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Cuts and Flows of Cell Complexes
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Abstract. We study the vector spaces and integer lattices of cuts and flows of an arbitrary finite CW complex, and
their relationships to its critical group and related invariants. Our results extend the theory of cuts and flows in graphs,
in particular the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces,
interpret their coefficients topologically, and describe sufficient conditions for them to be integral bases of the cut
and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and
flow lattices and the higher critical and cocritical groups; these are expressed as short exact sequences with error
terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give
bounds for the complexity, girth, and connectivity of a complex in terms of Hermite’s constant.

Resumé. Nous étudions les espaces vectoriels et les réseaux entiers des coupures et flots d’un CW-complexe arbi-
traire fini, et leur relations avec son groupe critical et invariants similaires. Nos résultats développent la théorie des
coupures et flots dans les graphes, en particulier le travail de Bacher, de la Harpe et Nagnibeda. Nous construisons
des bases explicites pour les espaces des coupures et des flots, donnons une description topologique de leurs coeffi-
cients, et décrivons conditions suffisants pour qu’ils soient des bases entières des réseaux des coupures et des flots.
De plus, nous déterminons les relations précises entre les groupes discriminantes des réseaux, et les groupes criti-
cal et cocritical; ces relations prennent la forme des suites exactes courtes, avec termes correspondant à la torsion
(co)homologie. Comme application, nous généralisons un résultat de Kotani et Sunada sur bornes pour la complexité,
la circonférence, et la connectivité d’un CW-complexe en termes de la constante d’Hermite.
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1 Introduction
This paper is about vector spaces, integer lattices of cuts and flows, and finite group invariants associated
with a finite cell complex.

By way of background, the critical group of a graph is a finite abelian group whose order is the number
of spanning forests. The definition was introduced independently in several different settings, including
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arithmetic geometry Lorenzini [1991], physics Dhar [1990], and algebraic geometry Bacher et al. [1997]
(where it is also known as the Picard group or Jacobian group). It has received considerable recent atten-
tion for its connections to discrete dynamical systems, tropical geometry, and linear systems of curves;
see, e.g., Baker and Norine [2007], Biggs [1999], Bond and Levine [2011], Haase et al. [2012].

In previous work, the authors studied cellular generalizations of the graph-theoretic concepts of span-
ning trees Duval et al. [2009, 2011a] and the critical group Duval et al. [2011b]. To summarize, a cellular
spanning tree of a d-dimensional CW-complex Σ is a subcomplex Υ ⊆ Σ generated by facets corre-
sponding to a column basis of the cellular boundary matrix ∂ : Cd(Σ) → Cd−1(Σ). The critical group
K(Σ) is the torsion part of the cokernel of the combinatorial Laplacian ∂∂∗, and its order is a weighted
enumeration of the cellular spanning trees of Σ. Moreover, the action of the critical group on cellular
(d − 1)-cochains gives a model of discrete flow on Σ, generalizing the chip-firing and sandpile models;
see, e.g., Biggs [1999], Dhar [1990].

The lattices C and F of integral cuts and flows of a graph were first defined in Bacher et al. [1997], in
which the authors regarded a graph as an analogue of a Riemann surface and interpreted the discriminant
groups C]/C and F ]/F respectively as the Picard group of divisors and as the Jacobian group of holo-
morphic forms. In particular, they showed that the critical group K(G) is isomorphic to both C]/C and
F ]/F . Similar definitions and results appear in Biggs [1999].

Here, we define the cut and flow spaces and lattices of a cell complex Σ by

Cut(Σ) = imR ∂
∗, Flow(Σ) = kerR ∂,

C(Σ) = imZ ∂
∗, F(Σ) = kerZ ∂.

