.c)19

〈v ∈ LN; v, co(v) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉 (B3)20

and applymakeleaves(x1, x1) in the 2nd branch21

case x1, x2 ∈ FREE& ∃z ∈
⋂

i=1,2 NFL\N (xi)22

〈v ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉23

(B4)24

otherwise25

〈v ∈ LN; v, co(v) ∈ IN, x1, x2 ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈26

LN; v, co(v), x1, co(x1) ∈ IN〉 (B5)
and applymakeleaves(x1, x2) in the 2nd branch27

Procedure makeleaves(x1, x2)

begin1

∀u ∈ [(N(x1) ∪N(x2)) \ {N}] ∩ FREE setu ∈ FL;2

∀u ∈ [(N(x1) ∪N(x2)) \ {N}] ∩ BN setu ∈ LN;3

end4
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Fig. 3: Bold edges are fromT . Dotted edges may be present or not.

3 The Algorithm
We are now ready to present Algorithm 1.

We mention that if the answerYES is returned ak-leaf spanning tree can be constructed easily. This
will be guaranteed by Lemma 10. For the sake of a short presentation of the different branchings, we
introduce the following notation〈b1; b2; . . . ; bn〉, called abranching. Here the entriesbi are separated by
semicolons and stand for the differentparts of the branching. They will express how the label of some
vertices change. For example:〈v ∈ LN; v, co(v) ∈ IN〉. This stands for a binary branching where in the
first part we setlab(v) = LN and in the secondlab(v) = lab(co(v)) = IN. Note that the non-standard
run time measureκ will be defined later.

3.1 Correctness

3.1.1 Branchings
When we setlab(v) = IN, then we also setT ← T ∪ {{u, v} ∈ E | u 6∈ VT }. This is justified by
Lemma 4. If we setlab(v) = LN, then we delete{{u, v} ∈ E | {u, v} 6∈ T } as these edges will never
appear in any solution.

In every branching of our algorithm, the possibility thatlab(v) = LN is considered. This recursive call
must be possible, as otherwise(3) would have been triggered before. Now consider the caseco(v) 6= v.
If the recursive call forlab(v) = LN does not succeed, then we considerlab(v) = IN. Due to Lemma 6
we immediately can also setlab(co(v)) = IN. This fact is used throughout the branchings (B1)-(B5).
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Nonetheless, in the branchings (B1), (B2), (B3) and (B5) every possibility forv, x1 andx2 is considered
in one part of the branching, i.e., these are exhaustive branchings. But in (B3) and (B5) the procedure
makeleaves() is invoked and (B4) is not exhaustive. We will go through eachsubcase and argue that
this is correct in a way that at least one optimal solution is preserved.

B3.a) In the second part of the branch, every vertex in(N(x1)∪N(x2)) \ {N} can be assumed to be a
leaf node in the solution. Otherwise, due to Lemmas 8.2 and 8.3, a solution, which is no worse than
the neglected one, can be found in the first part of the branch when we setlab(v) = LN. Therefore
the application ofmakeleaves(x1, x1) is correct.

B3.b) There is az1 ∈ NFL\N (x1) (by (3)). If co(v) = v then we must have{x1, x2} ∈ E due to(3).
Thus, either Lemma 9.1 or 9.2 applies (depending on whetherco(v) = v or not). As in the previous
item it follows that the application ofmakeleaves(x1, x1) is correct.

B3.c) Let z1 ∈ NFL\N (x1) and T̃ ≻ T be an optimal spanning tree solution extendingT such that
labT̃ (v) = labT̃ (co(v)) = IN and labT̃ (x1) = LN. If labT̃ (x2) = LN, then Lemmas 8.2 and 8.3
apply. This means in the branch settingv, co(v) ∈ IN, x1 ∈ LN, we can assume that vertices in
(N(x1 ∪N(x2))) \N are leaves, i.e., we can adjoin them to FL or LN. IflabT̃ (x2) = IN, then we
must havedT̃ (x2) = 2. Thus, Lemma 9.3 applies. This can be seen as follows.
Let us recall the situation:lab

T̂
(v) = lab

T̂
(co(v)) = IN, lab

T̂
(x1) = LN and lab

T̂
(x2) = IN.

