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On some generalized q-Eulerian polynomials
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Abstract. The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations.
Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham
proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata
and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new recurrence formula for the (q, r)-Eulerian
polynomials and study a q-analogue of Chung and Graham’s restricted Eulerian polynomials. In particular, we obtain
a symmetrical identity for these restricted q-Eulerian polynomials with a combinatorial proof.

Résumé. Les (q, r)-polynômes Eulériens sont les polynomômes énumératives des permutations par rapport au poids
(maj−exc, fix, exc). En utilisant la fonction génératrice de ces polynômes Eulériens due à Shareshien et Wachs,
Chung et Graham ont démontré deux identités symétriques q-Eulériennes et demandé des preuves bijectives. Nous
donnons de telles preuves en utilisant les statistiques trivariées (inv−lec, pix, lec) de Foata et Han. Nous démontrons
aussi une nouvelle récurrence pour ces (q, r)-polynômes Eulériens et étudions un q-analogue des polynômes Eulériens
restreints de Chung et Graham. En particulier, nous obtenons une identité symétrique pour ces q-polynômes Eulériens
restreints avec une preuve combinatoire.
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1 Introduction
The Eulerian polynomials An(t) :=

∑n
k=0An,kt

k are defined by the exponential generating function∑
n≥0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
. (1)

The coefficients An,k are called Eulerian numbers. The Eulerian numbers arise in a variety of contexts
in mathematics. Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. For each π ∈ Sn, a
value i, 1 ≤ i ≤ n − 1, is an excedance (resp. descent) of π if π(i) > i (resp. π(i) > π(i + 1)).
Denote by exc(π) and des(π) the number of excedances and descents of π, respectively. It is well-
known that the Eulerian number An,k counts permutations in Sn with k descents (or k excedances), that
is An(t) =

∑
π∈Sn t

desπ =
∑
π∈Sn t

excπ . The reader is referred to [7] for some leisurely historical
introductions of Eulerian polynomials and Eulerian numbers.

Several q-analogs of Eulerian polynomials with combinatorial meanings have been studied in the lit-
erature (see [2, 6, 16, 20]). Recall that the major index, maj(π), of a permutation π ∈ Sn is the sum of
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all the descents of π, i.e., maj(π) :=
∑
π(i)>π(i+1) i. An element i ∈ [n] is a fixed point of π ∈ Sn if

π(i) = i and we denote by fix(π) the number of fixed points of π. Define the (q, r)-Eulerian polynomials
An(t, r, q) by the following extension of (1):∑

n≥0

An(t, r, q)
zn

(q; q)n
=

(1− t)e(rz; q)
e(tz; q)− te(z; q)

, (2)

where (q; q)n :=
∏n
i=1(1−qi) and e(z; q) is the q-exponential function defined by e(z; q) :=

∑
n≥0

zn

(q;q)n
.

The following interpretation for An(t, r, q) was given by Shareshian and Wachs [16, 18]:

An(t, r, q) :=
∑
π∈Sn

texcπrfixπq(maj−exc)π. (3)

These polynomials have attracted the attention of several authors (cf.[8, 9, 10, 11, 13, 14, 17]).
Let An(t, q) = An(t, 1, q). Define the q-Eulerian numbers An,k(q) and the fixed point q-Eulerian

numbers A(j)
n,k(q):

An(t, q) =
∑
k

An,k(q)tk and An(t, r, q) =
∑
j,k

A
(j)
n,k(q)rjtk.

By (3), we have the following interpretations

An,k(q) =
∑
π∈Sn
excπ=k

q(maj−exc)π and A
(j)
n,k(q) =

∑
π∈Sn
excπ=k
fixπ=j

q(maj−exc)π. (4)

Recall that the q-binomial coefficients
[
n
k

]
q

are defined by
[
n
k

]
q

:= (q;q)n
(q;q)n−k(q;q)k

for 0 ≤ k ≤ n, and[
n
k

]
q

= 0 if k < 0 or k > n.
Answering a question of Chung et al. [5], Han et al. [13] found and proved the following symmetrical

q-Eulerian identity: ∑
k≥1

[
a+ b

k

]
q

Ak,a−1(q) =
∑
k≥1

[
a+ b

k

]
q

Ak,b−1(q), (5)

where a, b are integers with a, b ≥ 1. Besides a generating function proof using (2), a bijective proof of (5)
was also given in [13]. Recently, through analytical arguments, Chung and Graham [4] derived from (2)
the following two further symmetrical q-Eulerian identities:∑

k≥1

(−1)k
[
a+ b

k

]
q

q(
a+b−k

2 )Ak,a(q) =
∑
k≥1

(−1)k
[
a+ b

k

]
q

q(
a+b−k

2 )Ak,b(q), (6)