In topological terms, cut- and flow-vectors are cellular coboundaries and cycles, respectively. Equiv-
alently, the vectors in Cut(Σ) support sets of facets whose deletion increases the codimension-1 Betti
number, and the vectors in Flow(Σ) support nontrivial rational homology classes. In the language of
matroid theory, cuts and flows correspond to cocircuits and circuits, respectively, of the cellular matroid
represented by the columns of ∂. Indeed, every cellular spanning tree Υ ⊆ Σ gives rise to a natural basis
for each of the cut and flow spaces, whose elements are supported on fundamental cocircuits and circuits
of Υ, respectively. In the graph case the coefficients of these basis vectors are ±1; in the general case,
they are (up to sign) the cardinalities of homology groups of cellular spanning trees obtained from Υ by
matroid basis exchange. Under certain conditions, these vector space bases are in fact integral bases for
the cut and flow lattices (Theorem 4.3).

The idea of studying cuts and flows of matroids goes back to Tutte [1965]. The recent work Su and
Wagner [2010] defines cuts and flows of a regular matroid (i.e., one represented by a totally unimodular
matrixM ); whenM is the boundary matrix of a cell complex, this is the case where the torsion coefficients
are all trivial. Su and Wagner’s definitions coincide with ours; their focus, however, is on recovering the
structure of a matroid from the metric data of its flow lattice.

As we will see, the groups C]/C and F ]/F are not necessarily isomorphic to each other. Their precise
relationship involves several other groups: the critical group K(Σ), a dually defined cocritical group
K∗(Σ), and the cutflow group Zn/(C ⊕ F). We show (Theorem 5.5) that the critical and cocritical
groups are respectively isomorphic to the discriminant groups of the cut lattice and flow lattice, and that
the cutflow group mediates between them with an “error term” given by homology. The sizes of the
critical and cocritical groups are respectively torsion-weighted enumerators for cellular spanning trees
and for relatively acyclic subcomplexes. As an application of our theory, we generalize a theorem of
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Kotani and Sunada [2000] to obtain a geometric bound for the girth and complexity of a cellular matroid
(Theorem 6.2).

This is an extended abstract of the full article Duval et al. [2012], to which the reader is referred for the
proofs of all results stated herein.

2 Preliminaries
We assume that the reader is familiar with the basic topology of cell complexes. In general, we adopt the
notation of Hatcher [2002] for chain groups, (co)homology, etc. Throughout the paper, Σ will denote a
finite CW complex of dimension d. We adopt the convention that Σ has a unique cell of dimension −1
(as though it were an abstract simplicial complex); this will allow our results to specialize correctly to
the case d = 1 (i.e., that Σ is a graph). We write Σi for the set of i-dimensional cells in Σ, and Σ(i)

for the i-dimensional skeleton of Σ, i.e., Σ(i) = Σi ∪ Σi−1 ∪ · · · ∪ Σ0. A cell of dimension d is called
a facet. Unless otherwise stated, every d-dimensional subcomplex Γ ⊆ Σ is assumed to have a full
codimension-1 skeleton, i.e., Γ(d−1) = Σ(d−1). Accordingly, for simplicity of notation, we will often
make no distinction between the subcomplex Γ itself and its set Γd of facets. For a coefficient ring R,
we say that Σ is R-acyclic in codimension one if H̃d−1(Σ;R) = 0. For a graph (d = 1), both Q-
and Z-acyclicity in codimension one are equivalent to connectedness. The ith reduced Betti number is
β̃i(Σ) = dim H̃i(Σ;Q), and the ith torsion coefficient ti(Σ) is the cardinality of the torsion subgroup
T(H̃i(Σ;Z)).

A cellular spanning forest (CSF) of Σ is a subcomplex Υ ⊆ Σ such that Υ(d−1) = Σ(d−1) and

H̃d(Υ;Z) = 0, (1a)

rank H̃d−1(Υ;Z) = rank H̃d−1(Σ;Z), and (1b)

|Υd| = |Σd| − β̃d(Σ) + β̃d−1(Σ). (1c)

These conditions generalize the definition of a spanning forest of a graph G: respectively, it is acyclic,
connected, and has n − c edges, where n and c are the numbers of vertices and components of G. (By
“spanning forest,” we mean a maximal acyclic subgraph, not merely an acyclic subgraph containing all
vertices.) Just as in the graphic case, any two of the conditions (1a), (1b), (1c) together imply the third.
An equivalent definition is that a subcomplex Υ ⊆ Σ is a cellular spanning forest if and only if its d-cells
correspond to a column basis for the cellular boundary matrix ∂ = ∂d(Σ). In the case that Σ is Q-acyclic
in codimension one, this definition specializes to our earlier definition of a cellular spanning tree [Duval
et al., 2011a, Definition 2.2].