Thus,d
T̂
(x2) = 2 due to the precondition ofB3.c). EV T

(v) is not an edge cut-set inG[V ] nor in
G[V \ FL] due to(3). Therefore, Lemma 9.3 applies here.
Thus, in the second part of the branch we can assume that everyvertex inN(x1) \N is a leaf. Any
solution which violates this assumption can be substitutedby a no worse one wherev ∈ LN which
is assured by Lemma 9.3. This justifies callingmakeleaves(x1, x1).

(B4) does not consider the possibility thatlab(v) = IN andlab(x1) = lab(x2) = LN. Here we refer to
Lemma 8.1, which states that a no worse solution can be found when we setlab(v) = LN.

(B5) If co(v) = v, then by reduction rule(3) we haveN(xi) \ {v} 6= ∅. If co(v) 6= v then it fol-
lows that

⋃2

i=1 N(xi) \ N 6= ∅ analogously. Then due to Lemmas 8.2 and 8.3 an application of
makeleaves(x1, x2) is valid. Note that Lemmas 8.2 and 8.3 can also be read with exchanged
roles betweenx1 andx2.

3.1.2 The Measure
To derive an upper-bound on the running time for our algorithm, we use the measure

κ(G) := k − ωf · |FL| − ωb · |BN| − |LN| with ωb = 0.5130 andωf = 0.4117.

κ(G) is defined by a treeT and a labeling (which both are to be built up by our algorithm). Thus, we use
a subscript when we are referring to this, i.e.,κ(G)T .

Parameterized Measure & Conquer poses two special problems:

• When our algorithm returnsYES, thenT might still not be a spanning tree. We first have to attach
all the floating leaves toT . It is possible that a branching node turns into an internal node and
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thusκ(G) increases. The next important lemma shows that if we take allthe floating leaves and
branching nodes into account, thenκ(G) decreases.

• The application of reduction rules never increase the measure, at least in the case when this appli-
cation is exhaustive.

Lemma 10 If for a given labelingκ(G) ≤ 0, then a spanning treêT with |leaves(T̂ )| ≥ k can be
constructed in polynomial time.

Proof: Delete the vertices in FLT and compute a depth-first spanning treeDT for the remaining graph
starting fromT . Then simply attach the vertices from FLT to one of its neighbors inDT . This way we
obtain a spanning treêT ≻ T . Let LBN = BNT ∩ LN

T̂
and IBN= BNT \ LBN. For c ∈ IBN, let Tc be

the subtree rooted atc in T̂ . Clearly,|leaves(Tc)| ≥ 1 (✸). Observe that each vertexv ∈ FLT ∪LBN now
decreasesκ(G)

T̂
by one due to the labeling underT̂ . Thus,κ(G)

T̂
was decreased by(1−ωf ) or (1−ωb),

resp., with respect toκ(G)T due to turningv into a leaf node. The following chain of inequalities shows
that|leaves(T̂ )| ≥ k.

k − |LN
T̂
| = κ(G)

T̂
≤ κ(G)T − |LBN| · (1 − ωb) + |IBN| · ωb − |FL| · (1− ωf )

≤ κ(G)T + |IBN| · ωb −
∑

c∈IBN
|leaves(Tc)| · (1− ωf )

≤ κ(G)T + |IBN| · (ωb + ωf − 1) ≤ κ(G)T ≤ 0. (by (✸))

✷

Next we consider the interaction of the reduction rules withthe measure.

Lemma 11 An exhaustive application of the reduction rules never increasesκ(G).

Proof: Rule(2) decreasesκ(G) by 1− ωb orωf . The deletion of an edge fromE \ T can cause a change
in κ(G) only in one way: a branching node can become a leaf node. Thenκ(G) is decreased by1 − ωb.
If one of (1), (5), (6) and(7) applies, then exactly such an edge is deleted. If(10) applies, then a vertex
v ∈ BN becomes a leaf node. Thus, one or more edges are deleted andthereforeκ(G) is not increasing.
In (3) there is a vertexu ∈ BN which becomes internal. Thus,κ(G) increases byωb. Moreover, there is
a second vertexq ∈ NV T

