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Combinatorics of non-ambiguous trees†‡
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Abstract. This article investigates combinatorial properties of non-ambiguous trees. These objects we define may
be seen either as binary trees drawn on a grid with some constraints, or as a subset of the tree-like tableaux previ-
ously defined by Aval, Boussicault and Nadeau. The enumeration of non-ambiguous trees satisfying some additional
constraints allows us to give elegant combinatorial proofs of identities due to Carlitz, and to Ehrenborg and Ste-
ingrı́msson. We also provide a hook formula to count the number of non-ambiguous trees with a given underlying
tree. Finally, we use non-ambiguous trees to describe a very natural bijection between parallelogram polyominoes
and binary trees.

Résumé. Cet article s’intéresse aux propriétés combinatoires des arbres non-ambigus. Ces objets, que nous défi-
nissons, peuvent être vus soit comme des arbres dessinés sur une grille sous certaines contraintes, soit comme un
sous-ensemble des tableaux boisés précédemment définis par Aval, Boussicault et Nadeau. L’énumération des arbres
non-ambigus satisfaisant des contraintes supplémentaires nous permet de donner des preuves combinatoires élégantes
d’identités dues à Carlitz, et à Ehrenborg et Steingrı́msson. Nous donnons aussi une formule des équerres pour le
comptage des arbres non-ambigus dont l’arbre sous-jacent est fixé. Enfin, nous utilisons les arbres non-ambigus pour
décrire une bijection très naturelle entre polyominos parallélogrammes et arbres binaires.
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1 Introduction
It is well known that Catalan numbers Cn = 1

n+1

(
2n
n

)
enumerate many combinatorial objects, such as

binary trees and parallelogram polyominoes. Several bijective proofs in the literature show that parallel-
ogram polyominoes are enumerated by Catalan numbers, the two most classical being Delest-Viennot’s
bijection with Dyck paths [DV84] and Viennot’s bijection with bicolored Motzkin paths [DV84].

In this paper we demonstrate a bijection –which we believe is more natural– between binary trees and
parallelogram polyominoes. In some sense, we show that parallelogram polyominoes may be seen as
two-dimensional drawings of binary trees. This point of view gives rise to a new family of objects – we
call them non-ambiguous trees – which are particular compact embeddings of binary trees in a grid.

†This short paper is an extended abstract of [ABBS], where details of the proofs are provided.
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The tree structure of these objects leads to a hook formula for the number of non-ambiguous trees with
a given underlying tree. Unlike the classical hook formula for trees due to Knuth (see [Knu98], §5.1.4,
Exercise 20), this one is defined on the edges of the tree.

Non-ambiguous trees are in bijection with permutations such that all their (strict) excedances stand at
the beginning of the permutation word. Ehrenborg and Steingrı́msson in [ES00] give a closed formula
(involving Stirling numbers of the second kind) for the number of such permutations. We show that this
formula can be easily proved using non-ambiguous trees and a variation of the insertion algorithm for
tree-like tableaux introduced in [ABN11]. Indeed, non-ambiguous trees can also be seen as a subclass of
tree-like tableaux, objects defined in [ABN11], that are in bijection with permutation tableaux [SW07] or
alternative tableaux [Nad11, Vie07].

A particular subclass of non-ambiguous trees leads to unexpected combinatorial interpretations. We
study complete non-ambiguous trees, defined as non-ambiguous trees such that their underlying binary
tree is complete, and show that their enumerating sequence is related to the formal power series of the
logarithm of the Bessel function of order 0. This gives rise to new combinatorial interpretations of some
identities due to Carlitz [Car63].

The paper is organized as follows: in Section 2 we define non-ambiguous trees. Then, in Section 3
we give the enumeration of non-ambiguous trees satisfying certain constraints: those contained into a
given rectangular box, and those with a fixed underlying tree. Section 4 introduces the family of complete
non-ambiguous trees, and studies the relations between this family and the Bessel function. Finally, in
Section 5 we describe our new bijection between binary trees and parallelogram polyominoes.

