arXiv:2206.10823v4 [math.CO] 22 Nov 2023

A characterization of rich c-partite (c > 8)
tournaments without (c + 2)-cycles

Jie Zhang Zhilan Wang Jin Yan|*

School of Mathematics, Shandong University, Jinan, China

revisions 23" June 2022, 26" Dec. 2022, 2" Aug. 2023; accepted 24" Sep. 2023.

Let c be an integer. A c-partite tournament is an orientation of a complete c-partite graph. A c-partite tournament is
rich if it is strong and each partite set has at least two vertices. In 1996, Guo and Volkmann characterized the structure
of all rich c-partite tournaments without (¢ + 1)-cycles, which solved a problem by Bondy. They also put forward a
problem that what the structure of rich c-partite tournaments without (¢ + k)-cycles for some & > 2 is. In this paper,
we answer the question of Guo and Volkmann for k = 2.
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1 Introduction

In this paper, we consider only finite digraphs without loops or multiple arcs. For a digraph D, we denote
its vertex set by V(D) and its arc set by A(D). A digraph is strong if, for every pair x, y of distinct
vertices in D, there exist a path from x to y and a path from y to 2. The notation g-cycle (g-path) means
a cycle (path) with ¢ arcs. We will use (A, B)-arc to denote an arc from a vertex in A to a vertex in B.
A c-partite tournament is an orientation of a complete c-partite graph and is rich if it is strong and each
partite set has at least two vertices. We denote by D the family of all rich c-partite (¢ > 5) tournaments.
It is clear that fournaments are special c-partite tournaments on c vertices with exactly one vertex in each
partite set.

An increasing interest is to generalize results in tournaments to larger classes of digraphs, such as
multipartite tournaments. For results on tournaments and multipartite tournaments, we refer the readers
to |[Bang-Jensen and Gutin| (1998 2001} 2018)); Beineke and Reid| (1978)); [Volkmann| (2007). Many re-
searchers have done a lot of work on the study of cycles whose length do not exceed the number of partite
sets. In 1976, Bondy| (1976)) proved that every strong c-partite (¢ > 3) tournament contains a k-cycle for
all k € {3,4,...,c}. He also showed that every c-partite tournament in D contains a g-cycle for some
q > ¢, and asked the following question: does every multipartite tournament of D contains a (¢ + 1)-
cycle? A negative answer to this question was obtained by |Gutin|(1982). The same counterexample was
found independently by |[Balakrishnan and Paulrajal (1984)). Further in |Gutin| (1984)), the following result
was proved.
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Theorem 1.1 |Gutin|(1984) Every multipartite tournament in D has a (c 4+ 1)-cycle or a (¢ + 2)-cycle.

In|Guo and Volkmann|(1996), W, is defined as follows. Let ¢ (> 5) be an integer and P = x7 - - - @y,
be a path with m > ¢. The c-partite tournament consisting of the vertex set {x1, ..., Z,, } and the arc set
A(P)U{x;xj:i—j>1andi # j(mod c) where ¢, j € [m]} is denoted by W,,,. The set of all c-partite
tournaments obtained from W,,, by replacing z; by a vertex set A; with |A;| > 2 fori € {1,2,m — 1,m}
is denoted by W,,,.

In 1996, /Guo and Volkmann|(1996) gave a complete solution of this problem of Bondy and determined
the structure of all c-partite (¢ > 5) tournaments of D, that have no (¢ + 1)-cycle.

Theorem 1.2 |Guo and Volkmann|(1996) Let D be a c-partite tournament in D. Then D has no (¢ + 1)-
cycle if and only if D is isomorphic to a member of Wi,.

In this paper, we characterize all c-partite (¢ > 8) tournaments in D without (¢ 4+ 2)-cycles. Before
defining families Q,,, and H, we present the main theorem.

Theorem 1.3 Let D be a c-partite (¢ > 8) tournament in D. Then D has no (¢ + 2)-cycle if and only if
D is isomorphic to a member of Q,, or H.

The families Q,,, and H are described as follows.

e Let ¢ be a given integer with 2 < ¢ < ¢ — 1. Define H’ the set of (¢ + 1)-partite tournaments whose
partite sets are Vi,...,Voy1, where Vi = {v1}, |Vi| > 1 and |V;| > 2 for j € [c+ 1] \ {1,4}, and
the arc set consists of arcs from each vertex of V};, to each vertex of V},, where 2 < j; < jo < c+1,
and arcs between v; and vertices in other partite sets with arbitrary directions. The family of all c-partite
tournaments obtained from a member of H' by deleting all arcs between v and V; and merging V; and
V; into a partite set is denoted by H.