(u). If q is free, then it becomes a branching node andκ(G) decreases byωb.
Thus,κ(G) does not change if we sum up both amounts. Ifq is a floating leaf, then it becomes a leaf node.
Thusκ(G) decreases by1 − ωf − ωb > 0. As in (4) an edge with with two free vertices is contracted
such that the resulting vertex is also free,κ(G) remains the same. In(8) a free vertex becomes a floating
leaf and a vertexh with degree one is deleted. As we haveh ∈ FL, κ(G) does not change. Rule(9.a) can
be analyzed analogously. In(9.b) a free vertex turns in a floating leaf andκ(G) decreases byωf . ✷

3.2 Running Time Analysis
In our algorithm the changes ofκ(G) are caused by triggering reduction rules or by branching. Inthe
first case Lemma 11 ensures thatκ(G) will never increase. In the second case we have reductions of
κ(G) of the following type. When a vertexv ∈ BN becomes a leaf node (i.e., we setlab(v) = LN) then
κ(G) will drop by an amount of(1 − ωb). On the other hand whenv becomes an internal node (i.e., we



Finding ak-Leaf Spanning Tree in an Undirected Graph 195

set lab(v) = IN) thenκ(G) will increase byωb. This is due tov not becoming a leaf. Moreover, the
free neighbors ofv become branching nodes and the floating leaves become leaf nodes, due to Lemma 4.
Thereforeκ(G) will be decreased byωb and1 − ωf , respectively. We point out that the weightsωb and
ωf have to be chosen such thatκ(G) will not increase in any part of a branching of our algorithm.

Analyzing the Different Branching Cases
(B1) Let i := |NV T

(co(v)) ∩ FL| andj := |NV T
(co(v)) ∩ FREE|. Note thati + j ≥ 3. Then the

branching vector is:(1− ωb, i · (1− ωf ) + j · ωb − ωb).

(B2) a) The branching vector is(1− ωb, 2 · (1 − ωf)− ωb).

b) When we setlab(v) = lab(co(v)) = IN the vertexx1 will become a leaf node due to(1). The
branching vector is(1 − ωb, 1 + min{1 − ωf , ωb} − ωb). The vertexx2 contributes an amount of
min{1− ωf , ωb} depending on whetherx2 ∈ FL or x2 ∈ BN.

c) Firstly, suppose thatz ∈ FL.

1. d(z) = 1:

(a) co(v) = v: If {x1, x2} 6∈ E then either(9.a) or (3) applies (depending on whether
dVT

(x1) > 1). If {x1, x2} ∈ E, then there is somez1 ∈ NVT
(x1) \ {v}, as otherwise(8)

applies. But then(10.a) applies.

(b) co(v) 6= v: If dVT
(x1) = 0, then either(8) or (4) applies (depending on whether

{x1, x2} ∈ E). If dVT
(x1) > 0, then(10.b) applies.

2. d(z) ≥ 2 : After settinglab(v) = lab(co(v)) = IN and applying(1) exhaustively we have
d(x1) = 2 andx1, x2 ∈ BN afterwards. Observe that adding an edge toT does not create a
bridge. The same holds for rule(1) (Lemma 3). Thus, rules(3) or (4) are not triggered before
the rules with lower priority. As(2) and(5) do not change the local setting with respect tox1

andz (6.b) will delete{x1, z}, leading to a(1− ωb, 1 + min{1− ωf , ωb} − ωb) branch.

The case thatz ∈ FREE can be seen by similar arguments. Observe thatdG(z) ≥ 2 by (2). In the
part where we setv, co(v) ∈ IN we obtain a treeT ′ := T ∪ EV T

(co(v)). Then rule(1) will delete
edges incident tox1 such thatdV (x1) = 2 andx1 ∈ BNT ′ .
1. If dT ′(z) ≥ 2, then(7) deletes{x1, z}.
2. If dT ′(z) = 1, then bydG(z) ≥ 2 anddV T \N (z) ≤ 1 we deduce thatdG(z) = 2 before setting
v, co(v) ∈ IN. Note thatx2 6∈ N(x) asx2 ∈ VT ′ . Hence,(6.a) deletes{x1, z} afterwards.
Hence we have a(1−ωb, 1+min{1−ωf , ωb}−ωb) branch. We point out that it is guaranteed that
no reduction rule triggered after(1) of lower priority than(6) and(7) will change the local situation
with respect tox1 andz (note Lemma 3).