2 Definitions and notations
In this paper, trees are embedded in a bidimensional grid N × N. The grid is not oriented as usual: the
x-axis has south-west orientation, and the y-axis has south-east orientation, as shown on Figure 1.
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Fig. 1: The underlying grid for non-ambiguous trees

←→

Fig. 2: The edges of a non-ambiguous tree are not
necessary

Every x-oriented (resp. y-oriented) line will be called column (resp. row). Each column (resp. row) on
this grid is numbered with an integer corresponding to its y (resp. x) coordinate. A vertex v located on
the intersection of two lines has the coordinate representation: (X(v), Y (v)).

A non-ambiguous tree may be seen as a binary tree embedded in the grid in such a way that the embed-
ding of its vertices in the grid determines the tree completely (i.e. determines its edges – see Figure 2).

Formally, a non-ambiguous tree of size n is a set A of n points (x, y) ∈ N× N such that:
1. (0, 0) ∈ A; we call this point the root of A;
2. given a non-root point p ∈ A, there exists one point q ∈ A such that Y (q) < Y (p) and X(q) =
X(p), or one point r ∈ A such that X(r) < X(p), Y (r) = Y (p), but not both (which means that
the pattern is avoided);
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3. there is no empty line between two given points: if there exists a point p ∈ A such that X(p) = x
(resp. Y (p) = y), then for every x′ < x (resp. y′ < y) there exists q ∈ A such that X(q) = x′

(resp. Y (q) = y′).
Figure 3 shows some examples and counterexamples of non-ambiguous trees.

(a) Four non-ambiguous trees (b) These four are not non-ambiguous trees

Fig. 3: Some examples and counterexamples of non-ambiguous trees

It is straightforward that a non-ambiguous tree A has a tree structure: except for the root, every point
p ∈ A has a unique parent, which is the nearest point q preceding p in the same row (resp. column). In
this case, we will say that p is the right child (resp. left child) of q. In this paper, we orient every edge of
a tree from the root to the leaves. We shall denote by T (A) the underlying binary tree associated to A.

Figure 4 shows all the non-ambiguous trees of size 4, grouping inside a rectangle those having the same
underlying binary tree.

Fig. 4: The 16 non-ambiguous trees of size 4

Fig. 5: A tree-like
tableau

Remark 1 A tree-like tableau [ABN11] of size n is a set of n points placed in the
boxes of a Ferrers diagram such that conditions 1, 2, 3 defining non-ambiguous
trees are satisfied. Figure 5 shows an example of a tree-like tableau of size 7. It
should be clear that non-ambiguous trees are in bijection with tree-like tableaux
with rectangular shape.

3 Enumeration of non-ambiguous trees
Non ambiguous trees of size n are in bijection with permutations of size n with all their strict excedances
at the beginning. This fact is a consequence of Lemma 5 in [SW07] and of results proved in [ABN12].
The sequence (an)n≥1 counting the number of non-ambiguous tree of size n is referenced in [Slo] as
A136127 = [1, 2, 5, 16, 63, 294, 1585, 9692, . . . ], but no simple formula is known.

3.1 Non-ambiguous trees inside a fixed box
Given a non-ambiguous tree, its x-size (resp. y-size) may be defined as the maximum of the x-coordinate
(resp. y-coordinate) of its points. The aim of this subsection is to give a formula for the number A(k, `)



52 J.C. Aval, A. Boussicault, M. Bouvel, and M. Silimbani

of non-ambiguous trees with x-size equal to k and y-size equal to `. We denote by c(n, j) the unsigned
Stirling numbers of the first kind, i.e. the number of permutations of size n with exactly j disjoint cycles.

Proposition 2 For every integers n, `, one has:

n∑
k=1

c(n, k)A(k, `) = n`−1 n! . (1)

We may inverse (1) to get:

A(k, `) =

k∑
i=1

(−1)
k−i

S(k, i) i! i`−1, (2)

where S(k, i) denotes the Stirling numbers of the second kind, i.e. the number of partitions of a set
of k elements into i non-empty parts. Since (from [SW07, ABN12]) A(k, `) is equal to the number of
permutations of size k+`with exactly k strict excedances in position 1, 2, . . . , k, Equation (1) is equivalent
to Corollary 6.6 in [ES00]. In that paper, (2) is obtained through an inclusion-exclusion argument, and (1)
is deduced by inversion.