∑
k≥1

[
a+ b+ j + 1

k

]
q

A
(j)
k,a(q) =

∑
k≥1

[
a+ b+ j + 1

k

]
q

A
(j)
k,b(q), (7)

where a, b, j are integers with a, b ≥ 1 and j ≥ 0, and asked for bijective proofs. Our first aim is to
provide such proofs using another interpretation of An(t, r, q) introduced by Foata and Han [9], which
was already shown to be successful in the bijective proof of (5) in [13].
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Next, for 1 ≤ j ≤ n, we shall define the restricted q-Eulerian polynomial B(j)
n (t, q) by the exponential

generating function:

∑
n≥j

B(j)
n (t, q)

zn−1

(q; q)n−1
=

(
Aj−1(t, q)(qz)j−1

(q; q)j−1

)
e(tz; q)− te(tz; q)
e(tz; q)− te(z; q)

. (8)

and the restricted q-Eulerian number B(j)
n,k(q) by B(j)

n (t, q) =
∑
k B

(j)
n,k(q)tk. We find the following

generalized symmetrical identity for the restricted q-Eulerian polynomials.

Theorem 1 Let a, b, j be integers with a, b ≥ 1 and j ≥ 2. Then∑
k≥1

[
a+ b+ 1

k − 1

]
q

B
(j)
k,a(q) =

∑
k≥1

[
a+ b+ 1

k − 1

]
q

B
(j)
k,b(q). (9)

When q = 1, the above identity was proved by Chung and Graham [4], who also asked for a bijective
proof. We shall give a bijective proof and an analytical proof of (9), the latter leads to a new recurrence
formula for An(t, r, q).

Theorem 2 The (q, r)-Eulerian polynomials satisfy the following recurrence formula:

An+1(t, r, q) = rAn(t, r, q) + tAn(t, q) + t

n−1∑
j=1

[
n

j

]
q

qjAj(t, r, q)An−j(t, q) (10)

for n ≥ 1 and A1(t, r, q) = r.

This paper is organized as follows. In section 2, we review some preliminaries about the three-variable
statistic (inv, pix, lec) and give the bijective proofs of (6) and (7). In section 3, we first prove Theorem 2
and then define a new statistic called “rix”, which together with descents and admissible inversions (a
statistic on permutations which appears in the context of poset topology [16]) gives another interpretation
of An(t, r, q). In section 4, we give two combinatorial interpretations of B(j)

n,k(q) and two proofs of
Theorem 1.

2 Bijective proofs of (6) and (7)
2.1 Preliminaries
A word w = w1w2 . . . wm on N is called a hook if w1 > w2 and either m = 2, or m ≥ 3 and w2 < w3 <
. . . < wm. As shown in [12], each permutation π = π1π2 . . . πn admits a unique factorization, called its
hook factorization, pτ1τ2...τr, where p is an increasing word and each factor τ1, τ2, . . . , τk is a hook. To
derive the hook factorization of a permutation, one can start from the right and factor out each hook step
by step. Denote by inv(w) the numbers of inversions of a word w = w1w2 . . . wm, i.e., the number of
pairs (wi, wj) such that i < j and wi > wj . Then we define

lec(π) :=
∑

1≤i≤k

inv(τi) and pix(π) := length of the factor p.
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For example, the hook factorization of π = 1 3 4 14 12 2 5 11 15 8 6 7 13 9 10 is

1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10.

Hence p = 1 3 4 14, τ1 = 12 2 5 11 15, τ2 = 8 6 7, τ3 = 13 9 10, pix(π) = 4 and

lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Let A0,A1, ...,Ar be a series of sets on N. Denote by inv(A0,A1, ...,Ar) the number of pairs (k, l)
such that k ∈ Ai, l ∈ Aj , k > l and i < j. We usually write cont(A) to denote the set of all letters
in a word A. So we have (inv − lec)π = inv(cont(p), cont(τ1), . . . , cont(τr)) if pτ1τ2...τr is the hook
factorization of π.