Remark 12 From this point on, w.l.o.g., for a free vertexxi, i = 1, 2, we have:

1. dV T \N (xi) ≥ 2 or

2. NV T \N (xi) = {zi} such thatdV T \N (zi) ≥ 2 andzi 6∈ FL.

If dV T \N (xi) = 0, then (B2.b) would apply. IfdV T \N (xi) = 1 and2. fails then case (B2.c) applied.
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Remark 13 Note that if2. applies toxi, then when we setlab(v)) = lab(co(v)) = IN, we have that
co(xi) = zi after the application of the reduction rules. In this sense (with a slight abuse of notation) we
setco(xi) = xi if case1. applies andco(xi) = zi if case2. applies.

(B3) If xi is free letfli := |(N(co(xi)) \ N ) ∩ FL| andfri := |(N(co(xi)) \ N ) ∩ FREE|.

Due to Remark 12 we havefli + fri ≥ 2.

a) Note that we must have thatS := NFL(x1)\N 6= ∅ due to(3). If co(v) = v, then alsoN(xi)\{v} 6= ∅
(i = 1, 2) due to(3). Hence, in the second branch for everyq ∈ S we getωf if lab(q) = FREE
as we setlab(q) = FL in makeleaves(x1, x1). If lab(q) = BN, we setlab(q) = LN in
makeleaves(x1, x1) and receive1 − ωb. We have the following reduction inκ(G) for the
different parts of the branching.

v ∈ LN: 1− ωb.

v ∈ IN, co(v) ∈ IN, x1 ∈ LN: 1 + min{ωf , 1− ωb}+ 1− ωf − ωb

v, co(v), x1, co(x1) ∈ IN: 1− ωf + fl1(1− ωf ) + fr1 · ωb − ωb.

Remark 14 Note that from this point we have thatx1 andx2 are free.

b) Note that we must have thatS := NFL(x1) \ N 6= ∅ due to(3). Analogously as ina) we obtain
min{ωf , 1 − ωb} in addition fromN(x1) \ N in the second part of the branch. Thus, we have the
branching vector

(1− ωb, 1 + min{ωf , 1− ωb}+ ωb − ωb, ωb + fl1(1− ωf ) + fr1 · ωb − ωb).(✧)

Remark 15 Observe that from now on there is always a vertexzi ∈ NFL\N (xi) (i = 1, 2) due to the
previous case.

c) This entails the same branch as in (✧).

(B4)Due to Lemma 8.1 a

(1− ωb, 1 + fr2 · ωb + fl2 · (1 − ωf)− ωb, ωb + fr1 · ωb + fl1 · (1− ωf )− ωb) branch

can be derived.

(B5) In this case
⋂

i=1,2 NFL\N (xi) = ∅ is true, as otherwise (B4) applies. This means fori = 1, 2 there
are two different verticeszi ∈ NFL\N (xi) (Remark 15). Due to (B3.c) we havedV T \N (xi) ≥ 2. Thus, in
the second part we additional get(fr1 + fr2) ·ωf . If fri = 0 we get an amount of1−ωb by Remark 15.

v ∈ LN: 1− ωb.

v, co(v) ∈ IN, x1, x2 ∈ LN: 2+(fr1+fr2) ·ωf +(max{0, 1−fr1}+max{0, 1−fr2}) ·(1−ωb)−ωb

v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN: 1 + fl2 · (1− ωf ) + fr2 · ωb − ωb

v, co(v), x1, co(x1) ∈ IN: ωb + fl1 · (1 − ωf) + fr1 · ωb − ωb.