In our setting, we may interpret c(n, k) through tree-like tableaux. We refer to [ABN11] for definitions,
and basic properties. As mentioned in Remark 1, non-ambiguous trees are nothing but tree-like tableaux
with a rectangular shape. Permutations of size n with exactly j disjoint cycles are in bijection with tree-
like tableaux of size n with exactly j points in their first row (a consequence of Theorem 4.2 in [Bur07]
and of the results contained in [ABN12]). We are thus able to interpret (1) with unified objects: tree-like
tableaux and non-ambiguous trees.

With these tools, the proof of Proposition 2 is a simple use of a variation of the insertion algorithm
defined on tree-like tableaux in [ABN11], but we cannot give the details in this extended abstract.

3.2 Non-ambiguous trees with a fixed underlying tree: a new hook formula
Let T be a binary tree. We define NA(T ) as the number of non-ambiguous trees A such that their
underlying binary tree T (A) is T . The aim of this section is to get a formula for NA(T ): this will be
done by Proposition 6, which shows thatNA(T ) may be expressed by a new and elegant hook formula on
the edges of T . To do this, we encode any non-ambiguous tree A by a triple Φ(A) = (T, αL, αR) where
T is a binary tree, and αL (resp. αR) is a word called the left (resp. right) code of A. To distinguish the
vertices of A, we label them by integers from 1 to the size of A, as shown on Figure 6.
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Fig. 6: A non-ambiguous tree A with labeled vertices, and the associated binary tree T

The first entry in Φ(A) is the underlying binary tree T associated to A. Observe that we keep the labels
on vertices when we extract the underlying binary tree. Now we denote by VL (resp. VR) the set of the
end points of the left (resp. right) edges of A, which gives VL = {2, 3, 8, 7} and VR = {5, 6, 4} on the
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example in Figure 6. The definition of non-ambiguous trees ensures that the set {X(v), v ∈ VL} is the
interval {1, . . . , |VL|}. Thus for i = 1, . . . , |VL|, we may set αL(i) as the unique label v ∈ VL such that
X(v) = i, and we proceed symmetrically for αR. On the example of Figure 6, we have: αL = 2378 and
αR = 564. Our starting point is the following lemma.

Lemma 3 The application Φ which sends A to the triple (T, αL, αR) is injective.

Proof: The proof shall not be detailed here: it is elementary to check that, given the tree T , the left and
right codes uniquely determine the coordinates of every point in A. 2

Lemma 3 allows us to encode a non-ambiguous tree A by a triple (T, αL, αR), where T is a binary
tree, and αL (resp. αR) is a word in which every label v ∈ VL (resp. VR) appears exactly once. Of

course, Φ is not surjective on such triples. If we take T =
1

2

3
, it should be clear that αL is forced

to be 23. Consequently, our next task is to characterize the pairs of codes (αL, αR) which are compatible
with a given binary tree T , i.e. such that (T, αL, αR) is in the image of Φ. In order to describe this
characterization, we need to define partial orders on the sets VL and VR. The pairs (αL, αR) of compatible
codes will be seen to correspond to pairs of linear extensions of the posets VL and VR. The posets are
defined as follows: given a, b ∈ VL (resp. VR), we say that a ≤ b if and only if there exists a path in the
oriented tree starting from a and ending at b. Figure 7 and Figure 9 (with minima at the top) illustrate this
notion.

T =

1

2

3

4

5

6

VL = 2 6 VR =

3

4

5

Fig. 7: The posets VL and VR of a tree T

The next lemma is the crucial step to prove Proposition 6.

Lemma 4 Given a binary tree T , the pairs of codes compatible with T are exactly the pairs (αL, αR)
where αL is a linear extension of VL and αR is a linear extension of VR.