From Foata and Han [9, Theorem 1.4], we derive the following combinatorial interpretations of the
(q, r)-Eulerian polynomials

An(t, r, q) =
∑
π∈Sn

tlecπrpixπq(inv−lec)π. (11)

Therefore
An,k(q) =

∑
π∈Sn
lecπ=k

q(inv−lec)π and A
(j)
n,k(q) =

∑
π∈Sn
lecπ=k
pixπ=j

q(inv−lec)π. (12)

It is known [19, Proposition 1.3.17] that the q-binomial coefficient has the interpretation[
n

k

]
q

=
∑

(A,B)

qinv(A,B), (13)

where the sum is over all ordered partitions (A,B) of [n] such that |A| = k.
We will give bijective proofs of (6) and (7) using the interpretations in (12) and (13).

Remark 1 In [9], a bijection on Sn that carries the triplet (fix, exc,maj) to (pix, lec, inv) was constructed
without being specified. This bijection consists of two steps. The first step (see [9, section 6]) uses the word
analogue of Kim-Zeng’s decomposition and an updated version of Gessel-Reutenauer standardization to
construct a bijection on Sn that transforms the triplet (fix, exc,maj) to (pix, lec, imaj), where imaj(π) :=
maj(π−1) for each permutation π. The second step (see [9, section 7]) uses Foata’s second fundamental
transformation to carry the triplet (pix, lec, imaj) to (pix, lec, inv). In view of this bijection, one can
construct bijective proofs of (5), (6) and (7) using the original interpretations in (4), through the bijective
proof of (5) in [13] and our bijective proofs,.

To construct our bijective proofs, we need two elementary transformations from [13] that we recall
now. Let τ be a hook with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where x1 < . . . < xm. Define

d(τ) = xm−k+1x1 . . . xm−kxm−k+2 . . . xm. (14)

Clearly, d(τ) is the unique hook with cont(d(τ)) = cont(τ) and satisfying inv(d(τ)) = m − k =
|cont(τ)| − inv(τ). Let τ be a hook or an increasing word with inv(τ) = k and cont(τ) = {x1, . . . , xm},
where x1 < . . . < xm. Define

d′(τ) = xm−kx1 . . . xm−k−1xm−k+1 . . . xm. (15)

It is not difficult to see that, d′(τ) is the unique hook (when k < m − 1) or increasing word (when
k = m− 1) with cont(d(τ)) = cont(τ) and satisfying inv(d(τ)) = m− k − 1 = |cont(τ)| − 1− inv(τ).
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2.2 Bijective proof of (6)
Let Sn(k) = {π ∈ Sn : pix(π) = k} and Dn = Sn(0). We first notice that the left-hand side of (6) has
the following interpretation:∑

π∈Dn
lecπ=a

q(inv−lec)π =
∑
k≥1

(−1)n−k
[
n

k

]
q

q(
n−k

2 )Ak,a(q). (16)

This interpretation follows immediately from [18, Corollary 4.4] and (11). Note that one can also give a
direct combinatorial proof similarly as in [21].

Now, by (16), the symmetrical identity (6) is equivalent to the j = 0 case of the following Lemma.

Lemma 1 For 0 ≤ j ≤ n, there is an involution v 7→ u on Sn(j) satisfying

lec(u) = n− j − lec(v) and (inv− lec)u = (inv− lec)v.

Proof: Let v = pτ1τ2 . . . τr be the hook factorization of v ∈ Sn(j), where p is an increasing word and
each factor τ1, τ2, . . . , τr is a hook. We define u = pd(τ1) . . . d(τr), where d is defined in (14). It is easy
to check that this mapping is an involution on Sn(j) with the desired properties. 2

By (12), Lemma 1 gives a simple bijective proof of the following known [4, 18] symmetric property of
the fixed point q-Eulerian numbers.

Corollary 1 For n, k, j ≥ 0,
A

(j)
n,k(q) = A

(j)
n,n−j−k(q). (17)

2.3 Bijective proof of (7)
Recall [13] that, for a fixed positive integer n, a two-pix-permutation of [n] is a sequence of words

v = (p1, τ1, τ2, . . . , τr−1, τr, p2) (18)

satisfying the following conditions:

(C1) p1 and p2 are two increasing words, possibly empty;

(C2) τ1, . . . , τr are hooks for some positive integer r;

(C3) The concatenation p1τ1τ2 . . . τr−1τrp2 of all components of v is a permutation of [n].

