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Ehrhart h∗-vectors of hypersimplices

Nan Li†

Department of Mathematics, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, MA 02139, USA

Abstract. We consider the Ehrhart h∗-vector for the hypersimplex. It is well-known that the sum of the h∗i is the
normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which
gives an interpretation of the h∗i coefficients in terms of descents and excedances. Our proof is geometric using a
careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related
polytopes.

Résumé. Nous considérons que la Ehrhart h∗-vecteur pour la hypersimplex. il est bien connu que la somme de la
h∗i est le volume normalisé qui est égal à un nombre eulérien. Le résultat principal est une preuve de la conjecture
par R. Stanley qui donne une interprétation des coefficients h∗i en termes de descentes et excedances. Notre preuve
est géom etrique àl’aide d’un attention la comptabilité d’un bombardement d’une triangulation unimodulaire. Nous
généralisons ce résultat à d’autres polytopes étroitement liés.
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1 Introduction
Hypersimplices appear naturally in algebraic and geometric contexts. For example, they can be considered
as moment polytopes for torus actions on Grassmannians or weight polytopes of the fundamental repre-
sentations of the general linear groups GLn. Fix two integers 0 < k ≤ n. The (k, n)-th hypersimplex is
defined as follows

∆k,n = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ 1; x1 + · · ·+ xn = k},

or equivalently,

∆k,n = {(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 ≤ x1 + · · ·+ xn−1 ≤ k}.

They can be considered as the slice of the hypercube [0, 1]n−1 located between the two hyperplanes∑n−1
i=1 xi = k − 1 and

∑n−1
i=1 xi = k.

For a permutation w ∈ Sn, we call i ∈ [n− 1] a descent of w, if w(i) > w(i+ 1). We define des(w)
to be the number of descents of w. We call Ak,n−1 the Eulerian number, which equals the number of
permutations in Sn−1 with des(w) = k − 1. The following result is well-known (see for example, [9,
Exercise 4.59 (b)]).
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Theorem 1.1 (Laplace) The normalized volume of ∆k,n is the Eulerian number Ak,n−1.

Let Sk,n be the set of all points (x1, . . . , xn−1) ∈ [0, 1]n−1 for which xi < xi+1 for exactly k − 1 values
of i (including by convention i = 0). Foata asked whether there is some explicit measure-preserving map
that sends Sk,n to ∆k,n. Stanley [6] gave such a map, which gave a triangulation of the hypersimplex
into Ak,n−1 unit simplices and provided a geometric proof of Theorem 1.1. Sturmfels [10] gave another
triangulation of ∆k,n, which naturally appears in the context of Gröbner bases. Lam and Postnikov [5]
compared these two triangulations together with the alcove triangulation and the circuit triangulation.
They showed that these four triangulations are identical. We call a triangulation of a convex polytope
unimodular if every simplex in the triangulation has normalized volume one. It is clear that the above
triangulations of the hypersimplex are unimodular.

Let P ∈ ZN be any n-dimensional integral polytope (its vertices are given by integers). Then Ehrhart’s
theorem tells us that the function

i(P, r) := #(rP ∩ ZN )

is a polynomial in r, and ∑
r≥0

i(P, r)tr =
h∗(t)

(1− t)n+1
,

where h∗(t) is a polynomial in t with degree ≤ n. We call h∗(t) the h∗-polynomial of P , and the vector
(h∗0, . . . , h

∗
n), where h∗i is the coefficient of ti in h∗(t), is called the h∗-vector of P . We denote its term

by h∗i (P). It is known that the sum
∑n
i=0 h

∗
i (P) equals the normalized volume of P .

Katzman [3] proved the following formula for the h∗-vector of the hypersimplex ∆k,n. In particular, we
see that

∑n
i=0 h

∗
i (∆k,n) = Ak,n−1. Write

(
n
r

)
`

to denote the coefficient of tr in (1+t+t2 + · · ·+t`−1)n.
Then the h∗-vector of ∆k,n is (h∗0(∆k,n), . . . , h∗n−1(∆k,n)), where for d = 0, . . . , n− 1

h∗d(∆k,n) =

k−1∑
i=0

(−1)i
(
n

i

)(
n

(k − i)d− i

)
k−i

. (1)

Moreover, since all the h∗i (∆k,n) are nonnegative integers ([7]) (this is not clear from (1)), it will be
interesting to give a combinatorial interpretation of the h∗i (∆k,n).