The complexity of Σ is

τ(Σ) = τd(Σ) =
∑

CSFs Υ⊆Σ

|T(H̃d−1(Υ;Z))|2. (2)

When d = 1, this is just the number of spanning forests. More generally, the complexity can be calculated
using a generalization of the matrix-tree theorem, as we now describe. Define the ith up-down, down-up
and total Laplacian operators of Σ by

Lud
i = ∂i+1∂

∗
i+1 : Ci(Σ)→ Ci(Σ), Ldu

i = ∂∗i ∂i : Ci(Σ)→ Ci(Σ), Ltot
i = Lud

i + Ldu
i .
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(These are discrete versions of the Laplacian operators on differential forms of a Riemannian manifold.
The interested reader is referred to Eckmann [1945] and Dodziuk and Patodi [1976] for their origins in
differential geometry and, e.g., Denham [2001], Friedman [1998], Merris [1994] for more recent appear-
ances in combinatorics.) The cellular matrix-tree theorem [Duval et al., 2011a, Theorem 2.8] states that
if Σ is Q-acyclic in codimension one and LῩ is the submatrix of Lud

d−1(Σ) obtained by deleting the rows
and columns corresponding to the facets of a (d− 1)-spanning tree Υ, then

τ(Σ) =
|T(H̃d−2(Σ;Z))|2

|T(H̃d−2(Υ;Z))|2
detLῩ.

One of our first results is that the condition H̃d−1(Σ;Q) = 0 can be dropped; see equation (3.3) below.
Closely related results, also applicable to all cell complexes, appear in Catanzaro et al. [2012] and Lyons
[2009].

A lattice L is a discrete subgroup of a finite-dimensional vector space V ; that is, it is the set of integer
linear combinations of some basis of V . (For background, see, e.g., [Artin, 1991, Chapter 12], [Godsil
and Royle, 2001, Chapter 14], [Hungerford, 1980, Chapter IV].) Every lattice L ⊆ Rn is isomorphic to
Zr for some integer r ≤ n, called the rank of L. The elements of L span a vector space denoted by L⊗R.
For L ⊆ Zn, the saturation of L is defined as L̂ = (L⊗R)∩Zn. An integral basis of L is a set of linearly
independent vectors v1, . . . , vr ∈ L such that L = {c1v1 + · · ·+ crvr : ci ∈ Z}. Fixing the standard inner
product 〈·, ·〉 on Rn, we define the dual lattice of L by

L] = {v ∈ L ⊗ R : 〈v, w〉 ∈ Z ∀w ∈ L}.

Note that L] can be identified with the dual Z-module L∗ = Hom(L,Z), and that (L])] = L. A lattice
is called integral if it is contained in its dual; for instance, any subgroup of Zn is an integral lattice.
The discriminant group (or determinantal group) of an integral lattice L is L]/L; its cardinality can be
calculated as detMTM , for any matrix M whose columns form an integral basis of L.

Many of our results of the paper may be expressed in the language of matroids, with which we assume
the reader is familiar (for a general reference on matroids, see, e.g., Oxley [1992]). We adopt the following
notation. IfM is a matroid on ground set E and B is a basis ofM, then for every e ∈ Bthe fundamental
bond (or fundamental cocircuit) of e with respect to B is

bo(B, e) = {f ∈ E : B \ {e} ∪ {f} is a basis ofM

and for every e 6∈ B the fundamental circuit is

ci(B, e) = {f ∈ E : B ∪ {e} \ {f} is a basis ofM.