We also extend the two statistics to the two-pix-permutations by

lec(v) =
∑

1≤i≤r

inv(τi) and inv(v) = inv(p1τ1τ2 . . . τr−1τrp2).

It follows that

(inv− lec)v = inv(cont(p1), cont(τ1), cont(τ2), . . . , cont(τr), cont(p2)). (19)

LetWn(j) denote the set of all two-pix-permutations with |p1| = j.
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Lemma 2 Let a, j be fixed nonnegative integers. Then∑
v∈Wn(j)

lecv=a

q(inv−lec)v =
∑
k≥1

[
n

k

]
q

A
(j)
k,a(q). (20)

Proof: By the hook factorization, the two-pix-permutation in (18) is in bijection with the pair (σ, p2),
where σ = p1τ1τ2 . . . τr−1τr is a permutation on [n] \ cont(p2) and p2 is an increasing word. Thus, by
(12), (13) and (19), the generating function of all two-pix-permutations v of [n] with |p1| = j such that
lec(v) = a and |p2| = n− k with respect to the weight q(inv−lec)v is

[
n

n−k
]
q
A

(j)
k,a(q). 2

Lemma 3 Let j be a fixed nonnegative integer. Then there is an involution v 7→ u onWn(j) satisfying

lec(v) = n− j − 1− lec(u), and (inv− lec)v = (inv− lec)u.

Proof: We give an explicit construction of the bijection using the involutions d and d′ defined in (14)
and (15).

Let v = (p1, τ1, τ2, . . . , τr−1, τr, p2) be a two-pix-permutation of [n] with |p1| = j. If p2 6= ∅, then

u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d(τr), d
′(p2)),

otherwise,
u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d′(τr)).

As d and d′ are involutions, this mapping is an involution onWn(j).
Since we have lec(d(τi)) = |cont(τi)| − lec(τi) for 1 ≤ i ≤ r and lec(d′(p2)) = |cont(p2)| − 1 in the

case p2 6= ∅, it follows that lec(u) =
∑r
i=1 |cont(τi)| + |cont(p2)| − 1 − lec(v) = n − j − 1 − lec(v).

The above identity is also valid when p2 = ∅.
Finally it follows from (19) that (inv− lec)u = (inv− lec)v. This finishes the proof of the lemma. 2

Combining Lemmas 2 and 3 we obtain a bijective proof of (7).

3 A new recurrence formula for the (q, r)-Eulerian polynomials
The Eulerian differential operator δx involved here is defined by

δx(f(x)) :=
f(x)− f(qx)

x
,

for any f(x) ∈ Q[q][[x]] in the ring of formal power series in x over Q[q] (instead of the traditional
(f(x)− f(qx))/((1− q)x), see [3]). A proof of Theorem 2 can be obtained by applying δz to both sides
of (2), which is straightforward and is omitted.

Remark 2 A different recurrence formula for An(t, r, q) was obtained in [18, Corollary 4.3]. Eq. (10)
is similar to two recurrence formulas in the literature: one for the (inv, des)-q-Eulerian polynomials
in [15, Corollary 2.22] (see also [3]) and the other one for the (maj, des)-q-Eulerian polynomials in [15,
Corollary 3.6].



On some generalized q-Eulerian polynomials 415

We shall give another interpretation of An(t, r, q) in the following.
Let π ∈ Sn. Recall that an inversion of π is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and

π(i) > π(j). An admissible inversion of π is an inversion (π(i), π(j)) that satisfies either

• 1 < i and π(i− 1) < π(i) or

• there is some l such that i < l < j and π(i) < π(l).

We write ai(π) the number of admissible inversions of π. Define the statistic aid(π) := ai(π) + des(π).
For example, if π = 42153 then there are 5 inversions, but only (4, 3) and (5, 3) are admissible. So
inv(π) = 5, ai(π) = 2 and aid(π) = 2 + 3 = 5. The statistics ai and aid were first studied by Shareshian
and Wachs [16] in the context of Poset Topology. Here we follow the definitions in [14]. The curious result
that the pairs (aid, des) and (maj, exc) are equidistributed on Sn was proved in [14] using techniques of
Rees products and lexicographic shellability.

