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For a positive integer n € N and a set D C N, the distance graph G2 has vertex set {0,1,...,n — 1} and two
vertices ¢ and j of GL are adjacent exactly if |j — i| € D. The condition ged(D) = 1 is necessary for a distance
graph GP being connected. Let D = {di,d2} C N be such that di > d and ged(dq,d2) = 1. We prove the
following results.

e If n is sufficiently large in terms of D, then G has a Hamiltonian path with endvertices 0 and 7 — 1.

e If dido is odd, n is even and sufficiently large in terms of D, then G5 has a Hamiltonian cycle.

e If did is even and n is sufficiently large in terms of D, then GZ has a Hamiltonian cycle.
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1 Introduction

For a finite set of positive integers D C N, the infinite distance graph G has vertex set V(GP) = Z and
two vertices u and v of G are adjacent exactly if |u — v| € D. For a graph G and a subset U C V(G)
of the vertex set, we denote by G[U] the subgraph of G induced by U. For i, j € Z, i < j, we denote by
[i,7] ={k € Z | i < k < j}. For a positive integer n € N, the distance graph (also called Toeplitz graph
in many papers) G2 = GP[[0,n — 1]] is the subgraph of G induced by the vertices in [0, — 1].
Infinite distance graphs and especially their colourings were first studied by Eggleton, Erd6s, and Skil-
ton [[10} [11]. Most of the research on distance graphs focused on their colourings [6} 18, 9} [14, [18] 19, 28]].
Distance graphs generalize the very well-studied class of circulant graphs 2, (16, 17, 26]]. In fact, circu-
lant graphs coincide exactly with the regular distance graphs [23]. Circulant graphs have been proposed
for numerous network applications and many of their properties such as connectedness and diameter
[4}, 2} 1164 [17], cycle and path structure [[1} 3 5], and isomorphism testing and recognition [12} [22]] have
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been studied in great detail. Several fundamental results concerning circulant graphs were extended to the
more general class of distance graphs in [7, 123} 24} 25]. The complexity of the connectedness problem
for distance graphs was recently settled by Gémez et al. [[13]]. In [25, 27, [15] the existence of long paths
and cycles in distance graphs is studied. The following main result from [21] confirmed a conjecture from
Penso et al. [25]. [20] gives an overview on Hamiltonian cycles and paths in vertex-transitive graphs.

Theorem 1 (Lowenstein et al. [21]) For a finite set D C N with |D| > 2 and ged(D) = 1, there are
infinitely many n € N such that G? has a Hamiltonian cycle and G "1 has a Hamiltonian path with
endvertices 0 and n.

We conjecture that the conclusion of the last theorem holds
e for all n that are sufficiently large in terms of D if not all elements of D are odd and
o for all even n that are sufficiently large in terms of D if all elements of D are odd.

The purpose of the present paper is to confirm this conjecture in the case that D contains just two elements.
In Section [2] we introduce suitable terminology and collect some properties of distance graphs. In Section
[3| we confirm our conjecture proving the existence of Hamiltonian paths. Finally, in Section @] we provide
similar results for Hamiltonian cycles.

2 The structure of GP

Let D = {d;,dy} for two positive integers dy and dy such that ged(dy, d2) = 1 and d; > do.
We define coordinates (,y) € (Z/(d; + d2)Z) x Z for the vertices of the distance graph G by

(xvy) = y(dl + d2) + Qg

where a, = xd; (mod d; + dy). Note that this bidimensional relabelling of the vertices of G is a
bijection. A vertex (z,y) satisfying 0 < zd; (mod dy + d2) < da is called lower. A vertex (z,y)
satisfying do < xd; (mod d; + da) < dj is called middle. A vertex (z,y) satisfying d; < xd;
(mod dy + d2) < dy + ds is called upper.

For a lower vertex (x,y), we have

(xay)—i_dl = ($+1,y),
(Iay)+d2 = (x_lay)7
('Tay)_dl = (x_lay_l)a
(x,y)—d2 = (1’+1,y—1),
which implies that a lower vertex (z, y) is adjacent to the vertices (z + 1,y), (x — L,y), (z + 1,y — 1),

(z,y)+di = (z+1,y+1),
(z,y) +d2 = (z—1,y),
(,y)—di = (z-1y-1),
(z,y) —d2 = (z+1,y),
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Fig. 1: Neighborhood of (a) a lower, (b) a middle, and (c) an upper vertex.

which implies that a middle vertex (x, y) is adjacent to the vertices (x + 1,y), (x — 1,y), (x + 1,y + 1),
and (x — 1,y — 1).
Finally, for an upper vertex (z,y), we have

(z,y) + d4 (x+1,y+1),
(z,y)+dos = (z—1,y+1),
(z,y)—dr = (z-1y),
(@,y) —d2 = (z+1y),

which implies that an upper vertex (x, y) is adjacent to the vertices (x + 1,y), (x — 1,y), (x + 1,y + 1),
and (x — 1,y + 1).

See Figure (1| for an illustration of these observations.

For c € Z/(dy + dz)Z, all vertices (x, y) of GP with x = ¢ form the column c. Similarly, for r € Z, all
vertices (x, y) satisfying y = r form the row r. Note that the vertices in a column are either all lower, or
all middle, or all upper. A column that consists of lower (middle, upper) vertices is called lower (middle,
upper). See Figure [2|for an illustration.

Lemma2 (i) Forc € Z/(dy + d2)Z, the column c is lower if and only if the column ¢ + 1 is upper.
(ii) Column 0 is lower.

(iii) Column 1 is upper.

Proof: For x € Z/(dy + d2)Z, we have 0 < zdy (mod dy + dg) < dg if and only if dy < (z + 1)d;
(mod dy + d2) < dy + do, which proves (i). (ii) follows, because 0 < 0 = 0d; (mod d; + d3) < ds.