The cellular matroid of Σ is the matroid M(Σ) represented over R by the columns of the boundary
matrix ∂. Thus the ground set ofM(Σ) naturally corresponds to the d dimensional cells Σd, andM(Σ)
records which sets of columns of ∂ are linearly independent. If Σ is a graph, then M(Σ) is its usual
graphic matroid, while if Σ is a simplicial complex thenM(Σ) is its simplicial matroid (see Cordovil and
Lindström [1987]). The bases ofM(Σ) are the collections of facets of cellular spanning forests of Σ. If r
is the rank function of the matroidM(Σ), then for each set of facets B ⊆ Σd, we have r(B) = rank ∂B ,
where ∂B is the submatrix consisting of the columns indexed by the facets in B. Moreover, we have

r(Σ) := r(Σd) = rankM(Σ) = rank ∂ = |Σd| − β̃d(Σ)
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by the definition of Betti number.
A set of facets B ⊆ Σd is called a cut if deleting B from Σ increases its codimension-one homology,

i.e., β̃d−1(Σ \B) > β̃d−1(Σ). A cut B is a bond if r(Σ \B) = r(Σ)− 1, but r((Σ \B)∪ σ) = r(Σ) for
every σ ∈ B. That is, a bond is a minimal cut. In matroid terminology, a bond of Σ is precisely a cocircuit
ofM(Σ), i.e., a minimal set that meets every basis ofM(Σ). Equivalently, a bond is the complement of
a flat of rank r(Σ)− 1.

It is important to point out that the cut and flow spaces and lattices of a complex Σ are not matroid
invariants, i.e., they are not determined by the cellular matroid M(Σ). (See Su and Wagner [2010]
for more on this subject.) Below is a table collecting some of the standard terminology from linear
algebra, graph theory, and matroid theory, along with the analogous concepts that we will be using for cell
complexes.

Linear algebra Graph Matroid Cell complex
Column vectors Edges Ground set Facets
Independent set Acyclic subgraph Independent set Acyclic subcomplex

Min linear dependence Cycle Circuit Circuit
Basis Spanning forest Basis CSF

Set meeting all bases Disconnecting set Codependent set Cut
Min set meeting all bases Bond Cocircuit Bond

Rank # edges in spanning forest Rank # facets in CSF

Here “codependent” means dependent in the dual matroid.

3 Enumerating Cellular Spanning Forests
Our first result generalizes the simplicial and cellular matrix-tree theorems of Duval et al. [2009] and
Duval et al. [2011a] (where we required that Σ be Q-acyclic in codimension one). Closely related results
have been obtained independently Catanzaro et al. [2012] and Lyons [2009].

Definition 3.1 Let Σ be a d-dimensional cell complex with rank r. Let Γ ⊆ Σ be a subcomplex of
dimension less than or equal to d− 1 such that Γ(d−2) = Σ(d−2). We say that Γ is relatively acyclic if the
inclusion map i : Γ→ Σ induces isomorphisms i∗ : H̃k(Γ;Q)→ H̃k(Σ;Q) for all k < d.

By the long exact sequence for relative homology, Γ is relatively acyclic if and only if H̃d(Σ;Q) →
H̃d(Σ,Γ;Q) is an isomorphism and H̃k(Σ,Γ;Q) = 0 for all k < d. These conditions can occur only if
|Γd−1| = |Σd−1| − r. This quantity may be zero (in which case the only relatively acyclic subcomplex is
Σ(d−2)). A relatively acyclic subcomplex is precisely the complement of a (d− 1)-cobase (a basis of the
matroid represented over R by the rows of the boundary matrix ∂) in the terminology of Lyons [2009].
Two special cases are worth noting. First, if d = 1, then a relatively acyclic complex consists of one
vertex in each connected component. Second, if H̃d−1(Σ;Q) = 0, then Γ is relatively acyclic if and only
if it is a cellular spanning forest of Σ(d−1).

For a matrix M , denote by MA,B the submatrix with rows A and columns B.

Proposition 3.2 Let Σ be a d-dimensional cell complex, let Υ ⊆ Σ be a cellular spanning forest, and let
Γ ⊆ Σ be a relatively acyclic (d− 1)-subcomplex. Then

td−1(Υ) td−1(Σ,Γ) = td−1(Σ) td−1(Υ,Γ).

