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On size, radius and minimum degree
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Let GG be a finite connected graph. We give an asymptotically tight upper bound on the size of GG in terms of order,
radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum
degree is prescribed.
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1 Introduction

Let G = (V, E) be a finite simple graph. We denote the order of G by n and the size by m. The degree of
a vertex v in G is denoted by deg(v), and the minimum degree of G is denoted by d. For two vertices
u,v in G, dg(u,v) denotes the usual distance between u and v in G, i.e., the minimum number of edges
on a path from u to v. The eccentricity eci(v) of a vertex v is the distance from v to a vertex farthest
from v. The radius rad(G) of G is the minimum of the eccentricities of the vertices of G.

Apart from being an attractive graph parameter, the radius has many practical applications, for instance
in network design. If a graph represents a transportation or communication network, then the radius is a
measure of the distance a commodity or message has to travel in the worst case, if it is distributed by a
single, optimally located source [1]. We are particularly interested in the maximum number of links of a
network in which the maximum distance from the optimal source, i.e., the radius of the underlying graph,
is limited.

Several upper and lower bounds on the size of a graph in terms of other graph parameters have been
investigated. For instance, an upper bound on the size in terms of order and diameter was determined by
Ore [3| as early as 1968, while Vizing [4]] gave an upper bound in terms of order and radius. Recently,
Dankelmann and Volkmann [[1]] reported lower bounds in terms of order, radius and minimum degree. In
this work, we present an upper bound on the size in terms of order, radius and minimum degree. Our
bound is a strengthening of Vizing’s Theorem [4]] which we state below.
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Theorem 1 (Vizing [4]]) Let G be a connected graph of order n, radius r and size m. Then
n(n—1) ifr =1,
m< g [ ifr =2,
$(n—2r)?2+ 3(5n—6r) ifr>3.

We will make use of the well-known handshaking lemma.
Lemma 1 Let G be a graph of size m. Then 2m = erV(G) degq ().

The notation we use is as follows. G = (V, E) is a connected graph with radius r, r > 9. For a vertex
v, N;(v) :={z € V| dg(z,v) =i},i=0,1,...,ecq(v). Let z be a fixed central vertex of G, so that
r = ecg(z). Foreachi = 0,1,...,r, let N; = N;(z). Hence, V.= Ny U Ny U ---U N, is a partition
of V. We denote by N<; and N ; the sets Up<;<;IV; and U;<;<, N;, respectively. Let T be a spanning
tree of G that is distance-preserving from z; that is, dr (v, z) = dg(v, z) for all vertices v € V. For
vertices u,v € V, let T'(u,v) denote the (unique) u-v path in 7. Let z,. € N,. We say that a vertex
y € V is related to the vertex z, if there exist vertices u,v € V, where v € V(T'(z,2,)) N N>g and
v € V(T(2,y)) N N>g such that dg(u,v) < 4.

The following observation is due to Erdos, Pach, Pollack and Tuza [2].

Fact 1 Let G be a connected graph with radius v > 9 and let z be a central vertex of G. For each vertex
zr € N,(2), there exists a vertex in N>,_g which is not related to z,.

2 An upper bound on the size

In this work, we prove the following result which is a strengthening of Vizing’s Theorem if minimum
degree is prescribed.

Theorem 2 Let G be a connected graph of order n, radius v > 9, minimum degree § > 2 and size m.
Then

m < % (n—23r(5+1)>2+(5+1) (13n— 2?’(5+1)—r> +0().

Moreover, this bound is asymptotically tight.

Proof: Let z be a fixed centre vertex, z,, € N,.(z) and assume the notation of 7" and T'(u, v) above. Let
29 be the unique vertex in V(T'(z, z,)) N Ng and write L = T'(zg, z,) = 29, 210, - - - , 2. By Fact[l] let
x € N>,_g be a vertex not related to z,. Let T'(z, ) = 29, %1, 22,...,2 and P = xg9, T10,...,ZTr_g be
the sub-path of T'(z, x) from xg to x,_g. Note that since « is not related to z,, we have

de(u,v) > 5forallu € V(L) and v € V(P). (1)

-1
L1 = {Z3i+1|i:3,4,...,\\7‘3 J}

Let Ly C V(L) be the set
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For each vertex v € L1, choose any ¢ neighbours u1, ug, . . ., us of v and denote the set {v, uy, usz, ..., us}
by Mv] and set L' = Uy, e, M[v].
Similarly, let P; C V(P) be the set

—10
Pli—{I31+1|i—3,4,...,{T3 J}

For each vertex v € Pj, choose any § neighbours uq,us,...,us of v and, as above, denote the set
{v,u1,us2,...,us} by M[v]. Set P’ = U,ep, M[v]. Finally, let M = L’ U P’. Then

|M|:(5+1)<V31J+V310J—4>. 2)

Claim1 ) _, degs(v) <2(6 +1)(2n —r) + O(6).