Finally, (i) and (ii) imply (iii). O
The columns z,x + 1,...,x + [ — 1 form a block of length [, if column z is lower, column x + [ is lower,
and none of the columns x + 1,...,z + [ — 1 is lower. The block that contains column 0 is denoted by

By. Let [ be the length of block B; and let column « be the unique lower column that belongs to block
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Fig. 2: The distance graph G§§’3}. Note that the vertices of column 0 are drawn twice. In order to simplify the
drawing, we adopt the convention that such a vertex is adjacent to the union of the neighbors of the two copies, i.e.
vertex 22 is adjacent to the vertices 19, 30, 14, and 25.

B;, then the block that contains column x + [ is denoted by B, ;. Note that the indices of the blocks are
elements of Z/dsZ. For i € Z/dsZ, let x; denote the unique lower column in block B;. Figure [3|shows

the blocks of Gééw}.

By B Bs Bs B,=B_,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 O

Fig. 3: Blocks of Gé?’s}. Note that 4 equals —1 in Z/5Z, that is, B4 = B_1.

Lemma3 (i) The length of a block is either L%J +1or M—ﬂ + 1.
(ii) The length of By is [j—J 1.

(iii) The length of B_1 is H—;—‘ + 1
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(iv) The number of blocks is d.

Proof: Let z,z + 1,...,2 + [ — 1 be the columns of a block B of length /. By definition and Lemma 2]
(i), « is the unique lower column of block B, x + 1 is the unique upper column of block B, and = + [ is
a lower column. Hence, forally € Zandz + 1 <k <x 41— 1, we have (k,y) — (k+ 1,y) = d2 and
therefore (z + 1,y) — (x 4+ 1, y) = da(l — 1). Since column z + 1 is upper and column x + [ is lower, we
haved; —dy + 1 < (z+ 1,y) — (x + 1,y) < di + do — 1, which implies (i).

If B= By, thenz = 0and (x+1,y) =d; (mod dy+ds) forally € Z. Hence (z+1,y)—(x+1,y) <
dy. Together with (z + 1,y) — (x 4+ 1,y) = do(l — 1) this implies (ii).

If B=B_j,thenz+!=0and (zx+1,y) =0 (mod d; + dy) forall y € Z. Since column z + 1
is upper, we have (x + 1,y) — (z + l,y) > d;. Together with (z + 1,y) — (x + ,y) = da(l — 1) this
implies (iii).

Since the function f : {0,...,d; +d2—1} = {0,...,dy +do — 1} with f(z) = xd; (mod dy +d2)
is bijective for ged(dy, da) = 1, there are exactly dy lower columns and therefore dy blocks, which proves
@iv). O

3 Hamiltonian paths of G?
The main result of this section is the following.

Theorem 4 For every D = {d1,d2} C Nwith dy > dy and ged(dy, d2) = 1, there is some ng € N such
that for all integers n withn > ny, the distance graph G2 has a Hamiltonian path with endvertices 0 and
n—1

As before let D = {d;,ds} for two positive integers d; and dy such that ged(dy,dz) = 1 and dy > ds.
For two lower vertices (z,y) and (2',%') with 2 # 2’ and y < v’ in the distance graph GP, a path in G”
with endvertices (z, y) and (2’,y’) whose vertex set consists of all vertices in the rows y, y+1,...,y' —1
and the vertex (z',%’) is called an (z,y)- (', y')-climbing path of GP. See Figurefor an illustration.

Before we proceed to the proof of Theorem[d] we establish a series of lemmas concerning the existence
of climbing paths.

Lemma 5 If B; is a block of even length in GP, then GP has an (x;,y)-(x;1 1,y + 2)-climbing path for
all y.
Proof: Let

P o (i1 — Ly), (@ip,y+ 1), (v — Ly + 1), (w1 — 2,y),
(g1 —3,9), (iy1 — 2,y + 1), (Tig1 — 3,y + 1), (wit1 — 4,9),

The sequence

(i y)s (i = Ly)s oo, (@ig1,9),

P, (z; +1,y),

(i +2,y+ 1), (z;+Ly+1),..., (i1 + Ly + 1),
(Tit1,y +2)
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y+1
)
xX; Ti+1
Fig. 4: P for a block B; of length 8.
defines an (z;, y)-(z;41, y + 2)-climbing path in GP. See Figures E]andfor an illustration. O
y+1
Yy

g Tit1

Fig. 5: An (x;,y)-(zi+1,y + 2)-climbing path for block B; of length 8.

Lemma 6 If B;_1 is a block of even length in GP, then GP has an (x;,y)-(x;_1,y + 2)-climbing path
forall y.

Proof: Let

P o (ri1+3,y+1), (i1 +2,9), (xi—1 +3,9), (i1 +4,y + 1),
(«Ii—l + 53 ) + 1)a (zi—l + 45 y)7 (Ii—l + 57y)a (Ii—l + 67 ) + 1)5
B (sz - 1ay + 1)) (J), - 2ay)7 (xl - 1ay)? (l'“y + 1)

y+1

Ti—1 T4

Fig. 6: P for a block B;_ of length 8.



On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs 13

The sequence
(Ii;y)7 (ZE»L + lay)v LR} (xi—l + 17y)a
(xi—hy =+ 1)7 (.131‘_1 + 17y =+ 1)7 (xi—l + 27y =+ 1)7Pa
(in +1,y+1)7(1'1+2,y+ 1)5-“7(371'71 - 1ay+ 1)7

(Ti—1,y +2)
defines an (z;,y)-(x;_1,y + 2)-climbing path of G”. See FiguresE] andfor an illustration. O
y+1
Yy
Ti—1 Z;

Fig. 7: An (x;,y)-(zi—1,y + 2)-climbing path for block B;_1 of length 8.