LetW be the set of all the words on N. We define a new statistic, denoted by “rix”, onW recursively.
Let W = w1w2 · · ·wn be a word in W and wi be the rightmost maximum element of W . We define
rix(W ) by (with convention that rix(∅) = 0)

rix(W ) :=


0, if i = 1 6= n,
1 + rix(w1 · · ·wn−1), if i = n,

rix(wi+1wi+2 · · ·wn), if 1 < i < n.

For example, we have rix(1 5 2 4 3 3 5) = 1 + rix(1 5 2 4 3 3) = 1 + rix(2 4 3 3) = 1 + rix(3 3) =
2 + rix(3) = 3. As every permutation can be viewed as a word on N, this statistic is well-defined on
permutations.

For 1 ≤ j ≤ n, we write S
(j)
n the set of permutations π ∈ Sn with π(j) = n. We define

Bn(t, r, q) :=
∑
π∈Sn

tdesπrrixπqaiπ

and its restricted version by
B(j)
n (t, r, q) :=

∑
π∈S(j)

n

tdesπrrixπqaiπ. (21)

Theorem 3 We have the following interpretation for (q, r)-Eulerian polynomials:

An(t, r, q) =
∑
π∈Sn

tdesπrrixπqaiπ. (22)

Proof: We will show that Bn(t, r, q) satisfies the same recurrence formula and initial condition as
An(t, r, q). For n ≥ 1, it is clear from the definition of Bn(t, r, q) that

Bn+1(t, r, q) =
∑

1≤j≤n+1

B
(j)
n+1(t, r, q). (23)
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It is easy to see that

B
(1)
n+1(t, r, q) = tBn(t, 1, q) and B

(n+1)
n+1 (t, r, q) = rBn(t, r, q). (24)

We then consider B(j)
n+1(t, r, q) for the case of 1 < j < n+ 1.

For a set X , we denote by
(
X
m

)
the m-element subsets of X and SX the set of permutations of X . Let

W(n, j) be the set of all triples (W,π1, π2) such that W ∈
(

[n]
j

)
and π1 ∈ SW , π2 ∈ S[n]\W . It is not

difficult to see that the mapping π 7→ (W,π1, π2) defined by

• W = {π(i) : 1 ≤ i ≤ j − 1},

• π1 = π(1)π(2) · · ·π(j − 1) and π2 = π(j + 1)π(j + 2) · · ·π(n)

is a bijection between S
(j)
n andW(n− 1, j − 1) and satisfies

des(π) = des(π1) + des(π2) + 1, rix(π) = rix(π2)

and
ai(π) = ai(π1) + ai(π2) + inv(W, [n− 1] \W ) + n− j.

Thus, for 1 < j < n+ 1, we have

B
(j)
n+1(t, r, q) =

∑
π∈S(j)

n+1

tdesπrrixπqaiπ

= tqn+1−j
∑

(W,π1,π2)∈W(n,j−1)

qinv(W,[n]\W )qai(π1)tdes(π1)rrix(π2)qai(π2)tdes(π2)

= tqn+1−j
∑

W∈( [n]
j−1)

qinv(W,[n]\W )
∑
π∈SW

qai(π1)tdes(π1)
∑

π2∈S[n]\W

rrix(π2)qai(π2)tdes(π2)

= tqn+1−j
[

n

j − 1

]
q

Bj−1(t, 1, q)Bn+1−j(t, r, q), (25)

where we apply (13) to the last equality. Substituting (24) and (25) into (23) we obtain

Bn+1(t, r, q) = rBn(t, r, q) + tBn(t, 1, q) + t

n−1∑
j=1

[
n

j

]
q

qjBj(t, r, q)Bn−j(t, 1, q).

By Theorem 2, Bn(t, r, q) and An(t, r, q) satisfy the same recurrence formula and initial condition, thus
Bn(t, r, q) = An(t, r, q). This finishes the proof of the theorem. 2

Corollary 2 The three triplets (rix, des, aid), (fix, exc,maj) and (pix, lec, inv) are equidistributed on Sn.