The proof uses the following observation: the maximal nonsingular square submatrices of ∂ are pre-
cisely those whose columns correspond to a cellular spanning tree Υ and whose rows correspond to a
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relatively acyclic subcomplex Γ, and in this case the determinant of such a matrix is (up to sign) the
cardinality of the relative complex (Υ,Γ).

Expanding detLΓ with the Binet-Cauchy formula and using the fact that |det ∂Γ,Υ| = td−1(Υ,Γ)
(where Υ is a cellular spanning tree and Γ is a subcomplex generated by r ridges) implies the following
formula for the complexity of Σ.

Proposition 3.3 Let Σ be a d-dimensional cell complex and let Γ ⊆ Σ be a relatively acyclic (d − 1)-
dimensional subcomplex, and let LΓ be the restriction of Lud

d−1(Σ) to the (d− 1)-cells of Γ. Then

τd(Σ) =
td−1(Σ)2

td−1(Σ,Γ)2
detLΓ.

As an example of the usefulness of homological techniques, suppose that H̃d−1(Σ;Z) is purely torsion
(a frequent case). Then the relative homology sequence of the pair (Σ,Γ) gives rise to the exact sequence

0→ T(H̃d−1(Σ;Z))→ T(H̃d−1(Σ,Γ;Z))→ T(H̃d−2(Γ;Z))→ T(H̃d−2(Σ;Z))→ 0

which implies that td−1(Σ)/td−1(Σ,Γ) = td−2(Σ)/td−2(Γ). Thus, Proposition 3.3 becomes the for-
mula τd(Σ) = td−2(Σ)2

td−2(Γ)2 detLΓ, which was one of the original versions of the cellular matrix-tree theorem
[Duval et al., 2011a, Theorem 2.8(2)] (see also Catanzaro et al. [2012] and Lyons [2009]).

4 Bases of the Cut and Flow Spaces
As before, let Σ be a cell complex of dimension d and rank r; that is, every cellular spanning forest of Σ
has r facets), and identify cellular chains and cochains by the standard inner product. We wish to construct
combinatorially meaningful bases for the cut space im ∂∗d and the flow space ker ∂d. We first recall the
construction in the case of a graph.

There are two natural ways to construct bases of the cut space of a graph. First, if G is a graph on
vertex set V and R is a set of (“root”) vertices, one in each connected component, then the rows of ∂
corresponding to the vertices V \R form a basis for Cut1(G). This observation generalizes easily to cell
complexes: a set of r rows of the top-dimensional boundary matrix forms a row basis if and only if the
corresponding set of (d− 1)-cells is the complement of a relatively acyclic (d− 1)-subcomplex.

Second, for every spanning tree of a graph the signed characteristic vectors of its fundamental bonds
form a basis of its cut space (see [Godsil and Royle, 2001, Chapter 14]) In the more general setting of a
cell complex Σ, it is relatively straightforward to show that each bond in Σ supports a one-dimensional
subspace of Cut(Σ).

Theorem 4.1 Let Σ be a d-dimensional cell complex with top boundary map ∂, and let L = Ldu
d (Σ) =

∂∗∂. Let Υ = {σ1, σ2, . . . , σr} be a cellular spanning tree, and σ = σi ∈ Υ. Then:

1. The vector

χ̄(Υ, σi) =

r∑
j=1

(−1)j(detLΥ\σi,Υ\σj
)Lσj ∈ Cd(Σ)

spans the space of all cut-vectors with support contained in the fundamental bond bo(Υ, σi).

2. The set {χ̄(Υ, σ1), . . . , χ̄(Υ, σr)} is a vector space basis for Cut(Σ).
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3. The coefficients of χ̄(Υ, σi) have the following interpretation. Let

µ = µΥ = td−1(Υ)
∑

Γ

td−1(Σ,Γ)2

td−1(Σ)2
.

Then
χ̄(Υ, σ) =

∑
ρ∈bo(Υ,σ)

(detLΥ\σ∪ρ,Υ)ρ = µ
∑

ρ∈bo(Υ,σ)

(±td−1(Υ \ σ ∪ ρ))ρ.