Lemma 7 If G has at least j + 2 blocks for some j > 1 and for some i € 7/dsZ, the blocks
B;, Bit1,...,Biyj of GP are such that B; and By are of odd length and B; 11, ..., B ;1 are of
even length at least 4, then GP has an (z;,y)-(z;++1,y + 3)-climbing path for all y.

Proof: By Lemma the blocks B; and B; ; are of length at least 3.
Let
Py o (@i — L) (@i, ¥ + 1), (@i — Ly + 1), (i1 — 2,9),
(@itit1 = 3,9), (Titje1 — 2,y + 1), (i1 — 3,y + 1), (Tigj41 — 4,y),
v (@i +2,9), (@i + 3,y + 1), (i + 2,y + 1), (a4 + 1,y).
Forl1 <g<j—1,let

Pirg ¢ @igg +3,y+2), @irg + 2,y + 1), (@itg + 3,y + 1), (Titg + 4,y + 2),
(@itqg + 5,9 +2), @itq + 4,y + 1), (Tigg + 5,5 + 1), (Tirq + 6,y + 2),
oy @itgr1 = 3,9+ 2), (Tiggr1 — 4y + 1), (Tivgr1 — 3,y + 1), @iggr1 — 2,y +2)
and let

Pi/+q . Pi+qa(xi+q+1 - 1ay+2)a($i+q+1 _27y+1)7(x7;+q+1 - 1ay+ 1)’(-Ti+q+17y+1)7
(Tivgr1 + Ly + 1), (Tirgr1, ¥ +2), (Tiggr1r + L,y +2), (Tiggr1 + 2,y +2).

Note that P, is empty if B;, is of length 4. Furthermore, let
Pi : (xi-i-l—2ay+2)a($i+1—37y+1)7(33i+1_4ay+1)7($i+1—3,y+2)7
(Tir1 =4,y +2), (Tip1 — 5,9+ 1), (wig1 — 6,y + 1), (w1 — 5,y + 2),
a(l'z +37y+2)7(1‘i +27y+ 1); (xz + 17y+ 1),(.(81 +2,y+2)'
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Note that P; is empty if B; is of length 3.

P; Py Pl

y+2

Piy;
T Ti+1 Tit+2 Titj Titj+1

Fig. 8: Pi, Pi+1s Pi/+2, and Pprj fOTj = 3.

Now, the sequence

(@i,9), (i = L,y), . (Tivj+1,Y), Pity,

(@it ¥)s (Tits —LY)s - (@it — L,y),

(g1, y+ 1), (i1 + Ly+ 1), (Tiv1, y + 2), (i1 + L,y + 2), (2541 + 2,y + 2),
Pi/+laPi/+27"'7Pi/+j—1a

(Titj +3,9+2), (@ir; +4,y+2), ., (Titj41,y +2),

(@itjr1 + Ly + 1), (@ipj1 + 2,y + 1), (i y + 1),

(i + 1,y), (i +2,9), ..., (xiy1 — 2,9),

(iv1 — Ly+ 1), (41 — 2,y + 1), (w1 — 1,y + 2), P,

(x; +1Ly+2),(xi,y+2),...,(Titj41 + 1,y +2),

(Titj+1,9 +3)

defines an (2, y)-(@i+j+1,y + 3)-climbing path of GP. See Figures and@]for an illustration. O

y+2 m

y N i i Sl NS L

X Ti+1 Tit2 Titj Litj+1

Fig. 9: An (2;,y)-(%itj+1,y + 3)-climbing path for j = 3.

Lemma 8 If GP has at least j + 2 blocks for some j > 1 and for some i € 7]d>27Z, the blocks
B;,Bit1,...,Bit; of GP are such that B; and By are of length 3 and By 1, ..., By ;j_1 are of length
2, then GP has an (x;,y)-(Titj+1,y + j + 2)-climbing path for all y.

Proof: Note that x;1 ;11 = x; +2j +4. For1 < g < j—1,]let

P, oo (i +2j4+2,y+q), (2 +2j +3,y+q+1), (2 +2j + 4,y +q+2),
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(i +1Ly+q), (i +2,y+q),..., (i +25 —2¢+ 2,y +q),
(xi+2j—2¢+1Ly+q+1), (v +2j —2¢+2,y+q+1),..., (2 +2j + Ly +q+1).

y+j+1 A
NN

y NZZANANZANZANGTAN

T i +2j—2q+2 Titj+1
Fig. 10: P, forj =4and g = 1.

Now, the sequence

(zs,y), (2 — Ly), ..., (zi + 27+ 4,y),

(xi +25+3,y), (x;i +2j+4,y+ 1), (x; +27+ 3, y+ 1), (x; + 25 + 4,y + 2),
(x; +2j+5,y+1),(x; +25+6,y+1),...,(z;,y+ 1),

(x; + L, y), (x; +2,),...,(x; + 25 + 2,y),

(x; +25+ Ly+ 1),

P, Py,..., P,

(i +2§ + 2,y + j),

(i +2j+3,y+7i+D(@i+2i+2,y+5+1),...,(x; +3,y+7+1),
(i +2,y+J), (z:i + 1,y +J),

(i +2,y+j+ D@+ Ly+i+1),..., (2 +2j+5,y+j+1),
(:Ei+2j+4,y+j+2)

defines an (2, y)-(@itj+1,y + j + 2)-climbing path of G”. See Figuresandfor an illustration. O

We are now in a position to prove the main result of this section. A path P in GP with V(P) =
[min(V(P)), max(V(P))] is called special, if the endvertices of P are min(V (P)) and max(V (P)).

