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The exponential recursive trees model several kinds of networks. At each step of growing of these trees, each node
independently attracts a new node with probability p, or fails to do with probability 1 − p. Here, we investigate the
number of protected nodes, total path length of protected nodes, and a mean study of the protected node profile of
such trees.
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1 Introduction
A social networking site is an Internet-based platform which people use to build social relationships with
friends, family, colleagues, customers, or clients. Social networking can have a social purpose, a business
purpose, or both, through sites like Facebook, Twitter, LinkedIn, Instagram, TikTok, Snapchat, Pinterest,
Reddit, Tumblr, Telegram, WhatsApp and YouTube. These sites allow people and corporations to con-
nect with one another so they can develop relationships very quickly and so they can share information,
ideas, and messages. Social networking has become a significant base for marketers seeking to engage
customers. In order to model certain aspects of fast-growing networks, the references Feng and Mah-
moud (2018) and Mahmoud (2022) introduce exponential binary trees and exponential recursive trees,
respectively.

A rooted tree grown on n+1 nodes labeled distinctly with the numbers 1, 2, . . . , n, n+1; is a recursive
tree of age n, Tn, that is built by attaching, at the nth step, the new node n+ 1 to one node of a recursive
tree of age n − 1, Tn−1, according to some distribution on the set {1, . . . , n} and independently of the
structure of the tree Tn−1. As an example, Figure 1 shows a sequence of recursive trees growing from a
single node labeled with 1, T0, into a tree of age 8, T8, in 8 steps. See a survey of results of recursive trees
in Smythe and Mahmoud (1995).

The recursive trees are slow-growing where one node is added at each step. So, the recursive tree
models cannot be suitable for fast-growing phenomena (e.g., the Corona virus spreads very quickly from
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Fig. 1: The evolution of a recursive tree in 8 steps.

person to person). In Mahmoud (2022), a fast-growing analogue of recursive trees has been defined as
follows: Initially, T0 is a tree of a single root node. For n ≥ 1, at the nth step, a tree of age n, Tn, is
constructed when every node of the tree of age n−1, Tn−1, independently attracts a child with probability
p ∈ (0, 1), or not to attract with probability q := 1 − p. After the nth step, the obtained tree is called
exponential recursive tree (ERT) of index p. The trees in Figure 2 (a) illustrate a sequence of ERT of index
p growing from T0 into T7, a tree of probability p19q14 in the 7th step.

By a protected node in a rooted tree, we mean a node that is not a leaf and not all of its children are
leaves, for instance see Figure 2 (b). For many types of random trees, protected nodes have been inves-
tigated, see e.g. Devroye and Janson (2014), Fuchs et al. (2016), Javanian et al. (2022), Mahmoud and
Ward (2015). In this paper, we study the number of protected nodes in exponential recursive trees (ERT).
Here, we present the asymptotic expectation, variance and characterizing of the limiting distribution of
the number of protected nodes. Via contraction method, we also show the convergence in distribution for
the sum of depths of all protected nodes, i.e., the total path length of all protected nodes in ERT of index
p. Finally, we derive the expectation of protected node profile, i.e., the number of protected nodes at the
same level.

2 Setting and Preliminary Lemmas
Let Tn be an exponential recursive tree of age n and index p. Define

• Xn := the number of protected nodes in Tn,

• Rn := the event that the root of Tn is protected,

• |Tn| := the number of nodes in Tn (the size of Tn).

At the first step, if the root of T0 fails to attract a child, then T1 will be a root and after n − 1 steps the
root of T1 will produce an exponential recursive tree T ′n−1. Alternatively, if the root of T0 attracts a child,
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Fig. 2: (a) The evolution of an exponential recursive tree (ERT) of index p in 7 steps. The probability of an ERT
appears above it. (b) In T7, protected nodes are shown in black.

then, in n − 1 steps, the child and the root will independently develop two exponential recursive trees
T ′′n−1 and T ′′′n−1, respectively. Let us indicate the number of protected nodes in T ′n−1, T ′′n−1 and T ′′′n−1
by X ′n−1, X ′′n−1 and X ′′′n−1, respectively. Therefore, X ′n−1, X ′′n−1 and X ′′′n−1 are independent copies of
Xn−1. We denote the events that the trees T ′n−1, T ′′n−1 and T ′′′n−1 have protected roots by R′n−1, R′′n−1
andR′′′n−1, respectively.