Fig. 1: An example of the 8-partite tournament with |V1| = 3 and |V;| = 2 for 2 < j < 8. Here, the arcs between v;
and other vertices are arbitrary.

e Let s and ¢ be two fixed integers with 1 < s <t —-1 < cand P = x1---x,, be a path with
m > c. We denote )}, the (¢ + 1)-partite tournament consisting of the vertex set {x1, ..., %, } and the



A characterization of rich c-partite (¢ > 8) tournaments without (¢ + 2)-cycles 3

arc set A(P) U {x;xz; : ¢ —j > land i # j(mod c) where 4,j € [m]}. Deleting arcs of @}, between
{z;] t = s (mod (c+ 1))} and {x;| j =t (mod (c + 1))} and and merging V; and V; into a partite set,
we obtain a c-partite tournament Q1

Let Q,, = QL U Q2 , where Q! and Q2, are defined as follows.

(QL)) The set of all c-partite tournaments obtained from @} by substituting x; with a vertex set A; is
denoted by Q! for

() i € {1,2,m —1,m}; or
(2) it =twhens=1andt = 3 or4;or

(3) i =m—2when {m,m—2} = {s,t} (mod (¢+ 1)), ori = m — 3 when {m, m — 3} = {s,t}
(mod (¢ + 1)).

(an) Q%n is the set of all c-partite tournaments obtained from a member of Q,ln by reversing some arcs
satisfying

(As, Ag)-arcs, whent =3,5s=1;

(Al,Ag) -arcs, whent=c+ 1,5 =2;

(A2, A m 1) -arcs, when {m — 2, m} = {s,t} (mod (c + 1));
(A1, Ap)-arcs, when {m — 1,m — ¢} = {s,t} (mod (¢ + 1)).

Note that, in our main theorem, the parameter c is at least 8. This condition may be not sharp. The
characterization of rich c-partite tournaments with 5 < ¢ < 7 needs more techniques. We conclude this
section by giving the following organization. In the second section, we set up notation and some helpful
lemmas. The proof of the main theorem is presented in the third section.

gl Zs Z Let2 Tets+l Tett+1 Tm

Fig. 2: An example of Q2. Here, all other possible arcs are of the same direction as the path.

2 Notation and useful lemmas

2.1 Notation

For terminology and notation not defined here, we refer to |Bang-Jensen and Gutin| (2001). Let D be
a digraph. For the vertex € V(D), the set of out-neighbours of z is denoted by N (z) = {y €
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V(D)| zy € A(D)} and the set of in-neighbours of z is denoted by N, (z) = {y € V(D)| yz € A(D)},
respectively. For a vertex set X C V(D), we define N*(X) = N (X) = UzexNj(z) \ X and
N~ (X) = N5(X) = UgexNp(z) \ X. When X is a subdigraph of D, we write N (X) instead of
NT(V(X)). We define D[X] as the subdigraph of D induced by X, and let D — X = D[V(D) \ X].
Define [t] = {1,...,t} for simplicity.

Let C be a cycle (or path). For a vertex v of C, the successor and the predecessor of v on C' are denoted
by vt and v, respectively. We write the i-th successor and the i-th predecessor of v on C' as v** and
v'~, respectively. The notation v;Cv; means the subpath of C' from v; to v; along the orientation of C.
The length of C' is the number of arcs of C. We say a vertex z outside C' can be inserted into C' if there is
an in-neighbour of x on C, say v, such that v™ is an out-neighbour of .

If zy is an arc in A(D), then we write © — y and say that « dominates y. If X and Y are two disjoint
vertex sets of D, we use X — Y to denote that every vertex of X dominates every vertex of Y, and define
A = B that there is no arc from a vertex in B to a vertex in A. If X or Y consists of a single vertex, we
omit the braces in all following notation. Correspondingly, 2z - y expresses that xy ¢ A(D).

A path P = z - - -y is minimal if no proper subset of V' (P) induces a subdigraph of D which contains
a path from z to y. For two vertices « and y in D, the distance from z to y in D, denoted by dist(z,y), is
the length of a shortest path from x to y in D. The diameter of D, denoted by diam (D), is the maximum
distance between all pairs of its vertices.