Proof of Theorem [ If do = 1, then the statement of the theorem is trivial. Hence we assume that
ds > 1. The idea of the proof is to show the existence of two distinct positive integers p; and p2 with
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y+j+1 A
L o e e o AD

WA RIS ZAN
N\EHIRANIRNIRVZAN
WNENEIEEANIR AN

y NZIZINN RN

T; Litj+1

Fig. 11: An (z;,y)-(Zi+j+1,y + j + 2)-climbing path for j = 4.

ged(p1, p2) = 1 such that the distance graph GP has a special path of length p; and a special path of
length p,. Note that we can shift special paths. If P : vg,...,v; is a special path, then also P + h :
vo + h,...,v; + his a special path. Furthermore, we can concatenate special paths. If P : vy, ...,v; is
a special path of length [ and @ : vy, ..., v;4 is a special path of length h, then PQ : vg,...,vi4p 1S
a special path of length | 4 h. Since ged(p1,p2) = 1, it follows from the extended Euclidean algorithm
that every sufficiently large integer p is a positive integral linear combination of p; and p,. In fact, if
p > (2p2 — 1)py and p = a1p1 + agps for integers a; and as such that a; < 0, then a + sp2 > 0 and
az — sp1 > 0fors =[] + 1 and thus p = (a1 + sp2)p1 + (az — sp1)pz is a positive integral linear
combination of p; and py. Therefore, the desired result follows by shifting and concatenating copies of
the special paths of lengths p; and p,, which we construct now.

It has been observed in [25, 21]] that Gle dot1 has a Hamiltonian path with endvertices 0 and d; + do.
Hence, for py, we choose d; + ds.

For p,, we show that there is a positive integer po with po = —1 (mod d; + dz) = —1 (mod p;),
such that G has a special path of length ps, thus ged(py, p2) = 1.

Let 2’ be such that 2'dy = —1 (mod dy + dy). By definition and Lemma (i), column z’ is upper
and column 2’ — 1 is lower. In order to get a special path with endvertices (0, 0) and (z’,y’) for some
y', we concatenate climbing paths to form a (0, 0)-(z’ — 1,y’)-climbing path and append the path (2’ —

2»?/)7 (1./ - Say/)a AR (xl7yl)'

Let k be such that the block By, contains column z’, that is, z, = x’ — 1. Since column z’ is upper,
column z’ — 2 belongs to block By, _1.
Since ged(dy, da) = 1, at least one of d; and ds is odd.

Case 1 One of dy and dy is even and GP has at most 2 blocks of odd length.

Since d; + ds is odd, the number of blocks of odd length is odd, that is, it equals 1.

We first assume that all blocks By, By, ..., Bj_1 are of even length. By Lemma [3] there exists an
(x4,24)-(x41, 20 + 2)-climbing path P, for 0 < < k — 1. Since 2’ — 1 = xy, the concatenation of the
paths Py, Py, ..., Py_; forms a (0,0)-(z" — 1,y')-climbing path for ' = 2k.
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Next, we assume that all blocks By, Bg+1, ..., B_1 are of even length. Then, by Lemma@ there exists
an (2;41,2(dy + do2 — i) — 2)-(24,2(dy + d2 — i))-climbing path P; for k < i < d; + d2 — 1. Since
' — 1 = x, the concatenation of the paths Py, +d,—1, Pa;+dy—2,- - -, Pk forms a (0,0)-(z' — 1,y)-

climbing path for 3y’ = 2(dy 4+ d2 — k). This concludes the first case.
Case 2 One of dy and ds is even and GP has at least 3 blocks of odd length.

Since d; + do is odd, the number of blocks of odd length is odd. This implies that one of the two
sequences By, By, ...,Bx_1and By, By, ...,B_1, By, By, ..., Bi_1 has an even number of blocks with
odd length. We call this sequence S. We can partition S into subsequences S1, Ss, . . ., S, where each
subsequence is either a block of even length or a sequence B;, B;41, . . ., By of blocks with ¢ € Z/d>Z
and j > 1, such that block B; has odd length, block B;; has odd length, and blocks B;;1, ..., Bitj—1
have even length. For a subsequence S,;, 1 < ¢ < t, that consists of one block B; with i € Z]d2Z.,
Lemma (S| implies that there exists an (x;, y)-(2;+1, y + 2)-climbing path P, for every y. If g—; < 2,
then Lemmaimplies that the lengths of the blocks are 2 and 3. For a subsequence S,, 1 < ¢ < ¢, that
consists of at least two blocks B;, B;11,...,B;4; with ¢ € Z/d2Z and j > 1, Lemma [§| implies that
there exists an (z;, y)-(®it;+1,y + j + 2)-climbing path P, , for every y. If g—; > 2, then Lemma
implies that the lengths of the blocks are at least 3. For a subsequence S,;, 1 < g < ¢, that consists of at
least two blocks B;, Biy1,...,B;q; with ¢ € Z/dxZ and j > 1, Lemmaimplies that there exists an
(@i, y)-(Titj4+1,y + 3)-climbing path P, ,, for every y.

The concatenation of the paths P ., P ., ..., P, forms a (0,0)-(z" — 1,y’)-climbing path for
y1 = 0, suitable y,’s, where 2 < ¢ < ¢, and ¢’ = y;.

This concludes the second case.

If both d; and ds are odd, then d; + ds is even, which implies that the number of blocks of odd length
is even and exactly those vertices are even integers that are in a column with an even index. This implies
that 2’ is odd and x; = 2’ — 1 is even. Since column 0 and column z’ — 1 are lower, the sequence
By, By, ..., Br_1 has an even number of blocks with odd length.

Case 3 Both d; and dy are odd and G has at most 2 blocks of odd length.

Since d2 > 2, G has exactly 2 blocks of odd length. This implies that one of the two sequences
By, By, ...,Bir_1 and By, Bg+1,...,B_;1 has only blocks of even length. Now we are in the same
situation as in Case[I} Arguing as in Case[I]completes this case.

Case 4 Both dy and dsy are odd and GP has at least 4 blocks of odd length.