The half-open hypersimplex ∆′k,n is defined as follows. If k > 1,

∆′k,n = {(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 < x1 + · · ·+ xn−1 ≤ k},

and
∆′1,n = ∆1,n.

We call ∆′k,n “half-open” because it is basically the normal hypersimplex with the “lower” facet removed.
From the definitions, it is clear that the volume formula and triangulations of the usual hypersimplex ∆k,n

also work for the half-open hypersimplex ∆′k,n, and it is nice that for fixed n, the half-open hypersimplices
∆′k,n, for k = 1, . . . , n− 1, form a disjoint union of the hypercube [0, 1]n−1. From the following formula
for the h∗-polynomial of the half-open hypersimplices, we can compute the h∗-polynomial of the usual
hypersimplices inductively. Also, we can compute its Ehrhart polynomial.

For a permutation w, we call i an excedance of w if w(i) > i (a reversed excedance if w(i) < i). We
denote by exc(w) the number of excedances of w. The main theorems of the paper are the following.
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Theorem 1.2 The h∗-polynomial of the half-open hypersimplex ∆′k,n is given by∑
w∈Sn−1

exc(w)=k−1

tdes(w).

We prove this theorem first by a generating function method (in Section 2) and second by a geometric
method, i.e., giving a shellable triangulation of the hypersimplex (in Sections 4). In Section 3, we will
provide some background.

We can define a different shelling order on the triangulation of ∆′k,n, and get another expression
of its h∗-polynomial using descents and a new permutation statistic called cover (see its definition in
Lemma 5.4).

Theorem 1.3 The h∗-polynomial of ∆′k,n is ∑
w∈Sn−1

des(w)=k−1

tcover(w).

Combining Theorem 1.3 with Theorem 1.2, we have the equal distribution of (exc,des) and (des, cover):

Corollary 1.4 ∑
w∈Sn

tdes(w)xcover(w) =
∑
w∈Sn

texc(w)xdes(w).

Finally, we study the generalized hypersimplex ∆k,α (see definition in Section 6). This polytope is related
to algebras of Veronese type. For example, it is known [1] that every algebra of Veronese type coincides
with the Ehrhart ring of a polytope ∆k,α. We can extend the second shelling to the generalized hypersim-
plex ∆′k,α (defined in (6)), and express its h∗-polynomial in terms of a colored version of descents and
covers (see Theorem 6.2). This extended abstract is based on [4], where you can find more details.

2 Proof of Theorem 1.2 by generating functions
Here is a proof of this theorem using generating functions.

Proof: Suppose we can show that∑
r≥0

∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsktr =

∑
n≥0

∑
σ∈Sn

tdes(σ)sexc(σ) un

(1− t)n+1
. (2)

By considering the coefficient of unsk in (2), we have

∑
r≥0

i(∆′k+1,n+1, r)t
r = (1− t)−(n+1)

 ∑
w∈Sn

exc(w)=k

tdes(w)

 ,
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which implies Theorem 1.2. By the following equation due to Foata and Han [2, Equation (1.15)],∑
n≥0

∑
σ∈Sn

tdes(σ)sexc(σ) un

(1− t)n+1
=
∑
r≥0

tr
1− s

(1− u)r+1(1− us)−r − s(1− u)
,

we only need to show that∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsk =

1− s
(1− u)r+1(1− us)−r − s(1− u)

.

By the definition of the half-open hypersimplex, we have, for any r ∈ Z≥0,

r∆′k+1,n+1 = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r, rk + 1 ≤ x1 + · · ·+ xn ≤ (k + 1)r},

if k > 0, and for k = 0,

r∆′1,n+1 = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r, 0 ≤ x1 + · · ·+ xn ≤ r}.