If 11A denotes the indicator function of an event A, then we define

I := 11{|T1|=2}, Jn := 11{|T ′′′n |=1}∩{|T ′′n |≥2}, Gn := 11{|T ′′n |=1}∩R′′′n . (1)

The proof of our results requires to prove the following Lemmas.

Lemma 2.1 By the above setting, for n ≥ 2, the probability ofRn is

P(Rn) =
n−1∑
k=1

pqk(1− qk)
n−1∏
i=k+1

(1− pqi). (2)

Proof: We can observe that

Rn =
[
{|T ′′n−1| ≥ 2} ∩ R′′′n−1 ∩ {|T1| = 2}

]
∪
[
R′n−1 ∩ {|T1| = 1}

]
∪
[
{|T ′′n−1| ≥ 2} ∩ {|T ′′′n−1| = 1} ∩ {|T1| = 2}

]
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Fig. 3: Graphs of P(Rn) versus p, for n = 2, . . . , 20 and n = 200. For each p, P(Rn) is increasing in n. E.g., the
bottom and top curves are the graphs of P(R2) and P(R20).

is credible for n ≥ 2. Since P(|T ′′n | ≥ 2) = 1− P(|T ′′n | = 1) = 1− qn and the trees T ′′n−1 and T ′′′n−1 are
developed independently, then

P(Rn) = p(1− qn−1)P(R′′′n−1) + qP(R′n−1) + pqn−1(1− qn−1)
= (1− pqn−1)P(Rn−1) + pqn−1(1− qn−1).

Iterating the recurrence we obtain the claim. See Figure 3 as a plot for P(Rn). 2

Lemma 2.2 By the above setting, we have the distributional equation

Xn
d
= X ′n−1(1− I) + (X ′′n−1 +X ′′′n−1 + Jn−1 −Gn−1)I, (3)

where the symbol d= denotes the equality in distribution.

Proof: In order to construct an exponential recursive tree Tn, a tree distributed like Tn, we can attach the
root of the tree T ′′′n−1 to the root of the tree T ′′n−1 by adding an edge. Consequently, if |T ′′n−1| ≥ 2 and
T ′′′n−1 is a leaf, then the number of protected nodes in Tn is increased by 1; as the attaching causes the root
of Tn to be protected. From the other point of view, if |T ′′n−1| = 1 and the root of T ′′′n−1 is protected, then
this protection is lost after the attaching. Hence we obtain the assertion by (1). 2
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Lemma 2.3 For m ≥ 1, we have the following recurrences for E[Xm
n ] and E[Xm

n 11Rn
]:

E[Xm
n ] = (p+ 1)E[Xm

n−1] + p

m−1∑
k=1

(
m

k

)
E[Xk

n−1]E[X
m−k
n−1 ] + pqn−1

m−1∑
k=1

(
m

k

)
E[Xk

n−1]

+ pqn−1
m−1∑
k=1

(
m

k

)
(−1)m−kE[Xk

n−111Rn−1 ] + pqn−1
(
1− qn−1 + (−1)mP(Rn−1)

)
,

E[Xm
n 11Rn

] = (1− pqn−1)E[Xm
n−111Rn−1

] + p

m∑
k=1

(
m

k

)
E[Xk

n−1]E[X
m−k
n−1 11Rn−1

]

+ pqn−1
m∑
k=1

(
m

k

)
E[Xk

n−1] + pqn−1(1− qn−1).

Proof: Raise both sides of (3) to the mth power. So we get

Xm
n

d
= (X ′n−1)

m(1− I) +
∑

i,j,k,l≥0
i+j+k+l=m

(
m

i, j, k, l

)
(X ′′n−1)

i(X ′′′n−1)
jJkn−1(−Gn−1)lI.