2.2 Useful lemmas.

We give the following results that are frequently used in the proof of Theorem|1.3

Theorem 2.1 \Guo and Volkmann| (1996) Let D be a strong c-partite tournament. If D has a k-cycle
containing vertices from exactly | partite sets with | < c, then D has a t-cycle for all t satisfying k < t <
c+ (k—=1).

Remark 2.2 Ler C be a k-cycle in a digraph D. If D contains no (k + 1)-cycle, then no vertex can be
inserted into C.

Lemma 2.3 Let D be a multipartite tournament in D and C a (c+ 1)-cycle of D. Suppose that D has no
(c+2)-cycleand D—C C Nt (C)NN~(C). Then foreveryy € D —C, there exists a vertex v € C such
that x and y belong to the same partite set of D and have the same in-neighbours and out-neighbours in

C.

Proof: Let C' =z - - ;Y1541 - - - 21 @ (¢ + 1)-cycle of D, where z; € Vj forj € [c] and y; € V3.
Clearly, there exists a vertex x € C' such that x and y belong to the same partite set of D. Assume that
x = x;, as the case x = x; and the case x = y, are similar.

Suppose that j = 1. First suppose that yz; € A(D). Then y = x;41Cx.. Obviously, if y = x; then
y = 15Cx;. Sincey € NT(C)N N~ (C), we have x; = y. Thus z; = y = x;;1 and y and y; have the
same in-neighbours and out-neighbours in C'. Second suppose that ;vfy € A(D). Similarly, we obtain
that y and y; have the same in-neighbours and out-neighbours in C' again. Hence =7 v, y:ﬂf € A(D) and
y and x; have the same in-neighbours and out-neighbours in C.

Setj €[]\ {1}. If yz; € A(D), then y = C because D has no (c + 2)-cycle, which contradicts the
assumption. Thus 2’y € A(D) for j € {2,...,c}. Similarly, we obtain that y — xj forj €{2,...,c}.
Thus y and z; have the same in-neighbours and out-neighbours in C'. a
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Lemma 2.4 Let D be a c-partite tournament in D and C the family of all (¢ + 1)-cycles of D. Suppose
that D has no (c + 2)-cycle. If D — C C NT(C) N N~ (C) for every C € C, then D € H.

Proof: Since D has no (¢ + 2)-cycle, it follows by Theorem [2.1] that each (c + 1)-cycle of D meets all
partite sets of D. This implies that each (¢ + 1)-cycle contains exactly two vertices from one partite set
and one vertex from other each partite set. Let C' € C and assume that it contains two vertices of V7, that
is, C = z129 -+ - TiY1&ig1 - - - Tc1, Where z; € V] for j € [c] and y1 € V3.

Since every partite set of D has at least two vertices, there exist ¢ — 1 vertices ys, ..., ¥y, such that
y; € Vi forj € {2,...,c}. By Lemma , we have z; — y; — :cj for j € [] \ {1}. Note that z; and
y; have the same in-neighbours and out-neighbours in C'. Since y; is any vertex that is distinct with z; in
V;, each vertex in V; has the same in- or out-neighbors with z; for < = 2, ... c. In the following, we often
use this property to determine the direction of the arcs in A(D). Wegetzy — Vo — - = V; = y1 —
‘/i-‘rl — -+ = V. — xq1. Let C' be the (C + 1)—cycle T1Y2 - YiY1Yitr1 *  Yel1.

Claim 2.1 The following statements hold.

(1){‘/27"'7‘/]'—1}*}‘/]4%{‘/j-‘rla"'a‘/i}for 2§]§1717
(2){‘/;‘4_1,...,‘/]‘_1}—)‘/}—){ij_,_l,...,‘/c}for Z—|—1§_]SC—1