Figure 8 gives these compatible codes, together with the corresponding non-ambiguous trees, in the
case of the tree T of Figure 7.
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Fig. 8: Non-ambiguous trees of the tree T of Figure 7

Proof: We shall only give the main arguments of the proof.
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Given a tree T , consider the map ΦT defined on the set of non-ambiguous trees with underlying tree T
as follows:

ΦT (A) := (αL, αR),

where Φ(A) = (T, αL, αR). Since Φ is injective (by Lemma 3), so is ΦT . It remains to prove that the
image of ΦT is L(VL)× L(VR), where we denote by L(P ) the set of linear extensions of a poset P .

First, we prove that ImΦT ⊆ L(VL) × L(VR). Without loss of generality, we will prove that αL ∈
L(VL). We need to prove that, if s <VL

t, then s precedes t in αL, which we shall write s <αL
t. If

s <VL
t, there exists a path in T starting from s and ending at t. When we go through the path, the

X-coordinates of the vertices remain unchanged along right edges, while they increase along left edges.
Since s 6= t, we have X(s) < X(t), which is equivalent to s <αL

t.
Now the hard part is to prove that L(VL) × L(VR) ⊆ ImΦT . Let (αL, αR) ∈ L(VL) × L(VR). It is

always possible to use the triple (T, αL, αR) to build a set of points in the grid which we may denote by
A: we just have to place the root at position (0, 0) and every other vertex v of T at the position{

X(v) = i with αL(i) = v and Y (v) = Y (parent(v)) if v ∈ VL;
X(v) = X(parent(v)) and Y (v) = j with αR(j) = v if v ∈ VR.

The goal is to prove that A is a non-ambiguous tree, which is quite technical. The main steps are:
1. check that for every left (resp. right) edge (s, t) of T , we have X(s) < X(t) (resp. Y (s) < Y (t))

in A;
2. prove that A avoids the pattern ;
3. check that two different vertices in T occupy different positions in A. 2

Now we come to the final step toward proving Proposition 6.

Lemma 5 The Hasse diagrams of VL and VR are forests.

Figure 9 shows an example of the forests obtained by computing the Hasse diagrams of VL and VR.
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Fig. 9: The Hasse diagrams H(VL) and H(VR) of VL and VR are forests

Proof: We prove this proposition by contradiction. Suppose that there is a cycle in the Hasse diagram of
VR (the case of VL is analogous). We can deduce from the poset structure that there are two paths in VR
starting from an element v and ending at w. This would imply that in the tree there are two different paths
from v to w, and hence there would be a cycle in the tree. 2

As a consequence the number of non-ambiguous trees with underlying tree T is given by the product of
the results of Knuth’s hook formula [Knu98] applied to the Hasse diagram of VL and to the Hasse diagram
of VR. We can make this more precise. To do so, we associate to each edge an integer ne. Given a left
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edge e (resp. right edge) the integer ne is the number of left edges (resp. right edges) contained in the
subtree whose root is the ending point of e, plus 1.

Proposition 6 The number of non-ambiguous trees with underlying tree T is given by

NA(T ) =
#{left edges}! #{right edges}!∏

e∈VL

ne
∏
e∈VR

ne
. (3)

This new hook formula is illustrated by Figure 10.

NA


1

1

3
1

1

1

2

1

2
 =

5! · 4!

1 · 1 · 1 · 1 · 3 · 1 · 1 · 2 · 2

Fig. 10: A hook formula for non-ambiguous trees

Remark 7 Equation (3) gives a way to compute the number of permutations of size n with all their strict
excedances at the beginning, by summing over all binary trees T with n vertices.

4 Complete non-ambiguous trees and Bessel function
4.1 Definition and enumeration of complete non-ambiguous trees
A non-ambiguous tree is complete whenever its vertices have either 0 or 2 children. An example of
complete non-ambiguous tree can be found in Figure 11. A complete non-ambiguous tree has always
an odd number of vertices. Moreover, as in complete binary trees, a complete non-ambiguous tree with
2k + 1 vertices has exactly k internal vertices, k + 1 leaves, k right edges and k left edges. Denote by bk
the number of complete non-ambiguous trees with k internal vertices. The sequence (bk)k≥0 is known in
[Slo] as A002190 = [1, 1, 4, 33, 456, 9460, . . . ], and two remarkable identities satisfied by this sequence
are given by Carlitz [Car63]. Propositions 8 and 10 give combinatorial interpretations for these identities.