Now, separate the second term with (k = 0, l ≥ 1), (k ≥ 1, l = 0) and (k = 0, l = 0). Then

Xm
n

d
= (X ′n−1)

m(1− I) +
∑

i,j≥0, l≥1
i+j+l=m

(
m

i, j, l

)
(X ′′n−1)

i(X ′′′n−1)
j(−Gn−1)lI

+
∑

i,j≥0, k≥1
i+j+k=m

(
m

i, j, k

)
(X ′′n−1)

i(X ′′′n−1)
j(Jn−1)kI+

∑
i,j≥0
i+j=m

(
m

i, j

)
(X ′′n−1)

i(X ′′′n−1)
jI. (4)

Note that, for i, j, k, l ≥ 1,

(Gn−1)l = Gn−1 = 11{|T ′′n−1|=1}11R′′′n−1
, (X ′′n−1)

i11{|T ′′n−1|=1} = 0

(Jn−1)k = Jn−1 = 11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}, (X ′′′n−1)
j11{|T ′′′n−1|=1} = 0.

Therefore, the equation (4) can be simplified as

Xm
n

d
= (X ′n−1)

m(1− I) +
m−1∑
j=0

(
m

j

)
(X ′′′n−1)

j(−1)m−j11{|T ′′n−1|=1}11R′′′n−1
I

+

m−1∑
i=0

(
m

i

)
(X ′′n−1)

i11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}I+
m∑
i=0

(
m

i

)
(X ′′n−1)

i(X ′′′n−1)
m−iI. (5)
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Take the expectation of (5) and observe the independence in T ′n−1, T ′′n−1 and T ′′′n−1, to write

E[Xm
n ] = qE[(X ′n−1)m] + pE[(X ′′′n−1)m] + pE[(X ′′n−1)m] + p

m−1∑
i=1

(
m

i

)
E[(X ′′n−1)i]E[(X ′′′n−1)m−i]

+ p

m−1∑
i=1

(
m

i

)
(−1)m−iE[(X ′′′n−1)i11R′′′n−1

]E[11{|T ′′n−1|=1}] + (−1)mpE[11R′′′n−1
]E[11{|T ′′n−1|=1}]

+ p

m−1∑
i=1

(
m

i

)
E[(X ′′n−1)i11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}] + pE[11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}].

This yields the first recurrence of the Lemma, by the identical distribution in the subtrees and

E[(X ′′n−1)i11{|T ′′n−1|≥2}] = E[(X ′′n−1)i(1− 11{|T ′′n−1|=1})] = E[(X ′′n−1)i], i ≥ 1.

By the definitions of the subtrees T ′n−1, T ′′n−1 and T ′′′n−1, observe that

Xm
n 11Rn

d
= (X ′n−1)

m11R′n−1
(1− I) + (X ′′n−1 + 1)m11{|T ′′′n−1|=1}11{|T ′′n−1|≥2}I

+ (X ′′n−1 +X ′′′n−1)
m11R′′′n−1

11{|T ′′n−1|≥2}I.

Taking the expectation of this equation, it implies the second recurrence of the Lemma. 2

3 The Expectation and Variance
In this section, we obtain the expectation and variance of Xn, using Lemma 2.1 and Lemma 2.3.

Theorem 3.1 Let Xn be the number of protected nodes in an exponential recursive tree of age n and
index p. For q := 1− p,

E[Xn] =
p

q

( n∑
j=2

(p+ 1)−jqj
(
1− qj−1 −

j−2∑
k=1

pqk(1− qk)
j−2∏
i=k+1

(1− pqi)
))

(p+ 1)n

=: µn,p(p+ 1)n, (µn,p < 1 for n ≥ 1 and p ∈ (0, 1)). (6)

See Figure 4 for some graphs of µn,p. For n ≥ 1, µn,p < µn+1,p. So µp := limn→∞ µn,p exists.

Proof: In Lemma 2.3, set m = 1 to obtain the recurrence

E[Xn] = (p+ 1)E[Xn−1] + pqn−1(1− qn−1)− pqn−1P(Rn−1),

with initial condition E[X1] = 0. Iterating this formula, we find

E[Xn] =

n−2∑
j=0

(p+ 1)jpqn−j−1
(
1− qn−j−1 − P(Rn−j−1)

)
=
p

q

( n∑
j=2

(p+ 1)−jqj
(
1− qj−1 − P(Rj−1)

))
(p+ 1)n (7)
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Fig. 4: Graphs of µn,p versus p ∈ (0, 1), for n = 2, . . . , 20 and n = 200.