Proof: Suppose that there exists an integer ¢ € {2,...,¢}\{2,4,7 + 1,¢} such that y; 11 — yi—q. If
a2t — 3, then there is a 6-cycle 22y ys 1 1y:_ 122, 2T containing vertices from exactly four partite
sets. If x; — xf‘, then xtxf_xt_ Y1y, y; T4 is a 6-cycle containing vertices from exactly four partite sets.
In both cases, we deduce from Theorem that D contains a (¢ + 2)-cycle, a contradiction. This implies
that y, — for and xff — 4. Then y,x; fofxtytﬂyt,lyt is a (¢+2)-cycle, a contradiction. Thus we
obtain that y;—1 — i1 fort € {2,...,¢}\{2,4,7 + 1, c}. By symmetry, we have V;_; — V; ;. Since
c> 8,itiseasytoobtainthatx?* —y;jford5<j<i—landi+4 < j<candy; —>l’?+ for2 <j <
i—3andi+1 < j < ¢c—3. We continue in this fashion to obtain {z;_1,...,22} = y; = {xj+1,..., 2z}
for j € {2,,@ — 1} and {zj_l,...,zi+1} — Y — {CCj+1,...,.TC} fOI'j S {Z +1,...,c— 1},
successively. This proves Claim[2.1] O

By Claim we can obtain a (¢ + 2)-cycle from a cycle with larger length. Now consider the arcs
between V; and V1. If @211, 2i11y: € A(D), then D has a (¢ + 3)-cycle ;2 11Y:iy1Yi+12i+2C ;. If
Tip1%4, TYir1 € A(D), then there is a (¢ + 3)-cycle ;4 12;y;+1C'y12;41. By ¢ > 8 and Claim we
can obtain a (¢ + 2)-cycle from such a (¢ + 3)-cycle. Thus V; — V41 or Vi1 — Vi

Suppose that V; — V1. We show that {Va,...,V;_1} — {V;,...,V.}. If a;02; € A(D), then
TitoTiTit1YiroC'Yir12:10 is a (¢ +4)-cycle. We can obtain a (¢ + 2)-cycle because of ¢ > 8 and Claim

Based on this, considering arcs between ;4 3, .. ., x. and x; in order, we get x; — {Z;13,...,Tc}-
Similarly, it is immediate that {zs,...,2;-1} = {®it1,...,zc}. Thus {Va,... . Vi} = {Vig1,..., VL]
For Vii1 — Vi, we will get {Vi41,...,V.} — {Va,...,V;} in the same way. Note that the structures

obtained in two cases are isomorphic, so we only consider the first structure in the following.
We declare that
(Voo Vi) = g1 = {Viga, .. Ve (1)

If y12; € A(D) for some j € [i — 1], then D contains a (c¢+ 2)-cycle 21C"y12;x;+1Cx1, a contradiction.
If z;y; € A(D) forsome j € {i+2,...,c}, then (¢ + 2)-cycle z;y,C'z1Cx;z; is in D. Thus (1) holds.
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If V4| = 2, D is a member of #, which proves this lemma. Thus assume that |V;| > 3. We show that
every vertex in V; \ {21, y1} have the same in-neighbours and out-neighbours in C' as y;. To see this, let
z1 be a vertex in V4 \ {x1,y1}. Suppose that z; — x;. It is easy to see 21 — xa,...,T;—1. f x; = 2
forsome j € {i+1,...,c}, thenz; — 2 forallt € {j+1,...,c}. Recall that V(D — C) C NT(C)n
N—(C), we have x. — z1. Observe that there is a 6-cycle z122y.x1y2x .21 Which meets 3 partite sets of
D, a contradiction by Theoremagain. Thus x; — z1. Obviously, {xa,...,2,_1} — 21. Otherwise
there exists a (j + 4)-cycle z; 21z jz.21C"y;j2; which meets j + 2 partite sets of D for j € {2,...,i—1},
a contradiction. On the other hand, it is easy to see 21 — {Zij+1...,2;} if 21241 € A(D) for some j €
{i +1,..., C}. Since z1 € N+(C) NN~ (C), we have 2141 € A(D) Thus x1x9 - - - TiZ1Ti41 - Tl
is also a (¢ + 1)-cycle. This implies that z; and y; have the same in-neighbours and out-neighbours in C.
Hence D is a member of . We are done. ]

3 Proof of Theorem

Now we are ready to prove our main theorem. It is easy to see that every element of H and Q,,, has no
(c + 2)-cycle. Hence, it suffices to show the converse is true as well.