The vectors χ(Υ, σ) = χ̄(Υ, σ)/µ are the cellular analogues of signed characteristic vectors of bonds
in graphs. (Note that if indeed d = 1, then all the torsion coefficients are 1; µ is just the number of
vertices of Σ; and for any edge σ in Υ, the vector χ(Υ, σ) is the usual signed characteristic vector of the
fundamental bond bo(Υ, σ).)

Torsion plays a role in the characteristic vectors of bonds, even when Σ is a simplicial complex. For
example, let Σ be the the complete 2-dimensional simplicial complex on 6 vertices and let Υ be the
triangulation of RP2 obtained by identifying opposite faces in an icosahedron. Then Υ is a cellular
spanning forest of Σ (and in fact Σ has twelve spanning forests of this kind). For any facet σ ∈ Υ, we
have bo(Υ, σ) = Σ2 \Υ2 ∪ {σ}, and the entries of the calibrated cut-vector include both ±2 (in position
σ) as well as ±1’s (in positions Σ \Υ).

The analogous theorem for the flow space is as follows.

Theorem 4.2 Let Σ be a d-dimensional cell complex with top boundary map ∂. For every circuit C in
the cellular matroid, the space of flow vectors supported on a subset of C is one-dimensional, spanned by

ϕ(C) =
∑
σ∈C
±td−1(∆ \ σ)σ.

Moreover, for every cellular spanning forest Υ ⊆ Σ, the set {ϕ(ci(Υ, σ)) : σ 6∈ Υ} is a vector space basis
for Flow(Σ).

The argument is easier for the flow space than for the cut space; for instance, the explicit formula for
ϕ(C) is essentially a calculation using Cramer’s rule.

In the graph case, these combinatorial bases of the cut and flow spaces are in fact integral bases of the
lattices C and F respectively. In the cellular case, the possibility of torsion requires additional assump-
tions. Specifically:

Theorem 4.3 Let Υ be a cellular spanning forest of Σ.

1. If H̃d−1(Υ;Z) is torsion-free, then {χ(Υ, σ) : σ ∈ Υ} is an integral basis for the cut lattice C(Σ).

2. If H̃d−1(Υ;Z) = H̃d−1(Σ;Z), then {ϕ̂(Υ, σ) : σ 6∈ Υ} is an integral basis for the flow lat-
tice F(Σ), where ϕ̂ denotes ϕ divided by the g.c.d. of its coefficients.

5 Groups and Lattices
In this section, we define the critical, cocritical, and cutflow groups of a cell complex. We identify
the relationships between these groups and to the discriminant groups of the cut and flow lattices. The
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graphical case was studied in detail in Bacher et al. [1997] and Biggs [1999], and is presented concisely
in [Godsil and Royle, 2001, Chapter 14]. Throughout the section, all (co)chain and (co)homology groups
are assume to have coefficients in Z; in particular, we identify both Cd(Σ;Z) and Cd(Σ;Z) with Zn.

Definition 5.1 The critical group of Σ is

K(Σ) := T(ker ∂d−1/ im ∂d∂
∗
d) = T(coker(im ∂d∂

∗
d)).

Definition 5.2 The cutflow group of Σ is Zn/(C(Σ)⊕F(Σ)).

In order to define the cocritical group of a cell complex, we need the notion of an acyclization. of Σ,
which is a (d + 1)-dimensional complex Ω such that Ω(d) = Σ and H̃d+1(Ω;Z) = H̃d(Ω;Z) = 0.
Algebraically, this construction corresponds to finding an integral basis for ker ∂d(Σ) and declaring its
elements to be the columns of ∂d+1(Ω) (so in particular |Ω(d+1)| = β̃d(Σ)). The definition of acyclization
and the universal coefficient theorem for cohomology together imply that H̃d+1(Ω;Z) = 0; that is,
∂∗d+1(Ω) is surjective.

Definition 5.3 The cocritical group K∗(Σ) is

K∗(Σ) := Cd+1(Ω;Z)/ im ∂∗d+1∂d+1 = cokerLdu
d+1.