Substituting P(Rj−1) from (2) into (7), we get the exact solution in the Theorem. 2

In the second moment recurrence, we need E[Xn11Rn ] that is given in the following lemma.

Lemma 3.1 Let Yn := Xn11Rn
, then

E[Yn] =
(
p

n−1∑
k=1

µn−k,p(p+ 1)−k
(
qn−k + P(Rn−k)

) n−1∏
i=n−k+1

(1− pqi)
)
(p+ 1)n + P(Rn)

=: αn,p(p+ 1)n + P(Rn) = αp(p+ 1)n +O(1), (8)

where αp := limn→∞ αn,p (see Figure 5) and the functions P(Rn) and µn,p are obtained in Lemma 2.1
and Theorem 3.1, respectively.

Proof: In Lemma 2.3, set m = 1 to find the recurrence

E[Yn] = (1− pqn−1)E[Yn−1] + p
(
qn−1 + P(Rn−1)

)
E[Xn−1] + pqn−1(1− qn−1)

with initial condition E[Y1] = 0. Iterating this formula, we obtain

E[Yn] =
n−1∑
k=1

(
p
(
qk + P(Rk)

)
E[Xk] + pqk(1− qk)

) n−1∏
i=k+1

(1− pqi)

= p

n−1∑
k=1

µk,p(p+ 1)k
(
qk + P(Rk)

) n−1∏
i=k+1

(1− pqi) + P(Rn).

This implies the claim. 2
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Fig. 5: Graphs of αn,p versus p ∈ (0, 1), for n = 2, . . . , 20.

Theorem 3.2 By the above definitions for P(Rn), µn,p and αn,p, we have

E[X2
n] =

n−1∑
j=1

(
2pµ2

j,p(p+ 1)−n+j−1 + 2pqj(µj,p − αj,p)(p+ 1)−n−1

+ pqj
(
1− qj − P(Rj)

)
(p+ 1)−n−j−1

)
(p+ 1)2n =: βn,p(p+ 1)2n.

See Figure 6 for some graphs of βn,p with βp := limn→∞ βn,p.

Proof: In Lemma 2.3, set m = 2 to find the recurrence

E[X2
n] = (p+ 1)E[X2

n−1] + 2pE2[Xn−1] + 2pqn−1E[Xn−1]

− 2pqn−1E[Xn−111Rn−1
] + pqn−1

(
1− qn−1 + P(Rn−1)

)
,

with boundary condition E[X2
1 ] = 0. This standard linear recurrence has the solution

E[X2
n] =

n−2∑
j=0

(p+ 1)j
(
2pE2[Xn−j−1] + 2pqn−j−1E[Xn−j−1]

− 2pqn−j−1E[Yn−j−1] + pqn−j−1
(
1− qn−j−1 + P(Rn−j−1)

))
. (9)

After substituting (2), (6), (8) in (9), we have

E[X2
n] =

n−2∑
j=0

(
2pµ2

n−j−1,p(p+ 1)−j−2 + 2pqn−j−1(µn−j−1,p − αn−j−1,p)(p+ 1)−n−1

+ pqn−j−1(p+ 1)−2n+j
(
1− qn−j−1 − P(Rn−j−1)

))
(p+ 1)2n.
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Fig. 6: Graphs of βn,p and σn,p versus p ∈ (0, 1), for n = 2, . . . , 10.

This yields the claimed result by changing n− j − 1→ j in the range of the above sum. 2

Corollary 3.1 By the above definitions for µn,p and βn,p, we have

Var[Xn] = (βn,p − µ2
n,p)(p+ 1)2n =: σn,p(p+ 1)2n.

See Figure 6 for some graphs of σn,p with limn→∞ σn,p =: σ2
p = βp − µ2

p.

Proof: Using Var[Xn] = E[X2
n]− E2[Xn] and Theorem 3.2, the proof is straightforward. 2

4 Convergence in Distribution
Here, we characterize the limiting distribution of Xn

(p+1)n , i.e., a scaled version of Xn, the number of
protected nodes in an ERT of age n and index p, by its moments.