Finding ak-Leaf Spanning Tree in an Undirected Graph 197

We have calculated the branching number for every mentionedrecursion such that2 ≤ fri + fl1 ≤ 5,
i = 1, 2, with respect toωb andωf . The branching number of any other recursion is upper-bounded by
one of these. We mention the bottleneck cases which attain the given running time:
Cases(B3.b)/(B3.c)and Case(B5) such thatdV T \N (xi) = 2 anda) fl1 = fl2 = 0, fr1 = fr2 = 2,
b) fr1 = 2, fl1 = 0, fr2 = fl2 = 1; compared to [13] case(B5) has been improved. We can find at
least two vertices which are turned from FREE vertices to floating leaves or from branching nodes to leaf
nodes. In [13] only one vertex with this property can be foundin the worst case. Thus, due to the previous
case analysis and the fact that the reduction rules can be executed in polynomial time, we can state our
main result:

Theorem 16 k-LEAF SPANNING TREE can be solved in timeO∗(3.4575k), using polynomial space.

4 An Exact Exponential Time Analysis
We stated the running time of Alg 1 in terms ofk wherek is the number of leaves in the spanning tree.

Exponential Time Analysis F. V. Fomin, F. Grandoni and D. Kratsch [21] gave an exact exponential-
time algorithm with a running time ofO∗(1.9407n). Based on and re-analyzing the parameterized al-
gorithm of Kneis, Langer and Rossmanith [24], this was recently improved toO∗(1.8966n), see [19].
We can show further (slight) improvements by re-analyzing our parameterized algorithm. Therefore, we
define a new measure:

τ := n− ω̃f · |FL| − ω̃b · |BN| − |LN| − |IN| with ω̃b = 0.2726 andω̃f = 0.5571.

The remaining task is quite easy. We only have to adjust the branching vectors we derived with respect to
κ(G) to τ . This leads to Table 3.

Note that in cases(B3) b)and(B3) c), we were making a case distinction based onco(x1). If co(x1) 6=
x1 then in the branch where we setv, co(v), x1, co(x1) ∈ IN we can decreaseτ by one more asco(x1)
can be counted additionally. Ifco(x1) = x1 thenfr1 · ω̃f +max{0, 1−fr1}·(1− ω̃b) is the least amount
by whichτ is reduced due to the application ofmakeleaves(x1, x1).
It can be checked that every branching number of the above recursions is upper bounded byO∗(1.89615τ).

Theorem 17 MAXIMUM LEAF SPANNING TREE can be solved inO∗(1.89615n), using polynomial
space.

5 Conclusions
Parameterized Measure & Conquer Amortized search tree analysis, also known asMeasure & Con-
quer, is a big issue in exact, non-parameterized algorithmics. Although search trees play an important role
in exact parameterized algorithmics, this kind of analysishas been rather seldom applicable. Good exam-
ples are the papers of Fernau and Raible [20], which deals with MAXIMUM ACYCLIC SUBGRAPH, the
analysis of 3-HITTING-SET in Wahlström’s PhD Thesis [35] and the amortized analysis of cubic vertex
cover by Chen, Kanj and Xia [12]. This paper contributes to this topic. Let us emphasize the difference
to the, say, non-parameterizedMeasure & Conquerand to this case. Usually if a measureµ, which is
used to derive an upper bound of the formc|V |, is decreased to zero then we immediately have a solution.
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(B1) : (1− ω̃b, i · (1− ω̃f ) + j · ω̃b + 1− ω̃b).

(B2) a) : (1− ω̃b, 2 · (1− ω̃f ) + 1− ω̃b).

(B2) b)/c) : (1− ω̃b, 1 + min{1− ω̃f , ω̃b}+ 1− ω̃b).

(B3) a) : (1− ω̃b, 1 + min{ω̃f , 1− ω̃b}+ 1− ω̃f + 1− ω̃b,

f l1 · (1− ω̃f ) + fr1 · ω̃b + 1− ω̃b + 1− ω̃f + 1).

(B3) b)/c) : (1− ω̃b, 1 + ω̃f + ω̃b + 1− ω̃b,

co(x1) 6= x1 ω̃b + fl1 · (1− ω̃f ) + fr1ω̃b + 1− ω̃b + 2).

(B3) b)/c) : (1− ω̃b, 1 + fr1 · ω̃f +max{0, 1− fr1} · (1 − ω̃b) + ω̃b + 1− ω̃b,

co(x1) = x1 ω̃b + fl1 · (1− ω̃f ) + fr1 · ω̃b + 1− ω̃b + 1).