Since the sequence By, By, ..., Br—1 has an even number of blocks of odd length, we are in the same
situation as in Case[2} Arguing as in Case[2|completes this case, which concludes the proof of the theorem.
a

4 Hamiltonian cycles of G”

The main results of this section are the following.

Theorem 9 For every D = {dy,ds} C N with dy > da, dids odd, and ged(dy,d2) = 1, there is some
no € N such that for all even integers n with n > ny, the distance graph G2 has a Hamiltonian cycle.
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Theorem 10 For every D = {d;,ds} C N with dy > ds, didy even, and ged(dy, da) = 1, there is some
no € N such that for all integers n with n > ny, the distance graph G has a Hamiltonian cycle.

Note that the distance graphs considered in Theorem [J]are necessarily bipartite. Therefore, they can only
have a Hamiltonian cycle if their order is even.
As in Section 3] we establish several lemmas before proceeding to the proofs of Theorems [9] and [T0}
For two lower vertices (z,y) and (¢/,y) withz # 2/, 0 & {&' + 1,2’ +2,...,z}, and y < ¥’ in the
distance graph GP, a set of vertex disjoint paths R, Ry41, ..., Ry 1 in G is called an (z,y)-(z',y')-
path-collection of GP, if it satisfies the following conditions:

e fory < i <y, P; has the endvertices (0,4) and (—1,3 4 1),
e fory < i <y, the path (0,14), (1,4),...,(a',) is a subpath of P;,

o fory <i <y, thepath (z,i+1),(x+1,i+1),...,(—1,i+ 1) is a subpath of P;,

e the union of the vertex sets of the paths consists of all vertices in therows y + 1,y +2,...,y — 1,
the vertices {(0,¥), (1,y),...,(z — 1,y)}, and the vertices {(2’,y"), (' + 1,¢),...,(—1,¥)}.
and

e no edge of the form {(—1,z2), (0,2")} for some z,z" € Z is in the union of the edge sets of the
paths.

See Figures and [16|for an illustration. Note, that (z,y) does not belong to any path of an (x, y)-
(2',y")-path-collection.

Lemma 11 [ffor some i # —1, B; is a block of even length in GP, then GP has an (x;11,y)-(zs,y + 1)
path collection for all y.

Proof: Let

P (mz+3vy+1)7($1+27y)7($1+3ay)a(x1+47y+1)a
vy (@i — Ly + 1), (w01 — 2,y), (g1 — Ly), (Tig1,y +1).

)

0 T Ti+1 -1

Fig. 12: P for a block B; of length 8.
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The sequence
(an)v (17y)7 ey (xi + 17y)a
(xzvy—’_ 1)7(1'1 + 1ay+ 1),(!172 +27y+ 1)7P7
(i1 + Ly+ 1), (201 + 2,9+ 1),..., (=L, y+ 1)

defines an (z;41,y)-(z;, y + 1)-path-collection in GP. See Figuresandfor an illustration. O
Y
0 T Ti+1 -1

Fig. 13: An (z41,y)-(z:,y + 1)-path-collection for a block B; of length 8.

Lemma 12 If for some i € Z/d>Z and for some j > 1, the blocks B;, B;11,...,Bit; of GP are such
that =1 & {i,i+1,...,i+ j}, B; and B, are of odd length and B, 11, . .., B, ;_1 are of even length
at least 4, then GP has an (i1 j11,y)-(x;,y + 2)-path-collection for all y.

Proof: By Lemma the blocks B; and B, ; are of length at least 3.
Let
(zi + 37y)5 (IT + 47y + 1)7 (IZ + 57y + 1)7 (IV + 4a y)a
v (i1 = 2,y)s (i1 — Ly + 1), (i1, y + 1), (w41 — Ly).
For1 <g<j—1,let
Pi+11 : (xi+117 y)7 (xz’-&-q + 1; y)a
(:L‘i-‘rq + 2’ y)a (xH‘q + 37 Y+ 1)7 (‘xi-‘rq + 4’ Y+ l)a (x’i-‘rq + 37 y),
(xi+q + 4a y)a (xiJrq + 57 Y + 1)7 (-riJrq + 67 ) + 1)7 (mi+q + 57 y)a
vy (Tigrgr1 = 2,9)s (@iggr1 — Ly + 1), (Titgr1, ¥ + 1), (Titgr1 — 1, y)-
Furthermore, let
Py o (i +2,y), (i + 3,y + 1), (ziny + 4,y + 1), (zig5 + 3, ),
(@itj +4,9), (@itj +5,y+1), (@it; +6,y+1), (it +5,9),
v (T = 3,9)s (Tigrr — 2,y + 1), (@i — Ly + 1), (Tigjr1 — 2,9)-
For1 < g <j,let
Qitg + (Titg—1+4Y+2), (Titg-1+5y+2),..., (Titq +2,y+2),
(Titg + L,y + 1), (@itg + 2,y + 1), (Tig + 3,y +2).
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Qi+2
" W
Y
P; Pito Piyj
0 T Tit1 Tit+2 Litj Litj+1 -1

Fig. 14: Pl', PZ‘+2, PH—]" and Qi+2 fOI'j = 3.

Now, R, and R, where

Ry + (0,y),(Ly),.... (z:y),
P;
Piy1,Pia, .o Piyjo,
(@it y)s (@ivs + 1L, 9), Pijy (Tijr1 — 1, y),
(Titj+1,y + 1), (@igj1 + Ly +1),...,(-Ly+1)

and
Rerl : (07y+1>7(17y+1)77($z+17y+1)7
(i, y+2), (i + 1Ly +2),(z; +2,y+2), (x; + 3,y +2),

Qi+17Qi+2a .. '7Qi+j7
(Tipjr — Ly +2), (Tivjs1,y+2),..., (-1, y +2)

define an (2441, y)-(4,y + 2)-path-collection of GP. See Figuresandfor an illustration. O

y+2 Ryt1
0 T; Tit1 Tit2 Titj Titj+1 -1

Fig. 15: An (2i1;+1,Yy)-(xs,y + 2)-path-collection for j = 3.