Theorem 4.1 Let Xn be the number of protected nodes in an exponential recursive tree of age n and
index p. We have the convergence in distribution

Xn

(p+ 1)n
D−→ X∗,

where the limiting random variable X∗ has moments bm := E[Xm
∗ ] defined inductively by

bm =
p

(p+ 1)m − (p+ 1)

m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2,

with b1 = E[X∗] = µp = limn→∞ µn,p at the basis of the induction.
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Proof: Scale the two recurrences in Lemma 2.3 by (p+ 1)nm to get

E
[( Xn

(p+ 1)n

)m]
=

1

(p+ 1)m−1
E
[( Xn−1

(p+ 1)n−1

)m]
+

p

(p+ 1)m

m−1∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k]
+ pqn−1

m−1∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
+ pqn−1

m−1∑
k=1

(
m

k

)
(−1)m−k

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1

(
1− qn−1 + (−1)mP(Rn−1)

)
, (10)

E
[( Xn

(p+ 1)n

)m
11Rn

]
=

1− pqn−1

(p+ 1)m
E
[( Xn−1

(p+ 1)n−1

)m
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1(1− qn−1)

+
p

(p+ 1)m

m∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k
11Rn−1

]
+ pqn−1

m∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
. (11)

According to the two recurrences (10) and (11) with finite limits

lim
n→∞

E
[ Xn

(p+ 1)n

]
= µp, and lim

n→∞
E
[ Xn

(p+ 1)n
11Rn

]
= αp,

we see that bm := limn→∞ E
[(

Xn

(p+1)n

)m]
exists, by induction on m, and we get

(p+ 1)mbm = (p+ 1)bm + p

m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2.

Using this recurrence and b1 = µp < 1, we can conclude that bmm! < 1 by induction on m (this induction
is shown in page 7 of Mahmoud (2022) and in page 12 of Aguech et al. (2022), as well). Subsequently,
for |z| < 1, the series

∑∞
m=0

bm
m! z

m converges. Therefore, by Theorem 30.1 in Billingsley (2012), Xn

(p+1)n

converges in distribution to a unique limit X∗. 2

5 The Total path length
Let In be the total path length of protected nodes in an exponential recursive tree Tn (the tree of size n,
at time n − 1), which is the sum of the depths of all protected nodes in Tn. There are two scenarios at
the first step: Either the root recruits a node (let us call it v), or it does not. In the first scenario, by time
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n−1, node v has acquired a subtree (call it T (1)
n−1) of total path length I(1)n−1 (measured from v), with I(1)n−1

distributed like In−1. Measured from the root of Tn, each protected node in T (1)
n−1 is at depth 1 plus its

depth in T (1)
n−1; there is a total number of protected nodes in T (1)

n−1 distributed like Xn−1. Therefore, the
contribution of T (1)

n−1 to the total path length of protected nodes in Tn is distributed like I(1)n−1 +Xn−1.
In the meantime, the root is actively recruiting. Nodes not in T (1)

n−1 (including) the root of Tn form a
tree of total path length I(2)n−1, with I(2)n−1 distributed like In−1. In this scenario, Tn has a total path length
of protected nodes distributed like I(1)n−1 + I

(2)
n−1 +Xn−1.

In the second scenario (failure to recruit in the first step), by time n − 1, the tree Tn has a total path
length of protected nodes Ĩ(1)n−1 distributed like In−1.

Lemma 5.1
In

d
= I

(
I
(1)
n−1 + I

(2)
n−1 +Xn−1

)
+ (1− I) Ĩ(1)n−1 (12)

where I(1)n , (I(2)n , Xn), Ĩ
(1)
n and I are independent, I(i)n

d
= In for i = 1, 2, I is a Bernoulli random

variable with success probability p, and Xn is the number of protected nodes of an exponential recursive
tree at age n.

Remark 1 The internal path length can be obtained by another method, if we denote for all k by

Nk = {at step k the root recruits a new child} ,

then, In satisfies, almost surely,

In =

n∑
k=1

INk
In−k +Xn − IRn

, (13)

where In−k and Nk are independent.