(B4) : (1− ω̃b, 1 + fr2 · ω̃b + fl2 · (1 − ω̃f) + 1− ω̃b + 1,

ω̃b + fl1 · (1− ω̃f ) + fr1 · ω̃b + 1+ 1− ω̃b.

(B5) : (1− ω̃b, 2 + 1− ω̃b + (fr1 + fr2) · ω̃f+
(max{0, 1− fr1}+max{0, 1− fr2}) · (1 − ω̃b),
2 + 1− ω̃b + fl2 · (1− ω̃f ) + fr2 · ω̃b,

ω̃b + 1− ω̃b + 1 + fl1 · (1− ω̃f) + fr1 · ω̃b)

Tab. 3: The modified branching vectors in the different cases of our analysis.

Almost all time this is quite clear because then the instanceis polynomial-time solvable. Now if the pa-
rameterized measureκ(G) is smaller than zero then in general a hard sub-instance remains. Alsoκ(G)
has been decreased due to producing floating leaves, which are not attached to the tree yet. Thus, it is
crucial to have Lemma 10, which ensures that ak-leaf spanning tree can be indeed constructed. Beyond
that, it is harder to show that no reduction rules ever increaseκ(G). As vertices which have been counted
already partly (e.g., because they belong to FL∪ BN) can be deleted,κ(G) can even increase temporally.
Concerning the traditional approach this is a straight-forward task and is hardly ever mentioned. It is still
a challenge to find further parameterized problems where this, say, parameterized Measure & Conquer
paradigm can be applied.

As there is a linear kernel [16] we can first kernelize the input graph in polynomial time. The kernel
size is no more than3.75k. Thus, we can run our algorithm on the kernel, which yields a running time
upper-bound ofO(3.4575k + poly(n)). Notice that the right choice forωf andωb is quite crucial. For
example, settingωf = ωb = 0.5 only shows a running time upper-bound ofO∗(3.57k). To find these
beneficial values, a local search procedure was executed on acomputer. It is worth pointing out that our
algorithm is quite explicit. This means that its statement is to some extent lengthy but on the other hand
easier to implement. The algorithm does not use compact mathematical expressions which might lead to
ambiguities in the implementation process.

Final Remarks A preliminary version of this paper appeared in [29]. We liketo thank the referees for
their scholarly work.



Finding ak-Leaf Spanning Tree in an Undirected Graph 199

References
[1] J. Bang-Jensen and G. Gutin.Digraphs: Theory, Algorithms and Applications. Springer, 2nd edition, 2009.

[2] D. Binkele-Raible.Amortized Analysis of Exponential Time- and ParameterizedAlgorithms: Measure & Con-
quer and Reference Search Trees. PhD thesis, Fachbereich IV, Universität Trier, Germany,2010.

[3] D. Binkele-Raible, L. Brankovic, M. Cygan, H. Fernau, J.Kneis, D. Kratsch, A. Langer, M. Liedloff,
M. Pilipczuk, P. Rossmanith, and J. O. Wojtaszczyk. Breaking the2n-barrier for IRREDUNDANCE: Two lines
of attack.Journal of Discrete Algorithms, 9:214–230, 2011.

[4] D. Binkele-Raible and H. Fernau. A new upper bound for Max-2-SAT: A graph-theoretic approach.Journal of
Discrete Algorithms, 8:388–401, 2010.

[5] D. Binkele-Raible and H. Fernau. An exact exponential time algorithm for POWER DOMINATING SET. Algo-
rithmica, 63:323–346, 2012.

[6] D. Binkele-Raible and H. Fernau. An exact exponential-time algorithm for the directed maximum leaf spanning
tree problem.Journal of Discrete Algorithms, 15:43–55, 2012.

[7] D. Binkele-Raible, H. Fernau, S. Gaspers, and M. Liedloff. Exact and parameterized algorithms for MAX

INTERNAL SPANNING TREE. Algorithmica, 65:95–128, 2013.

[8] J. Blum, M. Ding, A. Thaeler, and X. Cheng. Connected dominating set in sensor networks and MANETs. In
Handbook of Combinatorial Optimization, volume B, pages 329–369. Springer, 2005.

[9] P. S. Bonsma, T. Brueggemann, and G. J. Woeginger. A faster FPT algorithm for finding spanning trees with
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