Proof of Claim ' Note that }°, _,, degq(v) = > o1 degg(v) + >, cp degg(v). First we consider
> vers degg(v). Partition Ly as Ly = Lo U Ls, so that for each u,v € L;, i = 2,3, da(u,v) > 6.
Precisely, let Ly C Ly be the set Ly = {z; € Ly | j = 4 (mod 6)}, and L3 = Ly — Ly. Write the
elements of Ly as Ly = {wy,wa,...,w|r,}. Foreach w; € Lo, let M[w;] = {wj,uf,u, ..., uj},

where u{7 u'%, R uf; are neighbours of w;. The fact that for each u, v € Lo, di(u, v) > 6, in conjunction
with (T)), yields

n > (degg(w:) + 1) + (degg(wz) + 1) + - - + (degg(wyp,|) + 1) + | P,
andfort =1,2,...,0,
n > (degg(ul) + 1) + (degg(u?) + 1) + - - + (degg (uy™*) + 1).

Summing, we get
(64 1)n > > degg(v) + (6 + 1)|La| + | P']. (3)
vE(Uyery, M(y)

Similarly,

(6 +1)n> Z degq(v) + (6 + 1)|Ls| + | P'|. )

ve(Uyers M[y])

Adding (3) and (@), we get

200+ 1)n > Y degg(v) + (5 + 1)|Li| + 2| P'].
veL’

Analogously,
26+ 1)n > > degg(v) + (8 + 1)|Py| +2|L|.
veEP’
It follows that

46+ > Y degg(v) + Y degg(v) + (5 + 1)(|Li| + [Pi]) + 2(|P'| +|L]).
vel! veP!
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Therefore,

Z degg(v) = Z degg(v) + Z degg(v)

veM veL’ veP’
< A0+ 1)n— (6 + 1)(|L1| + |P1]) — 2(|P'| + [L'])

= 46+ D)n—3(6+1) QT;J + V_;OJ —4)
= (§+1)(dn —2r) + O(5),

and the claim is proven.
Now let Q@ = V(G) — M.

Claim 2 [fv € Q, then degg(v) <n— (6 +1) (| 552] + [=52]) + 60 + 4.

Proof of Claim[2} Assume that v € Q. Since L is a shortest path, v can only be adjacent to at most 2 + 1
vertices in L’. Similarly, v can only be adjacent to at most 25 + 1 vertices in P’. Note also that from ,
v cannot be adjacent to both a vertex from L’ and a vertex from P’. Hence v is adjacent to at most 24 + 1
vertices from M. In conjunction with (2), we get

degc(v)§n1|M+25+1n(5+1)(V31J + V;OJ 4>+25,

and so the claim is proven.

From (@),
|Q|_n—(5+1)(V31J + V;OD 45+ 4.

It follows from Claim [2] that

> degg(v) <

VEQ

(e (] [ o) oo ([ [0 ros)

For easy calculation, we use
r—1 n r—10 < 2r 6
3 3 3 ’
Thus,

3 degg(v) < <n—(5+1) (2;—6)+45+4> (n—(§+1) (237“—6> +65+4>

vEQR

- <n— %T(M 1))2 - (n— 2—;(5+ 1)) (226 + 20) + 12062 + O(9).
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This, in conjunction with Claim[T} yields

Z degg(v) = Z degq(v) + Z degq(v)

veV veEM vEQR

2
< 20641)@2n—r)+ (n - %T(H 1)) + (n - %(6+ 1)) (226 + 22) + 12062 + O(5)

(n— %T((H 1))2 +2(5+1) (13n— %(54— 1) —r) + 0(6?).

The bound in the theorem follows by an application of LemmalT]
Finally, to see that for a constant ¢ the bound is asymptotically tight, let n, » > 1, » = 1 (mod 3), and
0 > 2 be three integers. Let G, 5., be the graph with vertex set V(G 5,,) = Vo U V3 U -+ U Vy,, where

1 ifi = 0or2 (mod 3),
Vi = ] ifi=1,
‘ n—F0+1)+36-% ifi=2r—1,
0—1 otherwise,

with uv, u € V; and v € V}, being an edge of G,, 5, if and only if | — j| < 1. Then

1

m(Gn5,r) = 3 (n — 2%(5 + 1)) + 0(nd) + O(ré?) + 0(5?),

and the theorem is proven. O
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