So

i(∆′k+1,n+1, r) = ([xkr+1] + · · ·+ [x(k+1)r])

(
1− xr+1

1− x

)n
, (3)

if k > 0, and when k = 0, we have

i(∆′1,n+1, r) = ([x0] + [x] + · · ·+ [xr])

(
1− xr+1

1− x

)n
, (4)

where the notation [xi]f(x) for some power series f(x) denotes the coefficient of xi in f(x). Notice that
the case of k = 0 is different from k > 0 and i(∆′1,n+1, r) is obtained by evaluating k = 0 in (3) plus

an extra term [x0]
(

1−xr+1

1−x

)n
. Since the coefficient of xk of a function f(x) equals the constant term of

f(x)
xk

, we have

([xkr+1] + · · ·+ [x(k+1)r])

(
1− xr+1

1− x

)n
= [x0]

(
1− xr+1

1− x

)n
(x−kr−1 + · · ·+ x−(k+1)r)

= [xkr]

(
1− xr+1

1− x

)n
(x−kr−1 + · · ·+ x−(k+1)r)xkr

= [xkr]
(1− xr)(1− xr+1)n

(1− x)n+1xr
.

So we have, for k > 0,∑
n≥0

i(∆′k+1,n+1, r)u
n =

∑
n≥0

[xkr]
(1− xr)(1− xr+1)n

(1− x)n+1xr
un

= [xkr]
(1− xr)

(1− x)xr

∑
n≥0

(
(1− xr+1)u

1− x

)n
= [xkr]

xr − 1

xr(u− uxr+1 − 1 + x)
.
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For k = 0, based on the difference between (3) and (4) observed above, we have:

∑
n≥0

i(∆′1,n+1, r)u
n =

∑
n≥0

[x0]
(1− xr)(1− xr+1)n

(1− x)n+1xr
un +

∑
n≥0

[x0]

(
1− xr+1

1− x

)n
un

=

(
[x0]

xr − 1

xr(u− uxr+1 − 1 + x)

)
+

1

1− u
.

So

∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsk =

∑
k≥0

[xkr]
xr − 1

xr(u− uxr+1 − 1 + x)
sk

+
1

1− u
.

Let y = xr. We have∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsk =

∑
k≥0

[xkr]
y − 1

y(u− uxy − 1 + x)
sk +

1

1− u
.

Expand y−1
y(u−uxy−1+x) in powers of x, we have

y − 1

y(u− uxy − 1 + x)
=
y − 1

y
· 1

u− 1− (uxy − x)

=
y − 1

y(u− 1)
· 1

1− x(uy−1)
u−1

=
1− y

y(1− u)

∑
i≥0

(
(1− uy)x

1− u

)i
.

Since we only want the coefficient of xi such that r divides i, we get

1− y
y(1− u)

∑
j≥0

(
(1− uy)x

1− u

)rj
=

1− y
y(1− u)

· 1

1− (1−uy)rxr

(1−u)r

=
1− y

y(1− u)
· (1− u)r

(1− u)r − (1− uy)rxr

=
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
.

So ∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsk =

∑
k≥0

sk[yk]
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r

+
1

1− u
.
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To remove all negative powers of y, we do the following expansion

(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
=

1− y
(1− u)y

· 1

1− y(1−yu)r

(1−u)r

=
∑
i≥0

(
yi−1(1− uy)ri

(1− u)ri+1
− yi(1− uy)ri

(1− u)ri+1

)
=

1

1− u
y−1 + nonnegative powers of y.

Notice that
∑
k≥0 s

k[yk] (1−u)r−1(1−y)
y(1−u)r−y2(1−yu)r is obtained by taking the sum of nonnegative powers of y in

(1−u)r−1(1−y)
y(1−u)r−y2(1−yu)r and replacing y by s. So

∑
k≥0

sk[yk]
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
=

(1− u)r−1(1− s)
s(1− u)r − s2(1− su)r

− 1

s(1− u)
.

Therefore, ∑
k≥0

∑
n≥0

i(∆′k+1,n+1, r)u
nsk =

(1− u)r−1(1− s)
s(1− u)r − s2(1− su)r

− 1

s(1− u)
+

1

1− u

=
1− s

(1− u)r+1(1− us)−r − s(1− u)
.