Suppose that D is a c-partite tournament in D such that D has no (¢ + 2)-cycle and is not isomorphic
to any element of H and Q,,. Let Vq,..., V. be partite sets of D. By Theorem (1.1 we know that D
contains a (¢ + 1)-cycle. It follows by Theorem[2.1]that each (¢ + 1)-cycle of D visits exactly one partite
set twice and each other partite sets once. Let C be the set of all (¢ + 1)-cycles of D. Lemma gives
that for every C' € C, if all vertices of D — C are contained in N*(C') N N~ (C), then D € H. Thus
there exists at least one cycle C in C such that D — C' contains a vertex outside N (C) NN~ (C). Denote
C =z xep121, wherez; € Viforje i —1),z; € Vs forje{i+1,...,c+1}and z; € V1.
Without loss of generality, assume that there exists a vertex z ¢ N~ (C). Because D is strong, there is a
path from z to C'. Let P = 2122 - - - 2, be such a minimal path with z; = z and assume that z,, = x;. It
is clear that, p > 3 and 2o, ..., 2,—2 ¢ N~ (C), particularly, z,_» - 242 and 24— — z,_2. Since D
has no (¢ + 2)-cycle, we see that x;,_2z,_o ¢ A(D). This implies that there is no arc between z,_5 and
Zy—9, thatis x;_o and z,_» must belong to the same partite set of D. It is not hard to get z,_1 - x;_;.
Since, otherwise, x;_3 and z,_o must belong to the same partite set of D, which is impossible. Together
with z;_; - z,_1 we obtain that x;_, and z,_; belong to the same partite set of D. Further, vertices
x¢—; and z,_; belong to the same partite set for 1 < ¢ < p — 1. It is obvious that ;_5 — 2,_1 due to
V(C)\ 2 = 2zp—1.

We may assume that x; is on the path x;,1Cz;. If C has a path from x; to x;_o with at most ¢ — 1
vertices, then together with the path x;_sx;_12,_22,_17¢, we can form the path into a cycle of length at
most ¢+ 2, which contains the vertices x;_; and z,_1, and x¢_», z,_» in the same partite sets respectively.
We deduce that D has a (¢ + 2)-cycle from Theorem a contradiction. This gives x;12Cx_o =
z; = x;Cxj_o for x; € x,Cxi_o. For the same reason, s_y = x;Cx,—3 whent > i + 2; and
ri_1 = x1Cxi_3whent =i+ 1ori—+ 2.

Claim 3.1 diam(D) > ¢+ 2.
Proof: Since z;_22,_1 € A(D), it is not hard to obtain that z,_; dominates each vertex of z;41Cx;_1

when t > 7 + 2. Otherwise, there exists a vertex x; in x;1Cz;—1 with x,_; — x;11Cz; and z; —
x¢—1. Observe that z;x;_12j41Cx¢—22,—12:Cx; is a (c + 2)-cycle, a contradiction. Therefore, D[C]
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is isomorphic to Q.1 with the initial vertex z, and the terminal vertex x;_;. This implies that every
minimal path from z to C must end at z; and dist(z,x:—1) > ¢ + 2. Thus diam(D) > ¢ + 2 when
t > i+ 2. If there is a vertex « ¢ V(C') U N~ (C) such that the minimal path from = to C which ends at
the path z;2Cx1, we complete the proof. Then all such minimal paths from z to C' end at x;1, that is
x¢ = x;41. The following proof is divided into two cases.

Casel i > b5;ori=4and v; = Tey1.

Ifx; - x;fori+3 < j<candi > 4, orxcy; — x; when i > 5, observe that x;x;2273%1 2p—2
zp—17i+1Cx; is a cycle of length at most ¢ + 2 which visits V; three times, a contradiction. Thus in
this case we have x; — z; fori +3 < j < ¢+ 1. Hence dist(z,z,—1) > ¢ + 2, which implies that
diam(D) > ¢+ 2.

Case2 i =4and x.41 — z;; ori = 3.

Recall that every partite set of D has at least two vertices. Hence there is at least one vertex y in
Vo \{Zer1}. Ify € NT(C)\N~(C), then we choose y as the vertex z, thatis y = z. It is easy to check that
dist(y,z1) > c+2.Ify € N~ (C)\NT(C), by considering the digraph D’ obtained by reversing all arcs
of D, we getdiam(D') > c+2, thatis diam(D) > c+2. Ify € NT(C)NN~(C), thenz, — y — x1 by
Lemma This implies that D contains a (c+2)-cycle z.yx1Czi—1Tcq12p—12i41C2,, a contradiction.
Thus diam(D) > ¢+ 2 when i € {3,4}. This completes the proof of the claim. O