Lemma 13 If for some i € Z/d>Z and for some j > 1, the blocks B;, Bit1, - .., Bi+; of GP are such
that =1 ¢ {i,i+1,...,i+ j}, B, and B ; are of length 3 and B, 11, ..., B;1;_1 are of length 2, then
GP has an (vitj11,9)-(xi,y + j + 1)-path-collection for all y.
Proof: Note that x; 1 j 11 = x; +2j +4. For0 < g < j —1,let

Rivq @ (0,y+9q),(Ly+q),....(zi+1,y+4q),
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(i +2¢+2,y+q), (i +2¢+ 3,y +q),..., (T + 2§+ 3,y +q),
(i +2j+4y+q+1),(x; +2j+5y+qg+1),....(-L,y+q+1).

and let

(i +2j+2,y+7), (i +2j + 3,y + ),
(xi+2j+4y+7+1),(x;+25+5,y+5+1),....,(-Ly+75+1).
Now, R;, Ri41, ..., Ritq define an (z;1j11,y)-(2i,y + j + 1)-path-collection of GP. See Figurefor
an illustration. O
y+ij+1 Riy;

NN
B NN AN
BN ANV
BN AN
B AN

0 i LTitj+1 -1

Riys
Riyo
Ry

Fig. 16: An (z;4j+1,y)-(z:,y + j + 1)-path-collection for j = 4.

Lemma 14 If for some i € 7/d2Z and for some j > 0, the sequence S = B;,Bji1,...,Bi; of
blocks of GP is such that —1 ¢ {i,i + 1,...,i + j} and the number of blocks of odd length among
B;,Bit1,...,B;1; is even, then GP has an (@it j+1,Y)-(zi, y + Ay)-path-collection for some Ay and
for all y.

Proof: By definition, the union of suitable path-collections is a path-collection: If for some x, 2/, z”, y,
v, y", GP has an (z,vy)-(2',y’)-path-collection and an (z',')-(z", 3" )-path-collection, then G has an
(z,y)-(z",y")-path-collection. We can partition S into subsequences, where each subsequence is either
a block of even length or a sequence By, Biy1, . - ., Bit; of blocks with k € Z/dsZ and | > 1, such that
blocks By, and By; have odd length and blocks By1, .. ., Bit+;—1 have even length. For a subsequence
that consists of one even block By with k € Z/d>Z, Lemma [11|implies that there exists a (xg41,y)-
(g, y + 1) path collection for every y. If g—; < 2, then Lemmaplies that the lengths of the blocks are
2 and 3. For a subsequence that consists of at least two blocks By, Biy1, - - ., Brsy with k € Z/d>Z and
! > 1, Lemma[13]implies that there exists an (zj4.41,y)-(zx,y + [ + 1)-path-collection for every y. If

Z—; > 2, then Lemma(3|implies that the lengths of the blocks are at least 3. For a subsequence that consists
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of at least two blocks By, Bi+1,- - ., Bpt; with k € Z/dsZ and 1 > 1, Lemmaimplies that there exists
an (Tr41+1,y)-(xk, y + 2)-path-collection for every y. Hence, a suitable union of path-collections forms
an (441, Yy)-(x;, y + Ay)-path-collection for a suitable Ay and all y. O

Lemma 15 If for some —i € Z/dsZ, the blocks B_;, B_;+1,...,B_1 of GP are such that B_; is
of odd length and B_;,1,...,B_1 are of even length at least 4, then for all y, GP has a path with
endvertices (—1,y + 1) and (—1,y + 2) that consists of all vertices of rows y and y + 1 and the vertices
(—iyy+2),(z—;+Ly+2),...,(-Ly+2).

Proof: For1 < ¢ <i—1,let
Q—q : (x—q-&-l _372-/)’('1:—11"1‘1 _4ay)7"'7(x—q7y)a
(l‘*q - 17y)’ (:ch,y + 1)7 (x*q - 17y + 1)7 (x*q - 27y)
and let
Q-i ¢ (Toit1—3,y), (i1 — 2,y + 1), (i1 — 3,y + 1), (z—it1 — 4,9),
(x—i-‘rl - 57y)7 (x—i+1 - 47y + 1)7 (x—i-i-l - 5) Yy + 1)7 (l‘_H_l - 67y)a
teey (LL',Z' + 27y)7 (LL',Z' + 37y + 1)7 (QE,Z‘ + 273/ + 1)7 (LL',Z' + 17y)
Furthermore, letfor 1 < ¢ <i—1
P—q : (x_q,y + 2)7 (‘r—q +1Ly+ 2)7
(_g+2,y+2),(x_g+1Ly+1),(x_g+2,y+1),(x_g+ 3,y + 2),
(x_g+4y+2),(x_g+3y+1),(z_g+4,y+1),(x_¢g+5,y+2),
o) (‘T—(I-‘rl - 27 ) + 2)3 (‘T—(I-i-l - 35 ) + 1)5 (I_q+1 - 25 ) + 1)5 (I'_q+1 - 1, y + 2)

P_ito
o :WZ
Yy
Q—i Q—i+2
0 L—i L—it+1 T—i+2 T—1 0

Fig. 17: Q—i, Q_i+2, and P_i+2 for ¢ = 4.