5.1 Mean of In
Define, for all integer n, xn := E[Xn] and in := E[In]. From the Lemma 5.1, we deduce that

in = p (2 in−1 + xn−1) + q in−1 = (1 + p) in−1 + p xn−1. (14)

Proposition 5.1 The mean in of In is given by

E[In] = p (1 + p)
n

n∑
k=1

µk, p,

and

lim
n

E
[

In
n (1 + p)

n

]
= p µp,

where µk, p and µp are given respectively in Theorem 3.1.
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Proof: By iteration, we conclude that the solution of the recurrence (14) is

in = p

n−1∑
k=1

(1 + p)n−kxk.

Since, for all k, xk = µk, p(1 + p)k and limn µn, p := µp, the claim of the lemma follows. 2

5.2 Second moment of In
To obtain the variance of In we need to compute, at first, bn := E[InXn].

Lemma 5.2 Using the notations (1), we have

bn = (1 + p) bn−1 + 2 p xn−1 in−1 + p qn−1
(
in−1 − E

[
In−1 IRn−1

])
.

Proof: The sequence Xn satisfies

Xn = I
(
X

(1)
n−1 +X

(2)
n−1 + Jn−1 −Gn−1

)
+ (1− I) X̃(1)

n−1, (15)

where

Jn = I{|T (1)
n |=1} I{|T (2)

n |≥2}
, Gn = I{|T (2)

n |=1} IR(1)
n
.

Multiplying (12) by (15) and recall that I := 11{|T1|=2}, we deduce,

Xn In = I
(
X

(1)
n−1 I

(1)
n−1 +X

(2)
n−1 I

(1)
n−1 + Jn−1 I(1)n−1 −Gn−1 I(1)n−1

)
+ I
(
X

(1)
n−1 I

(2)
n−1 +X

(2)
n−1 I

(2)
n−1 + Jn−1 I(2)n−1 −Gn−1 I(2)n−1

)
+ I
(
X

(1)
n−1X

(2)
n−1 +X

(2)
n−1X

(2)
n−1 + Jn−1X(2)

n−1 −Gn−1X(2)
n−1

)
+ (1− I) X̃(1)

n−1 Ĩ
(1)
n−1.

On one hand, observe that, almost surely,

Jn−1X(2)
n−1 = I

(1)
n−1 Jn−1 = Gn−1 I(2)n−1 =

(
I
(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0,

Gn−1X(2)
n−1 = Gn−1 I(2)n−1 =

(
I
(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0.

We deduce, almost surely, that

Jn−1 I(1)n−1 = Gn−1 I(2)n−1 = Jn−1X(2)
n−1 = Gn−1X(2)

n−1 = 0.

On the other hand, from

I
(2)
n−1 Jn−1 =

(
I
(2)
n−1 I{|T (2)

n−1|≥2}

)
I{|T (1)

n−1|=1} = I
(2)
n−1 I{|T (1)

n−1|=1},

I
(1)
n−1Gn−1 =

(
I
(1)
n−1 IR(1)

n−1

)
I{|T (2)

n−1|=1},
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we obtain

E
[
I
(2)
n−1 Jn−1

]
= E

[
I
(2)
n−1
]
E
[
I{|T (1)

n−1|=1}

]
= in−1 q

n−1,

E
[
I
(1)
n−1Gn−1

]
= E

[
I
(1)
n−1 IR(1)

n−1

]
E
[
I{|T (2)

n−1|=1}

]
= qn−1 E

[
I
(1)
n−1 IR(1)

n−1

]
.

Then

bn = p
(
bn−1 + xn−1in−1 + E

[
I
(1)
n−1 Jn−1

]
− E

[
I
(1)
n−1Gn−1

])
+ p
(
xn−1 in−1 + bn−1 + E

[
I
(2)
n−1 Jn−1

]
− E

[
I
(2)
n−1Gn−1

]
+ x2n−1 + E

[
(X

(2)
n−1)

2
]
− E

[
Gn−1X(2)

n−1
])

+ q bn−1

= (1 + p) bn−1 + 2 p xn−1 in−1 + pE
[
I
(1)
n−1 Jn−1

]
+ p
(
E
[
I
(2)
n−1 Jn−1

]
− E

[
Gn−1X(2)

n−1
]
− E

[
I
(2)
n−1Gn−1

]
− E

[
I
(1)
n−1Gn−1

])
.