Let P = xyx9- - x,, be a path of D with dist(zq,z,,) = diam(D) = m —1 > ¢+ 2. As D
contains no (c+ 2)-cycle, vertices x; and x.;11 must belong to the same partite set. If there exists vertex
set {x;,, T4, , Tiy, ¢, } C V(D) with max{i1, ji, 2, j2} — min{iq, j1, 42,72} < csuch that z;, and xj,
belong to the same partite set and z;, and x;, belong to the same another partite set, then D contains a
(¢ + 2)-cycle by applying Theorem a contradiction. Thus x1 Pz, meets all partite sets of D and
contains two vertices of exactly one partite set. Therefore, D[P] is isomorphic to @, with the initial
vertex 1 and the terminal vertex z,,. If |V (D)| = m, we are done. So |V(D)| > m. Assume that
zjeViforjeli—1,z; € Vi_iforje{i+1,...,clanda; € V, forsomet € [{ —1]. Letz be a
vertex of D — P. Suppose that z € NT(P) N N~ (P), we now consider the arcs between z and V (P).
We use V,,, to indicate the partite set which x,,, belongs to.

Claim 3.2 Suppose that x € N*(P) N N~ (P). If there exist two vertices x,, and x4 on P withp < q
such that ©, — © — x4, then x belongs to one of {V1,Va, Vi1,V }. Moreover, x has the same
in-neighbours and out-neighbours on P as x; € {x2, T3, %4, Tm—3, Tm—2, Tm—1}, Where

x3 € V7, when |l = 3;
x4 € V7, whenl = 4;
Tm_o € Vi, whenl=m —2;
Tm_3 € Vi, whenl=m — 3.

Proof: Since D has no (¢ + 2)-cycle, there is an integer ! such that x;_1 — = — x;4; and x is in the
same partite set with ;. If 3 <1 < m — 2, it easy to check that D[P U {x}] contains a (¢ + 2)-cycle C
as follows:

() whenm >c+1—1,

e O =21 1722141 PTeqi—221T1 0211, OF
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e = xlf1$$l+1p$c+173$l$173!E172$171 unless xr3 € V1 and [ = 3, or
e C =z 22141 Preqi gz g P21 unlessl = 3,orzq € Vi and [ = 4;
or (2) whenl > c—1,
o = 2122141014201 T 42— P11, OF
e C = .T}l,1$1‘l+1CEHleJrg‘Tl.TlJrg,CPQEl,l unless z,,,_o € V,, andl = m — 2, or
s C =z 122141 Pripgx12i44—cPxj—1 unlessl = m — 2, or ;3 € V; and I = m — 3.

Then we consider m < ¢+ 1! —1and! < ¢ — 1. Recall that m > ¢+ 3. This implies that | > 4.
Clearly, if j21, zer121 € A(D), there is a (¢ + 2)-cycle 1 Pxj_122141 Prepizizy. I 2y, 2041 € V],
then D[P U {z}] contains a (c + 2)-cycle xo Px;_ 12211 Pxcyox1x2. Thus x; € Vi. Observe that
D[P U{x}] contains x3Px;_12x;41 Pr.13223 which is a (¢ + 2)-cycle unless [ = 4. Thus x belongs to
Vi, Vo, Vip—1or'V,,,. Wealso getl € {2,3,4,m —3,m —2,m — 1} andx3 € V; whenl = 3; 24 € V}
when!=4;2,,_9 € V,, whenl =m — 2;and z,,,_3 € V,,, whenl = m — 3.

In all cases, it is easy to check that x and x; have the same in-neighbours and out-neighbours on P,
otherwise D[P U {x}] contains a cycle of length at most (¢ + 2) and two pairs of vertices which belong
to the same partite set. By Theorem[2.1] we get a contradiction. O

Fig. 3: A cycle of length at most (¢ + 2) in D[P U {z}] which contains two vertices in V; and two vertices in V5.

Claim 3.3 Suppose that x € N (P) N N~ (P). If all vertices x,, and x4 with x, — x — x4 satisfy
p > q, then

(i) x has the same in-neighbours and out-neighbours on P as x1 or x,,; or

(i) D[P U {z}] has four specific structures as described in Fig. [} or

(iii) x — 21, 2 Py, = x and x € Veyq; or

(iv) xpy, >, x = x1Pxyy_1andx € V,,_..

Proof: Note that if some vertex , — x (or * — x4) then ,Px,, = x (or x = ,Px,). Let q be the
maximum integer such that x — x,.