Now, the sequence

(-Ly+1),(=2,9),

Q-1,Q-2,...,Q,

(x-i,y), (z— — Ly),...,(—Ly),

(0, y—l—l (Ly+1),...,(x—; + 1L,y + 1),
(x_yyy+2),(z—i +Ly+2),...,(x—iy1 — L,y + 2),
P i1, P_itro,..., P4
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defines a path that satisfies the conditions of the lemma. See Figures [I'7]and [I8]for an illustration. O
N ::§§§§§§%§Z§§§§2§§§22z
Yy
0 L—i L—it+1 L—i+2 T—1 0

Fig. 18: A path for i = 4.

A cycle C in GP is called special, it V(C) = [min(V(C)), max(V (C))].

Lemma 16 For every D = {dy,d2} C Nwith dy > da, dids even, and gcd(dy,ds) = 1, there is some
n € Nwithn =0 (mod dy +ds) such that GP has a special cycle C of order n+1 with V (C) = [0, ).

Proof: Clearly, vertex n is in column 0. Since dyds is even and ged(d;, d2) = 1, we obtain that dy + da
is odd and hence the number of blocks of odd length is odd, i.e. at least 1. Let i € Z/d»Z, such that block
B; is of odd length and the blocks B;1,. .., B_; are of even length. Clearly, by Lemma[3] the length of
the blocks B;y1,...,B_; are at least 4. By Lemma GP has a path Q with endvertices (—1,1) and
(—1, 2) that consists of all vertices of rows 0 and 1 and the vertices (z;, 2), (x; +1,2),...,(—1,2). Since
the number of blocks of By, ..., B;_; of odd length is even, by Lemma GP has an (x;,2)-(0,v')-
path-collection R for some 3. Note, that if G has only one block of odd length, then R = (). In this
case we define i/ = 2. Let

P:@UU@+UWﬂw&wm}

ReR

==

0 1 -1 0

y=1

Fig. 19: The path P.
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By construction, P is a path with endvertices (—1,y" — 1) and (—1, y’) that consists of all vertices of
rows 0,1,...,y". The vertex (0, y’) has the neighbors (1,3’ — 1) and (1,y’) in P. Since the vertex (1,y")
is an upper vertex, (1,%’) has the neighbors (0,7’) and (2,7’) in P and {(1,7' — 1),(2,9')} € E(GP).
Now,

cC =P
+H{@Y =D, 291 {1y =1, (0,001 {(=1,9), (0,4 + D} {0, + 1), (1,9)}}
—{@Ly = 1),0,9)}1{(1,9), (2,9)}}

is a special cycle of G of order n + 1 with n = (y' + 1)(dy + d2) and V(C) = [0, n]. See Figures
and 20/ for an illustration. O

0

0 1 -1 0

Fig. 20: The cycle C'in the proof of Lemma [T}
Lemma 17 For every D = {d1,d2} C N with di > da, dids odd, and gcd(dy,ds) = 1, there is
somen € Nwithn = 0 (mod dy + dg) such that GP has a special cycle C of order n + 2 with
V(C) =10,n+1].

Proof: Clearly, vertex n is in column 0. First we assume that do = 1. In that case, G has only one block
and the vertex n + 1 is in column —1. Let P = () for d; = 3, otherwise let

P : (170)7(231)7(371)ﬂ(270)7
(3,0), (4,1),(5,1), (4,0),
1 (=5,0),(=4,1),(=3,1), (—4,0).

The sequence
(G (070)7 Pa (7370)3 (7270)7 (717 1)7 (727 1)7 (71’ 2)7 (Oa 2)7 (17 1); (07 1)a (7170)3 (070)

defines a special cycle of G of order 2(d; + dg) + 2 with V(C) = [0,2(d; + d2) + 1]. See Figure
for an illustration.
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0 1 -1 0

Fig. 21: The special cycle C for dy = 9 and d> = 1.

Now we assume that do > 1. Hence, by Lemma 3, G” has more than one block. This implies that
vertex n + 1 is lower. Let k € Z/d»Z, such that vertex n + 1 belongs to block By,. Since d; + ds is even,
exactly those vertices are even integers that are in a column with an even index. Since vertex n+ 1 is lower
and an odd integer, the number of blocks among By, Bi+1, - . ., B_1 of odd length is odd, i.e. at least one.
Let i € Z/doZ be such that block B; is of odd length and the blocks B; 1, B;yo, ..., B_; are of even
length. Clearly, by Lemma 3] the length of the blocks B 1, Bit2, ..., B_ are at least 4. By Lemma [I5}
GP has apath Q; with endvertices (—1,1) and (—1, 2) that consists of all vertices of rows 0 and 1 and the
vertices (z;,2), (;+1,2),...,(—1,2). Since the number of blocks of By, Bi41,. - ., Bi—1 of odd length
is even, by Lemma GP has an (z;,2)-(zx,y')-path-collection R, for some 3. Note, that if i = k,
then R, = (. In this case we define 4/ = 2. By the same arguments, G has a path @, with endvertices
(—1,y" + 2) and (—1,y’ + 3) that consists of all vertices of rows 3’ + 1 and y’ + 2 and the vertices
(24,9 +3), (xiz1,¥' +3),..., (1,9 +3) and G has an (z;,y’ + 3)-(x, 2y’ + 1)-path-collection R..

By definition, for every 3y’ + 1 < y < 2y/, the edges {(0, ), (1,y)} and {(xx — 1,y), (z,v)} belong
to Q2 or a path in Ro. Furthermore, the path

Po:(zr+1,2y), (20, 29" + 1), (z + 1,29 + 1), (z1 + 2,2y + 1)
is a subpath of a path in {@Q2} U Rs. Let

Pl : (an/)a (]—vy/)v ey (l'k - 17?/)

and let
Pyt (g, 2y + 1), (2 + 1,29 + 1), (25, 2y + 2),
(xp — 1,2y + 1), (2, — 2,2y + 1),..., (1,29 + 1).
Now,
C = (Q1UQ2URIURy)
2y’ 2y’
—EP)u | ({0, @pu U - 1Ly, (@)}
y=y'+1 y=y'+1

+E(P)UE(P)

+JH(-19), 0.y + D}
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2y
Ro

Q2

Ri1

@1

SOR%a0

Tk

NN

Fig. 22: Q1 UQ2UR1 URs.