It is not immediate that the group K∗(Σ) is independent of the choice of Ω; we will prove this in-
dependence as part of Theorem 5.5. For the moment, it is at least clear that K∗(Σ) is finite, since
rank ∂∗d+1 = rankLdu

d+1 = rankCd+1(Ω;Z). In the special case of a graph, the cocritical group co-
incides with the discriminant group of the lattice generated by the columns of the “intersection matrix”
defined by Kotani and Sunada Kotani and Sunada [2000]. (See also [Biggs, 2007, Sections 2, 3].)

Remark 5.4 As in Duval et al. [2011b], one can define critical and cocritical groups in every dimension
by

Ki(Σ) = T(Ci(Σ;Z)/ im ∂i+1∂
∗
i+1), K∗i (Σ) = T(Ci(Σ;Z)/ im ∂∗i ∂i).

If the cellular chain complexes of Σ and Ψ are algebraically dual (for example, if Σ and Ψ are Poincaré
dual cell structures on a compact orientable d-manifold), then Ki(Ψ) = K∗d−i(Σ) for all i.

Our main theorem states that the critical and cocritical groups are isomorphic to the discriminant groups
of the cut and flow lattices respectively, and the cutflow group mediates between the critical and cocritical
groups, with an “error term” given by torsion. Specifically:

Theorem 5.5 Let Σ be a cell complex of dimension d with n facets. Then there are short exact sequences

0 → Zn/(C ⊕ F) → C]/C ∼= K(Σ) → T(H̃d(Σ;Z)) → 0

and
0 → T(H̃d−1(Σ;Z)) → Zn/(C ⊕ F) → F ]/F ∼= K∗(Σ) → 0.

In fact, the error terms T(H̃d(Σ;Z)) and T(H̃d−1(Σ;Z)) are in fact isomorphic, by a special case of the
universal coefficient theorem for cohomology [Hatcher, 2002, p. 205, Corollary 3.3].

Corollary 5.6 If H̃d−1(Σ;Z) is torsion-free, then the groups K(Σ), K∗(Σ), C]/C, F ]/F , and Zn/(C ⊕
F) are all isomorphic to each other.
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Corollary 5.6 includes the case that Σ is a graph, as studied in Bacher et al. [1997] and Biggs [1999]. It
also includes the combinatorially important family of Cohen-Macaulay simplicial complexes, as well as
cellulations of compact orientable manifolds.

Example 5.7 Suppose that H̃d(Σ;Z) = Z and that H̃d−1(Σ;Z) is torsion-free. Then the flow lattice is
generated by a single element, and it follows from Corollary 5.6 thatK(Σ) ∼= K∗(Σ) ∼= F ]/F is a cyclic
group. For instance, if Σ is homeomorphic to a cellular sphere or torus, then the critical group is cyclic
of order equal to the number of facets. (The authors had previously proved this fact for simplicial spheres
[Duval et al., 2011b, Theorem 3.7], but this approach using the cocritical group makes the statement more
general and the proof transparent.)

Example 5.8 Let Σ be the standard cellulation e0 ∪ e1 ∪ e2 of the real projective plane, whose cellular
chain complex is

Z ∂2=2−−−→ Z ∂1=0−−−→ Z.

Then C = im ∂∗2 = 2Z, C] = 1
2Z, and K(Σ) = C]/C = Z4. Meanwhile, F = F ] = F ]/F = K∗(Σ) =

0. The cutflow group is Z2. Note that the rows of the Theorem 5.5 are not split in this case.

Example 5.9 Let a, b ∈ Z \ {0}. Let Σ be the cell complex whose cellular chain complex is

Z ∂2=[a b]−−−−−→ Z ∂1=0−−−→ Z.

Topologically, Σ consists of a vertex e0, a loop e1, and two facets of dimension 2 attached along e1 by
maps of degrees a and b. Then

C]/C = Zτ , Z2/(C ⊕ F) = Zτ/g, F ]/F = Zτ/g2 ,

where τ = a2 + b2 and g = gcd(a, b). Note that τ = τ2(Σ) is the complexity of Σ (see equation (2))
and that g = |H̃1(Σ;Z)|. The short exact sequence for K∗(Σ) of Theorem 5.5 is in general not split (for
example, if a = 6 and b = 2).