First we suppose that = has at least two in-neighbours and two out-neighbours on P. Let 4, be the
previous out-neighbour of x before x, on P and let x,,,, x;,, be two in-neighbours of x on P which is
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nearest to z,. Clearly, we have p, — g < 5. Otherwise, xx,, Py, is a 7-cycle meeting five partite sets
of D, a contradiction by Theorem [2.1} Hence there exists at most one vertex in x4, Pz, such that it is
non-adjacent to x. Let x; be such vertex if it exists. According to the position of x;, there are four possible
sequences of g, Pxp,: (1) Tg, TqTp, Tp,, (2) T, T1TqTp, Tpy s (3) Tgo TqTiTp, Tp, and (4) g, TqTp, TiTp, .

If m > c+ g, then there is the (¢ + 2)-cycle zxy Px.4 4z for sequences (1), (3) and (4) and the (c+ 2)-
cycle xxq, Prg, 1.2 for sequence (2) unless = and 4.2 are in the same partite set. Observe that for
sequence (2) if ¢ > 5, then there still exists a (¢ + 2)-cycle xxy_5Pxg_54c2 Vid Tgpe—2x ¢ A(D). If
q > ¢, then xx4_ 41 Pz, x is a (c+ 2)-cycle for sequences (1)-(3) and xzy—c43Pxp,x is a (c+ 2)-cycle
for sequence (4) unless = and z,_.13 belong to the same partite set. We also note that for sequence (4)
if ¢ > m — 5 and ¢ > ¢, then there still exists a (¢ + 2)-cycle zz_ .45 Prq152. Hence, m < ¢+ ¢ and
g < cor P meets the partite sets of D along two special orders as described in Fig. i} Moreover, x has
exactly two in-neighbours or two out-neighbours and = € {V1, V2, V,,, Vir—1}.

Ty Lq Tp Tet1 T, Tm—c Lq Tp Ilff.—o
(a) Type Iwithg < 4andm > c+q. (b) Type II with ¢ > max {¢, m — 5}.
eV T3 x4 x5 Terl Tet2 Tetd T T2 x3 T4 Te Lo+l Tet3
L2 Tet3
T T
(c) Type III (d) Type IV

Fig. 4: The structure of D[P U {z}] of Type I — Type IV in Claim

Clearly, z € Vj or € V.41. Otherwise, there is a (¢ + 2)-cycle xx1 Px.12 in D. Suppose that
x € Vi. If x3 ¢ Vi, then zx3Px 432 is an (¢ + 2)-cycle because = has at least two out-neighbours.
Then z3 € V; and x — xz4. Note that x4 and x.45 belong to the same partite set. If x5 — =z, then
qg =4, m > ¢+ 4 and P is isomorphic to Type I in Fig. El If x — x5, we obtain a (¢ + 2)-cycle
xx5Pxoy5e whenm > ¢+ 5. Hencem = c+3orm =c+4and P = 129 - Tey3(xeysq) where
X3, Teyo(Tera) € V1. Next, suppose that z € V1. Obviously, there is a (¢+2)-cycle zx9 Pz o422 when
x ¢ V. Similarly, when z4 — x we have ¢ = 3 and m = ¢ + 2, which is impossible. Then z — 4. We
obtain a (¢ + 2)-cycle zx4 Proyqx when m > ¢+ 4. Hence m = n+ 3 and P = x125 - - - 2.3 where
Zer1 € V. In a word, when z has at least two in-neighbours and two out-neighbours, P has four specific
structures as described in Fig. ] based on the partite set which x belongs to.

Second, we suppose that x has either one in-neighbour or one out-neighbour. Then (i) z € V3 orx € V,
and x has the same in-neighbours and out-neighbours on P as z; or x,,; or (i) x — x1, 22 Pz, =
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and z € V4 q; or (i) 2, = 2,2 = 21 P21 and x € V. O
By Claim[3.2]and Claim [3.3] we get the following.

Proposition 3.4 Ifz € NT(P) N N~ (P), then x and P satisfy one of the following statements.