2

3 Background
3.1 Shellable triangulation and the h∗-polynomial
Let Γ be a triangulation of an n-dimensional polytopeP , and let α1, . . . , αs be an ordering of the simplices
(maximal faces) of Γ. We call (α1, . . . , αs) a shelling of Γ [7], if for each 2 ≤ i ≤ s, αi∩(α1∪· · ·∪αi−1)
is a union of facets ((n − 1)-dimensional faces) of αi. For example, (ignore the letters A, B, and C for
now) Γ1 is a shelling, while any order starting with Γ2 cannot be a shelling.

Γ1 :

A

ooooooooo OOOOOOOOO
RRRRRRRR

qqqqqq
M M M M

ooooQQQQ

mmmm α1

α2

α3

α4

, Γ2 : B

C

OOOOOOOOOOOOOOOO oooooooooooooooo

α1α2

An equivalent condition (see e.g., [8]) for a shelling is that every simplex has a unique minimal non-face,
where by a “non-face”, we mean a face that has not appeared in previous simplices. For example, for
α2 ∈ Γ1, the vertex A is its unique minimal non-face, while for α2 ∈ Γ2, both B and C are minimal and
have not appeared before α2. We call a triangulation with a shelling a shellable triangulation. Given a
shellable triangulation Γ and a simplex α ∈ Γ, define the shelling number of α (denoted by #(α)) to be
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the number of facets shared by α and some simplex preceding α in the shelling order. For example, in Γ1,
we have

#(α1) = 0, #(α2) = 1, #(α3) = 1, #(α4) = 2.

The benefit of having a shelling order for Theorem 1.2 comes from the following result.

Theorem 3.1 ([7] Shelling and Ehrhart polynomial) Let Γ be a unimodular shellable triangulation of
an n-dimensional polytope P . Then

∑
r≥0

i(P, r)tr =

(∑
α∈Γ

t#(α)

)
(1− t)−(n+1).

3.2 Excedances and descents
Let w ∈ Sn. Define its standard representation of cycle notation to be a cycle notation of w such that
the first element in each cycle is its largest element and the cycles are ordered with their largest elements
increasing. We define the cycle type of w to be the composition of n: C(w) = (c1, . . . , ck) where ci
is the length of the ith cycle in its standard representation. The Foata map F : w → ŵ maps w to ŵ
obtained from w by removing parentheses from the standard representation of w. For example, consider
a permutation w : [5] → [5] given by w(1) = 5, w(2) = 1, w(3) = 4, w(4) = 3 and w(5) = 2 or in one
line notation w = 51432. Its standard representation of cycle notation is (43)(521), so ŵ = 43521. The
inverse Foata map F−1 : ŵ → w allows us to go back from ŵ tow as follows: first insert a left parenthesis
before every left-to-right maximum and then close each cycle by inserting a right parenthesis accordingly.
In the example, the left-to-right maximums of ŵ = 43521 are 4 and 5, so we get back (43)(521). Based
on the Foata map, we have the following result for the equal distribution of excedances and descents.

Theorem 3.2 (Excedances and descents) The number of permutations in Sn with k excedances equals
the number of permutations in Sn with k descents.

3.3 Triangulation of the hypersimplex
We start from a unimodular triangulation {tw | w ∈ Sn} of the hypercube, where

tw = {(y1, . . . , yn) ∈ [0, 1]n | yw1 ≤ yw2 ≤ · · · ≤ ywn}.

It is easy to see that tw has the following n + 1 vertices: v0 = (0, . . . , 0), and vi = (y1, . . . , yn) given
by yw1

= · · · = ywn−i = 0 and ywn−i+1
= · · · = ywn = 1. It is clear that vi+1 = vi + ewn−i . Now

define the following map φ ([6],[5]) that maps tw to sw, a simplex in ∆k+1,n+1, sending (y1, . . . , yn) to
(x1, . . . , xn), where

xi =

{
yi − yi−1, if (w−1)i > (w−1)i−1,

1 + yi − yi−1, if (w−1)i < (w−1)i−1,
(5)

where we set y0 = 0. For each point (x1, . . . , xn) ∈ sw, set xn+1 = k+ 1− (x1 + · · ·+ xn). Since vi+1

and vi only differ in ywn−i , by (5), φ(vi) and φ(vi+1) only differ in xwn−i and xwn−i+1. More explicitly,
we have