Denote by Cn the number of complete binary trees with n internal vertices. It is well-known that
Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number, and that, for every n ≥ 0, we have the identity:

Cn+1 =
∑
i+j=n

CiCj . (4)

Proposition 8 gives a variant of this identity for complete non-ambiguous trees:

Proposition 8 For every n ≥ 0, we have:

bn+1 =
∑
i+j=n

(
n+ 1

i

)(
n+ 1

j

)
bi bj . (5)
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A = −→ AL = AR =

Fig. 11: The root suppression in a complete non-ambiguous tree

Proof: The proof of this proposition is similar to the classical proof of (4): the left (resp. right) subtreeAL
(resp. AR) of a complete non-ambiguous tree A with n+ 1 internal vertices is a complete non-ambiguous
tree with i (resp. j) internal vertices, where i+ j = n.

Figure 11 shows an example of left and right subtree of a complete non-ambiguous tree.
Hence, in order to construct an arbitrary complete non-ambiguous tree A with n + 1 internal vertices,

we need to choose:
• the number i of internal vertices contained in AL (i may range between 0 and n, the number j is

equal to n− i);
• the complete non-ambiguous tree structure of AL (resp. AR) – we have bi (resp. bj) choices;
• the way of interlacing the right (resp. left) edges of AL and AR.

We denote by u1, u2, . . . , ui (resp. v1, v2, . . . , vj) the end points of the right edges in AL (resp. AR)
such that if k < l, then Y (uk) < Y (ul) (resp. Y (vk) < Y (vl)), and by u0 and v0 the roots of AL and
AR. Now, if we want to interlace the right edges in AL with those in AR, we need to decide at what
positions we want to insert the vertices u1, u2, . . . , ui with respect to v0, v1, v2, . . . , vj , saving the relative
order among u0, u1, u2, . . . , ui and v0, v1, v2, . . . , vj . A vertex uk can be placed either to the left of v0,
or between vt and vt+1 (0 ≤ t ≤ j − 1), or to the right of vj .

Hence, we must choose the i positions of u1, u2, . . . , ui (multiple choices of the same position are
allowed) among j + 2 possible ones. This shows that there are

((
j+2
i

))
=
(
i+j+1
i

)
=
(
n+1
i

)
ways

of interlacing the right edges of the subtrees AL and AR, where
((
a
b

))
denotes the number of way of

choosing b objects within a, with possible repetitions.
Analogous arguments apply to left edges. In this case, we have

((
i+2
j

))
=
(
n+1
j

)
different interlace-

ments. This ends the proof. 2

Corollary 9 The sequence bk satisfies the following identity

∑
k≥0

bk
x2(k+1)

((k + 1)!2k+1)2
= − ln (J0(x)) . (6)

Proof: It is well known (see, e.g., [AS64]) that the Bessel function J0(x) =
∑
k≥0

jkx
k satisfies the

differential equation
d2y

dx2
+

1

x

d y

dx
+ y = 0, (7)

The first coefficients in its series expansion are j0 = 1 and j1 = 0.
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Consider now the function B(x) = exp

−∑
k≥0

bk
x2(k+1)

((k + 1)!2k+1)2

 =
∑
k≥0

βkx
k. Equation (5)

ensures that B(x) satisfies Equation (7), i.e. the same second order differential equation as J0(x).

Setting x = 0, we have β0 = B(0) = 1 = j0. Moreover, in Z(x) = −
∑
k≥0

bk
x2(k+1)

((k + 1)!2k+1)2
only the

even powers of x have non-zero coefficients. Hence, since B(x) = exp (Z(x)) =
∑
k≥0

Z(x)k

k!
, we have

β2i+1 = 0 for every i ≥ 0. In particular, β1 = 0 = j1. These arguments imply that B(x) = J0(x). 2

4.2 Proving identities combinatorially
Corollary 9 shows that non-ambiguous trees provide a combinatorial interpretation –and to our knowledge,
the first one– of sequence A002190 [Slo].
In [Car63], the author shows analytically that identities (5) and (8) below are equivalent. We give a
combinatorial proof of this fact.