2y’

+ U {{(xk - 17y)7 (xlmy + 1)}}
J2_y"1+1

+ U {{(—1,y)7(0,y+1)}}
y=y'+2
2y'+1

+ U {oy+1),0,91
y=y'+1

+H{{(xp + 1,29, (zx + 2,29 + 1)}}

defines a special cycle of G of order n + 2 with n = (2y' + 2)(d; + do) + 2 and V/(C) = [0,n + 1].
See Figures [22]and 23| for an illustration. O

Let C be a special cycle of GP and let n’ = max(V(C)). If forall a,b € V(C) withn' —d; + 1 < a <
b<n/,{a,b} #{n' —2da,n’ —dz}, and |a — b| € D, we have {a,b} € E(C), then we call C good.
We are now in a position to prove the main results of this section.

Proof of Theorem E]: If D = {1,3}, then the result follows by induction on n. C' : 0,1,2,3,0 is a
Hamiltonian cycle of GP. Let C,, be a Hamiltonian cycle of G2. Since the vertex n — 1 has degree 2 in
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: AN »,
2y/ A A
Py . .
Y’ . l Py
. RN R
Tk 0
Fig. 23: The cycle C in the proof of Lemmal[I7]
GP,{n—2,n—1} € E(C,). Hence,
Cn+2 = CTL+{{n727n+1}7{”’4’17”}7{”7”71}}7{{n727n71}}
is a Hamiltonian cycle of GZ,.
Hence we can assume that D # {1, 3}. Note that we can shift special cycles: If C : vg, ..., v, v is a
special cycle in GP, then also C + h : vy + h, ..., v; + h,vo + h is a special cycle in G”. Furthermore,

we can merge special cycles: If C and C; are special cycles with min(V(Cs)) = max(V(C1)) + 1,
{a,b} € E(C1), {c,d} € E(Cy), and {a, c},{b,d} € E(GP), then

(C1UC2) + {{a,c}, {b,d}} — {{a, b}, {c,d}}

is a special cycle with vertex set [min(V (C1)), max(V(Cs))]. If fori < a < b < j, {a, b} is an edge of
GP and at least one of a, b has degree 2 in GP[[4, j]], then the edge {a, b} belongs to every special cycles
C of GP with V(C) = [i, j].

Claim 1 If Cy and Cy are good special cycles of GP with min(V (Cs)) = max(V(Cy)) + 1 and D #
{1, 3}, then there is a good special cycle C with V(C') = [min(V (Cy)), max(V(C3))].

Proof of Claim([I} Let n’ = max(V (Ch)).
Case 1 d; # 2dy + 1.
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Since di # 2dy + 1 and C} is good, e; = {n’ —dy + 1,n' — dy + dy + 1} € E(Cy). Clearly,
es ={n' +1,n +dy + 1} € E(C5). Hence,

C = (01UCQ)+{{n'7d1+1,n’+1},{n’7d1+d2+1,n/+d2+1}}7{61,62}

is a good special cycle with V(C') = [min(V (C1)), max(V (C2))]. This concludes the first case.
Case2 di = 2d, + 1.

Since D # {1, 3}, we have dy > 1. Since d; = 2ds + 1, and C1 is good, e; = {n' —dy + 2,n' —dy +
dy +2} € E(C4). Since dg > 1, e5 = {n’ +2,n' + dy + 2} € E(C3). Hence,

C=(CLUC)+{{n —di+2,n" +2},{n —dy +da+2,n +ds+2}} — {e1,ea}

is a good special cycle with V(C') = [min(V (C1)), max(V (C2))]. This concludes the second case and
the proof of Claim/[I] O

Claim 2 GP has a good special cycle of order 2 (mod dy + ds).

Proof of Claim [2; By Lemma GP has a special cycle of order 2 (mod d; + do). Let C; be a
special cycle of G of order 2 (mod d; + d3) and let n’ = max(V(Cy)). It follows from [25] 21]
that G has a special cycle of order d; + do. Note that every vertex in {j,7 + 1,...,7 +dy +dy — 1}
has degree 2 in GP[[j,7 + di + da — 1]], for j € Z and hence a special cycle of order d; + ds is good.
Let Cy be a special cycle of GP of order d; + da with min(V(C2)) = n’ + 1. Since vertex n has
degree 2 in GP[V(C})], {n' — do,n'} € E(Cy) and since vertex n’ + d; has degree 2 in GP [V (Cy)],
{n' +dy —dz,n' +d1} € E(Cs). Hence,

(Cl @] CQ) + {{n’ — dz,n/ + d1 — dg}, {n’,n' + dl}} — {{n' — dz,n/}, {TL/ + d1 — dg, TLI + dl}}

is a good special cycle of GP. This concludes the proof of Claim O

Let p; withp; =2 (mod d; +ds), such that GP hasa good special cycle of order p;. By Claim such
a p; exists. As said before, GP has a good special cycle of order po = dj + da. Since ged(p1, p2) = 2,
it follows from the extended Euclidean algorithm that every sufficiently large even integer is a positive
integral linear combination of p; and p,. Therefore and by Claim [I] the desired result follows by shifting
and merging copies of good special cycles of order p; and ps. o

Proof of Theorem [I0;:: The proof is analogous to the proof of Theorem [0 Instead of using Lemma
we use Lemma Proceeding as in the proof of Theorem@] we obtain p; withp; =1  (mod dy + do)
and hence ged(p1, p2) = 1. This clearly allows to establish the theorem for all sufficiently large n and
not just for sufficiently large even n. a
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