So the assertion of the lemma follows. 2

To obtain a closed form of bn, we need to compute E
[
In IRn

]
.

Lemma 5.3

E
[
In IRn

]
= q E

[
In−1 IRn−1

]
+ p qn−1 (in−1 + xn−1) + pE[In−1]P(Rn−1)

+ p
(
1− qn−1

)
E
[
In−1 IRn−1

]
+ p xn−1 P(Rn−1).

=
(
1− p qn−1

)
E
[
In−1 IRn−1

]
+
(
pP(Rn−1) + p qn−1

)
(in−1 + xn−1)

=

n−1∑
k=0

n∏
j=k+1

(
1− p qj−1

) (
pP(Rk) + p qk

)
(ik + xk) .

Proof: Since

Rn =
[
{|T1| = 1} ∩ R̃(1)

n−1

]
∪
[
{|T1| = 2} ∩ R(1)

n−1 ∩
{
|T (2)
n−1| ≥ 2

}]
∪
[
{|T1| = 2} ∩

{
|T (1)
n−1| = 1

}
∩
{
|T (2)
n−1| ≥ 2

}]
.

we have

IRn
= (1− I) IR̃(1)

n−1
+ I{|T (1)

n−1|=1} I{|T (2)
n−1|≥2}

I + IR(1)
n−1

I{|T (2)
n−1|≥2}

I,

Multiplying by In, we obtain

In IRn
= (1− I) Ĩ(1)n−1 IR̃(1)

n−1
+ I{|T (1)

n−1|=1} I{|T (2)
n−1|≥2}

(
I
(2)
n−1 +X

(2)
n−1
)
I

+
(
I
(2)
n−1 + I

(1)
n−1 +X

(2)
n−1
)
IR(1)

n−1
I{|T (2)

n−1|≥2}
I.

The result of the lemma is obtained by taking the expectation of this equation. 2

Using Lemmas 5.2 and 5.3, we deduce
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Proposition 5.2 The second moment of In satisfies the following recursion

E[I2n] = (p+ 1) E[I2n−1] + 2p
(
i2n−1 + in−1 xn−1 + bn−1

)
+ pE[X2

n−1],

with as general solution

E[I2n] = p

n−1∑
k=1

(p+ 1)
n−k (

2(i2k + ik xk + bk) + E[X2
k ]
)
.

5.3 Convergence in Distribution of In
The aim of this section is to use the contraction method in Roesler and Rueschendorf (2001) or the multi-
variate contraction method in Neininger (2001) to state the limiting distribution of În := In/n (1 + p)

n.
To apply the contraction method, we set up some notation as follows: For a random variable X , we

writeX ∼ λ if the distribution ofX is λ, i.e. the law L(X) ofX is λ. The symbol ‖X‖2 := (E[|X|2])1/2
denotes the usual L2-norm of X . The Wasserstein-metric `2 is defined on the space of probability distri-
butions with existing second moments by

`2(X, Y ) := `2(L(X), L(Y )) := `2(λ, ν) := inf{‖X − Y ‖2 : X ∼ λ, Y ∼ ν}.

By M2 the space of all probability distributions λ with mean p µp (as in Proposition 5.1) and finite
second moment is denoted. The metric space (M2, `2) is complete and convergence in `2 is equivalent to
convergence in distribution plus convergence of the second moments.