Lemma 3.3 Denote wn−i by r. For φ(vi), we have xrxr+1 = 01 and for φ(vi+1), we have xrxr+1 =
10. In other words, from φ(vi) to φ(vi+1), we move a 1 from the (r + 1)th coordinate forward by one
coordinate.
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Proof: First, we want to show that for φ(vi), we have xr = 0 and xr+1 = 1. We need to look at the
segment yr−1yryr+1, of vi. We know that yr = 0, so there are four cases for yr−1yryr+1: 000, 001, 100,
101. If yr−1yryr+1 = 000 for vi, then yr−1yryr+1 = 010 for vi+1. Therefore, w−1

r−1 < w−1
r > w−1

r+1.
Then by (5), we have xrxr+1 = 01. Similarly, we can check in the other three cases that xrxr+1 = 01
for φ(vi).

Similarly, we can check the four cases for yr−1yryr+1: 010, 011, 110, 111 in φ(vi+1) and get xrxr+1 =
10 in all cases. 2

Let des(w−1) = k. It follows from Lemma 3.3 that the sum of the coordinates
∑n
i=1 xi for each

vertex φ(vi) of sw is either k or k + 1. So we have the triangulation [6] of the hypersimplex ∆k+1,n+1:
Γk+1,n+1 = {sw | w ∈ Sn, des(w−1) = k}.

Now we consider a graph Gk+1,n+1 on the set of simplices in the triangulation of ∆k+1,n+1. There is
an edge between two simplices s and t if and only if they are adjacent (they share a common facet). We
can represent each vertex of Gk+1,n+1 by a permutation and describe each edge of Gk+1,n+1 in terms of
permutations [5]. We call this new graph Γk+1,n+1. It is clear that Γk+1,n+1 is isomorphic to Gk+1,n+1.

Proposition 3.4 ([5, Lemma 6.1 and Theorem 7.1]) The graph Γk+1,n+1 can be described as follows:
its vertices are permutations u = u1 . . . un ∈ Sn with des(u−1) = k. There is an edge between u and v,
if and only if one of the following two holds:

1. (type one edge) ui−ui+1 6= ±1 for some i ∈ {1, . . . , n−1}, and v is obtained from u by exchanging
ui, ui+1.

2. (type two edge) un 6= 1, n, and v is obtained from u by moving un to the front of u1, i.e., v =
unu1 . . . un−1; or this holds with u and v switched.

Example 3.5 Here is the graph Γ3,5 for ∆′3,5.

Γ3,5 : 2413

3214

3241 2143
3421 1432

4213 4132

2431

4231 4312









444444

jjjj
????

���� TTTT

DDDDD

ooooα OOOO
zzzzz

�������

#######

ssssss
KKKKKK β

dd

V V

Z Z

hh

In the above graph, the edge α between u = 2413 and v = 4213 is a type one edge with i = 1, since
4− 2 6= ±1 and one is obtained from the other by switching 2 and 4; the edge β between u = 4312 and
v = 2431 is a type two edge, since u4 = 2 6= 1, 4 and v = u4u1u2u3. The dotted line attached to a
simplex s indicates that s is adjacent to some simplex t in ∆2,5. Since we are considering the half-open
hypersimplices, the common facet s ∩ t is removed from s.
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4 Proof (outline) of Theorem 1.2 by a shellable triangulation
We want to show that the h∗-polynomial of ∆′k+1,n+1 is∑

w∈Sn
exc(w)=k

tdes(w).

Compare this to Theorem 3.1: if ∆′k+1,n+1 has a shellable unimodular triangulation Γk+1,n+1, then its
h∗-polynomial is ∑

α∈Γk+1,n+1

t#(α).

We will define a shellable unimodular triangulation Γk+1,n+1 for ∆′k+1,n+1, label each simplex α ∈
Γk+1,n+1 by a permutation wα ∈ Sn with exc(wα) = k. Then show that #(α) = des(wα).