(i)  and one of {x1, T2, Tim—1,Tm} belong to the same partite set and their in-neighbours and out-
neighbours on P are same;

(ii) x and x; € {3,24, Tym—3, Tm—2} belong to the same partite set and their in-neighbours and out-
neighbours on P are same, where x3 € V3 whenl = 3; x4 € Vi, whenl = 4; x_o € V,, when
l=m—2;,and x,,_3 € V,,, whenl =m — 2;

(iii) D[P U x| has four specific structures Type(I-IV) which are shown in Fig. '

(iv)x = x1, xoPxp, = xandx € Voygorxy, -z, 2 = 21P2y 1 andx € V.

N =Y

X1 T2 Tet1 Tm X1 Tm—c Tm
x T

Fig. 5: The structure of D[P U {«}] of Proposition 3.4fiv).

Next, suppose that = has only in-neighbours in V(P), i.e., P = x. Since D is strong, there is a path
from z to P. Let P/ = z - - - 2’2" be a shortest path such that x”/ € N~ (P). If N~ (") NV (P) = (), then
there is an integer j < 4 such that z;; .1 — «’ and further D contains a (c+2)-cycle 2’2"z ; Pz .12,
a contradiction. Then 2/ € N~ (P)NN*(P). By Proposition there are several all possible structures
of D[z” U P]. In each case, we obtain a (¢ + 2)-cycle or diam(D) > m, which contradicts the initial

assumption or Claim 3.1}

Case 1: z” satisfies Proposition (i) and x; € {22, Tm—1, T }. Itis easy to check that D contains a
(c + 2)-cycle.

Case 2: z” satisfies Proposition(ii). There exists a (¢ + 2)-cycle xoxsx’s"” x4 Px.xo whenl = 3 (or
Tow3xax’x" x5 Proxo When | = 4, resp.). For the case | = m — 2 and [ = m — 3, we can obtain

a (¢ + 2)-cycle similarly.

Case 3: 2" satisfies Proposition[3.4](iii). D[PU{z’,2"'}] contains a (c+ 2)-cycle z1222'2" 23 Pz 21 (or
x129237 " x4 Pxo2q) for Type L, IIL. For Type II, there is a (c+2)-cycle @, — 12" 2" @y — o P2y —1
unless there is no arc between z” and x,, .. Moreover D contains x,,z'x" Zp,— 41 Px,, unless
there is no arc between 2’ and x,,,. Then z,, _ox’x"x,,_._1Px,, o isacycle when z” - x,,_.

and z,, » .

Case 4: z” satisfies Proposition (iv) and z,,, — 2”. There is a (¢ + 2)-cycle Ty’ 2" T 1T —c
unless Z,—., " and x,,_1 belong to the same partite set. Then D[P U {z’, 2"'}] contains a
(c+ 2)-cycle Ty o't Ty c1 2 PTm @ —ec.
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Case 5: ' satisfies Proposition(i) x; € {&9, Tym—1,Tm} or (iv) " — 2. According to the analysis
of Cases 1 — 4, we get dist(z’, x,,) > m, a contradiction.

Hence, it is impossible that = has only in-neighbours on P. Analogously, we can show that D — P does
not have any vertex which only has out-neighbours on P.

Since each partite set of D has at least two vertices, P is not of Type III or and Type IV m > 2c+1. In
the following, we show that no vertex out of P satisfies (iv). Assume that there is a vertex x satisfying (iv)
and ¢ — x1, xo Pz, = z. If there is a vertex y out of P such that x — y, itis easy to obtain that y and x;
have the same in-neighbours and out-neighbours on P; or y satisfies (iv) and x,,, — vy, y = 1 Pxy,_1; or
D[P Uy] is of Type II. Thus x.zyx 4122 Pz, is a (¢ + 2)-cycle unless 2.1 - x2. However, we obtain
that D contains x3xyr4 Pr. 212223 Of Z32yxs5 Pr 11212223 Thus y and ;1 have the same adjacency to
P. This implies that dist(z, x,,) = m, a contradiction. Analogously, if there is a vertex x satisfying (iv)
and z,, — x, ¢ = x1Px,,_1, we will get dist(x1,x) = m, a contradiction. Hence no vertex out of P
satisfies (iv). Finally, if there exist vertices = of Type I and y of Type II such that x — y, then D contains
a (¢ + 2)-cycle x1 Pryxyxs Pr.xq or 1 PryxePr.1121, a contradiction. Thus for any vertex = of Type
I and any vertex y of Type II, there is no arc between x and y or y — x. Observe that D is isomorphic to
a member of Q,,. This proves Theorem [I.3|0

4 Data Availability Statement

No data were generated or used during the study.
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