For a connected graph, the cardinality of the critical group equals the number of spanning trees. In the
cellular case, Examples 5.8 and 5.9 both indicate that K(Σ) ∼= C]/C should have cardinality equal to the
complexity τ(Σ). Indeed, in Theorem 4.2 of Duval et al. [2011b], the authors proved that |K(Σ)| = τ(Σ)
whenever Σ has a cellular spanning tree Υ such that H̃d−1(Υ;Z) = H̃d−1(Σ;Z) = 0 (in particular, Σ
must be not merely Q-acyclic, but actually Z-acyclic, in codimension one). We prove that this condition
holds true for any cell complex. Together with Theorem 5.5, we obtain:

Theorem 5.10 Let Σ be a d-dimensional cell complex and let t = td−1(Σ) = |T(H̃d−1(Σ;Z))|. Then

|C]/C| = |K(Σ)| = τd(Σ),

|Zn/(C ⊕ F)| = τd(Σ)/t, and

|F ]/F| = |K∗(Σ)| = τd(Σ)/t2.

Dually, we can interpret the cardinality of the cocritical group as enumerating cellular spanning forests
by relative torsion (co)homology:
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Theorem 5.11 Let Ω be an acyclization of Σ. Then

|K∗(Σ)| =
∑
Υ

|H̃d+1(Ω,Υ;Z)|2 =
∑
Υ

|H̃d(Ω,Υ;Z)|2

with the sums over all cellular spanning forests Υ ⊆ Σ.

Note that the groups H̃d+1(Ω,Υ;Z) and H̃d(Ω,Υ;Z) are all finite, by definition of acyclization.

Remark 5.12 Let τ∗(Σ) =
∑

Υ |H̃d(Ω,Υ;Z)|2, as in Theorem 5.11. Then combining Theorems 5.10
and Theorems 5.11 gives

|C]/C| = |K(Σ)| = τ(Σ) = τ∗(Σ) · t2,

|F ]/F| = |K∗(Σ)| = τ∗(Σ) = τ(Σ)/t2,

|Zn/(C ⊕ F)| = τ(Σ)/t = τ∗(Σ) · t,

highlighting the duality between the cut and flow lattices.

6 Bounds on combinatorial invariants from lattice geometry
Let n ≥ 1 be an integer. The Hermite constant γn is defined as the maximum value of(

min
x∈L\{0}

〈x, x〉
)

(|L]/L|)−1/n (3)

over all lattices L ⊆ Rn, where 〈·, ·〉 is the standard inner product. The Hermite constant arises both in
the study of quadratic forms and in sphere packing; see [Lagarias, 1995, Section 4]. It is known that γn
is finite for every n, although the precise values are known only for 1 ≤ n ≤ 8 and n = 24 Cohn and
Kumar [2009].

As observed in Kotani and Sunada [2000], if L = F is the flow lattice of a connected graph, then the
shortest vector in F is the characteristic vector of a cycle of minimum length; therefore, the numerator in
equation (3) is the girth of G. Meanwhile, |F ]/F| is the number of spanning trees. We now generalize
this theorem to cell complexes.

Definition 6.1 Let Σ be a cell complex. The girth and the connectivity are defined as the cardinalities of,
respectively the smallest circuit and the smallest cocircuit of the cellular matroid of Σ.

Theorem 6.2 Let Σ be a cell complex of dimension d with girth g and connectivity k, and top boundary
map of rank r. Let b = rank H̃d−1(Σ;Z). Then

kτ(Σ)−1/r ≤ γr and gτ∗(Σ)−1/b ≤ γb.

Proof: Every nonzero vector of the cut lattice (resp., the flow lattice) contains a cocircuit (resp., a circuit)
in its support. Therefore,

min
x∈C\{0}

〈x, x〉 ≥ k and min
x∈F\{0}

〈x, x〉 ≥ g.

Meanwhile, |C]/C| = τ and |F ]/F| = τ∗ by Theorem 5.10. The desired inequalities now follow from
applying the definition of Hermite’s constant to the cut and flow lattices respectively. 2
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