We start from the triangulation Γk+1,n+1 studied in Section 3.3. By Proposition 3.4, each simplex is
labeled by a permutation u ∈ Sn with des(u−1) = k. Based on the Foata map defined in Section 3.2,
we can use a sequence of maps and get a graph Sk+1,n+1 with vertices being permutations in Sn with
k excedances. Applying the above maps to vertices of Γk+1,n+1, we call the new graph Sk+1,n+1. We
will define the shelling order on the simplices in the triangulation by orienting each edge in the graph
Sk+1,n+1. If we orient an edge (u, v) such that the arrow points to u, then in the shelling, let the simplex
labeled by u be after the simplex labeled by v. We can orient each edge of Sk+1,n+1 such that the directed
graph is acyclic. This digraph therefore defines a partial order on the simplices of the triangulation. We
can prove that any linear extension of this partial order gives a shelling order. Given any linear extension
obtained from the digraph, the shelling number of each simplex is the number of incoming edges. Let wα
be the permutation in Sk+1,n+1 corresponding to the simplex α. Then we can show that for each simplex,
its number of incoming edges equals des(wα). We will leave out the details here.

5 Proof of Theorem 1.3: second shelling
We want to show that the h∗-polynomial of ∆′k+1,n+1 is also given by∑

w∈Sn
des(w)=k

tcover(w),

we will define cover in a minute. Compare this to Theorem 3.1: if ∆′k+1,n+1 has a shellable unimodular
triangulation Γk+1,n+1, then its h∗-polynomial is∑

α∈Γk+1,n+1

t#(α).

Similar to the proof of Theorem 1.2, we will define shellable unimodular triangulation for ∆′k+1,n+1, but
this shelling is different from the one we use for Theorem 1.2. Label each simplex α ∈ Γk+1,n+1 by a
permutation wα ∈ Sn with des(wα) = k. Then show that #(α) = cover(wα).
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We start from the graph Γk+1,n+1 studied in Section 3.3. Define a graph Mk+1,n+1 such that w ∈
V (Mk+1,n+1) if and only ifw−1 ∈ V (Γk+1,n+1) and (w, u) ∈ E(Mk+1,n+1) if and only if (w−1, u−1) ∈
E(Γk+1,n+1). By Proposition 3.4, we have

V (Mk+1,n+1) = {w ∈ Sn | des(w) = k},

and (w, u) ∈ E(Mk+1,n+1) if and only if w and u are related in one of the following ways:

1. type one: exchanging the letters i and i+ 1 if these two letters are not adjacent in w and u

2. type two: one is obtained by subtracting 1 from each letter of the other (1 becomes n− 1).

Now we want to orient the edges ofMk+1,n+1 to make it a digraph. Consider e = (w, u) ∈ E(Mk+1,n+1).

1. if e is of type one, and i is before i + 1 in w, i.e., inv(w) = inv(u) − 1, then orient the edge as
w ← u.

2. if edge (w, u) is of type two, and v is obtained by subtracting 1 from each letter of u (1 becomes
n− 1), then orient the edge as w ← u.

Example 5.1 Here is the directed graph M3,5 for ∆′3,5:
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Lemma 5.2 There is no cycle in the directed graph Mk+1,n+1.

Therefore, Mk+1,n+1 defines a poset on V (Mk+1,n+1) and Mk+1,n+1 is the Hasse diagraph of the
poset, which we still denote as Mk+1,n+1.

For an element in the poset Mk+1,n+1, the larger its rank is, the further its corresponding simplex is
from the origin. More precisely, notice that each v = (x1, . . . , xn) ∈ Vk+1,n+1 = ∆k+1,n+1 ∩ Zn

has |v| =
∑n
i=1 xi = k or k + 1. For u ∈ Mk+1,n+1, by which we mean u ∈ V (Mk+1,n+1), define

Au = #{v is a vertex of the simplex su−1 | |v| = k + 1}.
Proposition 5.3 Let w > u in the above poset Mk+1,n+1. Then Aw ≥ Au.

This proposition follows from a lemma proving that Au = un, and the definition of the two types of
directed edges.