By equation (12) we have

In
n(1 + p)n

d
=

I
1 + p

· n− 1

n
·
( I

(1)
n−1

(n− 1)(1 + p)n−1
+

I
(2)
n−1

(n− 1)(1 + p)n−1

)
+

1− I
1 + p

· n− 1

n
·

Ĩ
(1)
n−1

(n− 1)(1 + p)n−1
+ I · Xn−1

n(1 + p)n
. (16)

Theorem 5.1 Let In andXn be the total path length and the number of protected nodes of an exponential
recursive tree at age n, respectively. The normalized total path length În := In/n (1 + p)

n satisfies the
distributional recursion

În
d
=

I
1 + p

· n− 1

n
·
(
Î
(1)
n−1 + Î

(2)
n−1
)
+

1− I
1 + p

· n− 1

n
· Î(1)n−1 + I · Xn−1

n(1 + p)n
, (17)

where Î(1)n , (Î(2)n , Xn), Î
(1)
n and I are independent, Î(i)n

d
= În for i = 1, 2, and I is a Bernoulli random

variable with success probability p, then În
D−→ Î , as n→∞, where the random variable Î is the unique

distributional fixed-point of

Î
d
=

I
1 + p

(
Î(1) + Î(2)

)
+

1− I
1 + p

Î(1), (18)

with Î(i), i = 1, 2, are independent copies of Î and independent of I.
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Proof: The equation (17) is an immediate consequence of the equation (16), where we define Î(3)n :=

Ĩ
(1)
n /n (1 + p)

n. Using Theorem 4.1 and Slutsky’s theorem, we have Xn−1

n(1+p)n−1

D−→ 0, and then conver-

gence in probability Xn−1

n(1+p)n−1

P−→ 0. That is,

În
d
=

I
1 + p

· n− 1

n
·
(
Î
(1)
n−1 + Î

(2)
n−1
)
+

1− I
1 + p

· n− 1

n
· Î(1)n−1 + op(1), (19)

where op(1) denotes a quantity tending to zero in probability. For purposes of convergence we can, and
hence will, ignore the op(1) term.

Consider the well-defined transformation T :M2 → M2,

T (λ) := L
( I
1 + p

(
Î
(1)
λ + Î

(2)
λ

)
+

1− I
1 + p

Î
(1)
λ

)
, (20)

where Î(i)λ := Î(i), i = 1, 2, and I are independent and Î(i) have λ as distribution.
At a first step, we have to prove that the transformation T has a unique fixed point with respect to the

`2-metric. Let λ, ν ∈M2 be given. By (20), we have

T (λ) = L
( I
1 + p

(
Î
(1)
λ + Î

(2)
λ

)
+

1− I
1 + p

Î
(1)
λ

)
,

T (ν) = L
( I
1 + p

(
Î(1)ν + Î(2)ν

)
+

1− I
1 + p

Î(1)ν

)
,

`22(T (λ), T (ν)) ≤ 2
E[I2]

(1 + p)2
E
[∣∣Îλ − Îν∣∣]2 + E

[
(1− I)2

]
(1 + p)2

E
[∣∣Îλ − Îν∣∣]2

=
1

1 + p
E
[∣∣Îλ − Îν∣∣]2.

Therefore, we have `22(T (λ), T (ν)) ≤ 1
1+p `

2
2(λ, ν). Since 1

1+p < 1, we deduce that T is a contraction
with respect to the `2-metric. Thus, Banach’s fixed point theorem provides existence and uniqueness of
solutions of the fixed point equation T (λ) = λ. By (19), if În converges in distribution to some random
variable Î , then Î satisfies (18). Consequently, the distribution of Î will be λ0, the unique fixed point of
T , i.e. L(Î) = T (λ0) = λ0. Therefore, we have to prove limn→∞ `2(În, Î) = 0 to conclude În

D−→ Î .
Since Î(i)n

d
= În, Î(i) d

= Î , for i = 1, 2, 3, we deduce

lim
n→∞

`22(În, Î) ≤
p

(1 + p)2
lim
n→∞

(∥∥∥n− 1

n
Î
(1)
n−1 − Î(1)

∥∥∥2
2
+
∥∥∥n− 1

n
Î
(2)
n−1 − Î(2)

∥∥∥2
2

)
+

1− p
(1 + p)2

lim
n→∞

∥∥∥n− 1

n
Î
(3)
n−1 − Î(3)

∥∥∥2
2

≤ 1

1 + p
lim
n→∞

∥∥În − Î∥∥2.
Therefore, we have

lim
n→∞

`22(În, Î) ≤
1

1 + p
lim
n→∞

`22(În, Î).

This is true only if limn→∞ `2(În, Î) = 0. 2
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