Proposition 10 For every n ≥ 1, we have:

n−1∑
k=0

(−1)k
(

n

k + 1

)(
n− 1

k

)
bk = 1. (8)

Fig. 12: An example of gridded
tree with 2 internal vertices drawn
on a 6× 6 grid

Proof: We fix an integer n and we take 0 ≤ k ≤ n − 1. We define
a gridded tree of size (k, n) to be a set of 2k + 1 points placed in a
n × n grid, such that Condition 2 defining non-ambiguous trees is sat-
isfied (which means we consider a non-ambiguous tree of size 2k + 1
embedded in a n×n grid) and such that the underlying tree is complete
and that its root belongs to the first column. This implies that there are
n− k − 1 empty columns and n− k − 1 empty rows, and that the first
column is not empty. Figure 12 shows an example of a gridded tree of
size (2, 6).
It is easy to verify that there are

(
n
k+1

)(
n−1
k

)
bk gridded tree of size

(k, n). We call trivial gridded tree the tree of size (0, n) consisting
of a single vertex in (0, 0). Now, for every integer n, we define an
involution on the set of non trivial gridded trees. This involution associates a gridded tree of size (k, n)
with a gridded tree either of size (k − 1, n) or (k + 1, n).
To define this involution, consider a gridded tree of size (k, n) and add a virtual root at position (−1, 0);
the previous root becomes the left child of the virtual root. Now consider the path starting from the virtual
root, going down through the tree, turning at each internal vertex, and ending at a leaf. This path is unique.
There are two cases:

1. the path does not cross an empty row, nor an empty column: we erase the leaf and its parent from
the tree, getting a new gridded tree of size (k − 1, n). We can always erase the leaf and its parent,
except if the parent were the virtual root. This happens only if the tree is the trivial gridded tree. As
we restricted to non trivial gridded trees, this case never happens.
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2. the path crosses an empty row or an empty column: we choose the first empty row or column met
while visiting the path. Without loss of generality, we suppose that it is a column, say c. Then,
we add a new vertex v at the position where c crosses the path, and we add in the same column a
new leaf (whose parent is v) in the topmost empty row. While visiting the path, we did not meet an
empty row. Since there are as many empty rows as empty columns, there is always an empty row
below v. This operation gives rise to a new gridded tree of size (k + 1, n).

Figure 13 shows how the involution acts on two examples.

r

1.−−−−→
←−−−−

2.

r

r

1.−−−−→
←−−−−

2.

r

Fig. 13: The involution acting on two examples of non trivial gridded trees

Remark that adding (resp. removing) a leaf and its parent p in (resp. from) a gridded tree following the
previous algorithm does not remove (resp. add) any empty row or column that crosses the path from the
virtual root to p. For this reason, this operation is an involution. 2

In a similar fashion to the proof of Proposition 10, it is possible to prove that Catalan numbers satisfy∑n
k=0(−1)n+k

(
n+k
n−k
)
Ck = 0, for any n ≥ 1. This identity and Proposition 10 allow us to prove a further

identity involving the sequence bn. Our proof uses the methodology described in [PWZ96] and settles a
conjecture of P. Hanna (see [Slo] sequence A002190):

Proposition 11 For every n ≥ 1, we have
n∑
k=0

(−1)kbkCk

(
n+ k

n− k

)2

= 0.

5 A new bijection between trees and parallelogram polyominoes
We recall that a parallelogram polyomino of size n is a pair of lattice paths of length n+1 with south-west
and south-east steps starting at the same point, ending at the same point, and never meeting each other.
Figure 14 shows some examples of parallelogram polyominoes of size 4. The two paths defining a given
parallelogram polyomino delimit a connected set of boxes. We will consider the parallelogram polyomino
from this point of view.