We define the cover of a permutation w ∈Mk+1,n+1 to be the number of permutations v ∈Mk+1,n+1

it covers, i.e., the number of incoming edges of w in the graph Mk+1,n+1. From the above definition, we
have the following, (in the half-open setting):
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Lemma 5.4 1. If w1 = 1, then cover(w) = #{i ∈ [n− 1] | (w−1)i + 1 < (w−1)i+1};

2. if w1 6= 1, then cover(w) = #{i ∈ [n− 1] | (w−1)i + 1 < (w−1)i+1}+ 1.

Proposition 5.5 Any linear extension of the above ordering gives a shelling order on the triangulation of
∆′k+1,n+1.

It is clear that the shelling number of the simplex corresponding to w is cover(w). Then by Theorem
3.1 and Proposition 5.5, we have a proof of Theorem 1.3.

6 The h∗-polynomial for generalized half-open hypersimplex
We want to extend Theorem 1.3 to the hyperbox B = [0, a1] × · · · × [0, an]. Write α = (a1, . . . , an),
ai ∈ Z>0 and define the generalized half-open hypersimplex as

∆′k,α = {(x1, . . . , xn) | 0 ≤ xi ≤ ai; k − 1 < x1 + · · ·+ xn ≤ k}. (6)

Note that the above polytope is a multi-hypersimplex studied in [5]. For a nonnegative integral vector
β = (b1, . . . , bn), let Cβ = β + [0, 1]n be the cube translated from the unit cube by the vector β. We call
β the color of Cβ .

We extend the triangulation of the unit cube to B by translation and assign to each simplex in B a
colored permutation

wβ ∈ Sα = {w ∈ Sn | bi < ai, i = 1, . . . , n}.

Let Fi = {xi = 0} ∩ [0, 1]n for i = 1, . . . , n. Define the exposed facets for the simplex su−1 in [0, 1]n

to be Expose(u) = {i | su−1 ∩ Fi is a facet of su−1}.
We can compute Expose(u) explicitly as follows.

Lemma 6.1 Set u0 = 0. Then Expose(u) = {i ∈ [n] | ui−1 + 1 = ui}.
Now we want to extend the second shelling on the unit cube to the larger rectangle. In this extension,

Fi will be removed from Cβ if bi 6= 0. Therefore, for the simplex swβ , we will remove the facet Fi ∩ swβ
for each i ∈ Expose(w) ∩ {i | bi 6= 0} as well as the cover(wβ) facets for neighbors within Cβ . We call
this set Expose(w) ∩ {i | bi 6= 0} the colored exposed facet (cef), denoted by cef(wβ), for each colored
permutation wβ = (w, β).

Based on the above extended shelling, with some modifications of Proposition 5.5, we can show that
the above order is a shelling order. Then, by Theorem 3.1 and the fact that the shelling number for wβ is
cover(wβ) + cef(wβ), we have the following theorem.

Theorem 6.2 The h∗-polynomial for ∆′k,α is∑
wβ∈Sα

des(w)+|β|=k−1

tcover(wβ)+cef(wβ).

We have some interesting identities about exc, des, cover and Expose.

Proposition 6.3 For any k ∈ [n− 1], we have

1. #{w ∈ Sn | exc(w) = k, des(w) = 1} =
(
n
k+1

)
.
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2. {w ∈ Sn | des(w) = k, cover(w) = 1} = {w ∈ Sn | # Expose(w) = n− (k + 1)}.

3. #{w ∈ Sn | des(w) = k, cover(w) = 1,Expose(w) = S} = 1, for any S ⊂ [n] with |S| =
n− (k + 1).

4. #{w ∈ Sn | des(w) = k, cover(w) = 1} =
(
n
k+1

)
.

Proposition 6.4 For any 1 < k < n, we have

1. #{w ∈ Sn | exc(w) = 1,des(w) = k} =
(
n+1
2k

)
.

2. #{w ∈ Sn | des(w) = 1,# Expose(w) = n− 2k or n+ 1− 2k} = 1

3. {w ∈ Sn | des(w) = 1,# Expose(w) = n− 2k or n+ 1− 2k} ⊂ {w ∈ Sn | cover(w) = k}.

4. #{w ∈ Sn | des(w) = 1, cover(w) = k} =
(
n
2k

)
+
(

n
2k−1

)
=
(
n+1
2k

)
.
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