We now describe a bijection between parallelogram polyominoes of size n and binary trees with n
vertices by showing that a parallelogram polyomino hides a non-ambiguous tree.

Given a parallelogram polyomino P , consider the set SP of dots defined as follows:

• we enlighten P from north-west to south-east and from north-east to south-west;
• we put a dot in the enlightened boxes.
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Fig. 14: Example of parallelogram polyominoes of size 4

It is easy to verify that SP is a non-ambiguous tree. Indeed, it is impossible that all three points in
the pattern are enlightened. Moreover, only the northernmost box in the parallelogram polyomino
can be enlightened twice. This implies that every dot (except for the one in the northernmost box) has a
parent. Let Ψ be the application that associates to a parallelogram polyomino the underlying binary tree
of SP . An example of this application is shown in Figure 15.

non-ambiguous−−−−−−−−→
tree

tree−−→

Fig. 15: Parallelogram polyominoes are just a way of drawing a binary tree in the plane

Proposition 12 The map Ψ is a bijection between the set of parallelogram polyominoes of size n and the
set of binary trees with n vertices.

Proof: We are able in [ABBS] to describe explicitly the inverse of Ψ. But in this extended abstract, we
shall only prove that Ψ is injective. Since the two considered sets have the same cardinality, this is enough
to prove Proposition 12. In order to do that, we will construct a parallelogram polyomino P and the
associated tree Ψ(P ) (actually, a non-ambiguous tree of shape Ψ(P )) at the same time. More precisely,
when creating the parallelogram polyomino, we start from the origin of the two paths, and we add:

Fig. 16: An example of
parallelogram polyomino
with its tree under con-
struction

• one step to each of the two paths at a time in the parallelogram poly-
omino;
• the enlightened dot(s) corresponding to the inserted steps, when needed.

Figure 16 shows an example of this construction.
Consider two different parallelogram polyominoes and construct them simul-
taneously, together with the associated non-ambiguous trees. While the begin-
ning of the paths are the same, the associated trees are also the same. Consider
the first time where one path in the first parallelogram polyomino differs from
its homologous in the other parallelogram polyomino. One of the two added
steps will be SW-oriented, and the other will be SE-oriented. This means that,
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only one of these steps is associated with a new dot, connected to its parent v. The dot v exists in both
trees, but it does not have the same number of children in both trees. 2

Acknowledgements
The authors are grateful to Philippe Nadeau for helpful discussions around rectangular alternative tableaux.

This research was driven by computer exploration using the open-source mathematical software Sage
[S+12] and its algebraic combinatorics features developed by the Sage-Combinat community [SCc12].

References
[ABBS] J.-C. Aval, A. Boussicault, M. Bouvel, and M. Silimbani. Combinatorics of non-ambiguous trees. Full

version in preparation.

[ABN11] J.-C. Aval, A. Boussicault, and P. Nadeau. Tree-like tableaux. In DMTCS Proceedings 23rd International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pages 63–74, Islande,
2011. DMTCS.

[ABN12] J.-C. Aval, A. Boussicault, and P. Nadeau. Tree-like tableaux. Full version, in preparation. 2012.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. U.S. Government
Printing Office, Washington, D.C., 1964.

[Bur07] A. Burstein. On some properties of permutation tableaux. Ann. Comb., 11(3-4):355–368, 2007.

[Car63] L. Carlitz. A sequence of integers related to the Bessel functions. Proc. Amer. Math. Soc., 14:1–9, 1963.

[DV84] M.-P. Delest and G. Viennot. Algebraic languages and polyominoes enumeration. Theoretical Computer
Science, 34(1-2):169 – 206, 1984.

[ES00] R. Ehrenborg and E. Steingrı́msson. The excedance set of a permutation. Advances in Applied Mathemat-
ics, 24(3):284 – 299, 2000.

[Knu98] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[Nad11] P. Nadeau. The structure of alternative tableaux. J. Combin. Theory Ser. A, 118(5):1638–1660, 2011.
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