Remark 3 At the Permutation Patterns 2012 conference, Alexander Burstein [1] gave a direct bijection
on Sn that transforms the triple (rix, des, aid) to (pix, lec, inv). The new statistic “rix” was introduced
independently therein under the name “aix”. Actually, the definitions of both are slightly different, but
they are the same up to an easy transformation. It would be very interesting to find a similar bijective
proof of the equidistribution of (rix, des, aid) and (fix, exc,maj).
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4 A symmetrical identity for restricted q-Eulerian polynomials
4.1 An interpretation of B(j)

n,k(q) and a proof of Theorem 1

It follows from (2) and (8) that B(1)
1,0(q) = 1 and B(1)

n,k(q) = An−1,k−1(q) for n ≥ 2. For 2 ≤ j ≤ n,

we have the following interpretation for B(j)
n,k(q), which shows that B(j)

n,k(q) is really a q-analogue of the

restricted Eulerian number studied in [4] and defined to be the number of permutations in S
(j)
n with k

descents.

Lemma 4 For 2 ≤ j ≤ n, B(j)
n,k(q) =

∑
π∈S(j)

n
des(π)=k

qai(π)+2j−n−1.

Proof: When j ≥ 2, by the recurrence relation (25), one can compute without difficulty that the expo-
nential generating function

∑
n≥j q

2j−n−1B
(j)
n (t, 1, q) zn−1

(q;q)n−1
is exactly the right side of (8) using (2)

and (22), which would finish the proof of the lemma. 2

Lemma 5 For 1 < j < n, we have

B
(j)
n,k(q) = B

(j)
n,n−1−k(q).

Proof: We first construct an involution f : π 7→ π′ on Sn satisfying

ai(π) = ai(π′) and des(π) = n− 1− des(π′). (26)

For n = 1, define f(id) = id. For n ≥ 2, suppose that π = π1 · · ·πn is a permutation of {π1, · · · , πn}
and πj is the maximum element in {π1, · · · , πn}. We construct f recursively as follows

f(π) =


f(π2π3 · · ·πn)π1, if j = 1,
πn f(π1π2 · · ·πn−1), if j = n,

f(π1π2 · · ·πj−1)πj f(πj+1πj+2 · · ·πn), otherwise.

For example, if π = 3 2 5 7 6 4 1, then f(π) = f(3 2 5) 7 f(6 4 1) = 5 f(3 2)7 f(4 1) 6 = 5 2 3 7 1 4 6.
Clearly, ai(π) = 7 = ai(π′) and des(π) = 4 = 7 − 1 − des(π′). It is not difficult to see that f is an
involution. We can show that f satisfies (26) by induction on n, which is routine and left to the reader.

For each π = π1 · · ·πj−1 nπj+1 · · ·πn in S
(j)
n , we then define g(π) = f(π1 · · ·πj−1)n f(πj+1 · · ·πn).

As f is an involution, g is an involution on S
(j)
n . It follows from (26) that ai(g(π)) = ai(π) and

des(π) = n− 1− des(g(π)), which completes the proof in view of Lemma 4. 2

Remark 4 Supposing that π = π1 · · ·πn is a permutation of {π1, · · · , πn} and πj is the maximum
element in {π1, · · · , πn}, we modify f to f ′ as follows:

f ′(π) =


f ′(π2π3 · · ·πn)π1, if j = 1,
π, if j = n,

f ′(π1π2 · · ·πj−1)πj f
′(πj+1πj+2 · · ·πn), otherwise.

The reader is invited to check that f ′ would provide another bijective proof of Corollary 1 using (des, rix, ai).

Through some similar analytical arguments as [4, Theorem 2] starting with the generating function (8)
and using Lemma 4 and 5 we can get a proof of Theorem 1. The details are omitted.
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4.2 Another interpretation of B(j)
n,k(q) and a bijective proof of Theorem 1

Let S̄(j)
n := {π ∈ Sn : π(j + 1) = 1} for 1 ≤ j < n and S̄

(n)
n := {π′�1 : π′ ∈ S[n]\{1}}. The “�”

in π = π1π2 · · ·πn−1�1 ∈ S̄
(n)
n means that the n-th position of π is empty and the hook factorization

of π is defined to be pτ1 · · · τr�1, where pτ1 · · · τr is the hook factorization of π1 · · ·πn−1 and “�1” is
viewed as a hook. We also define lec(π1π2 · · ·πn−1�1) =

∑r
i=1 lec(τi) and inv(π1π2 · · ·πn−1�1) =

inv(π1π2 · · ·πn−11). For example, S̄(3)
3 = {32�1, 23�1} with lec(32�1) = 1, lec(23�1) = 0 and

inv(32�1) = 3, inv(23�1) = 2.

Lemma 6 Let B(j)
n,k(q) be defined by (8). Then B(j)

n,k(q) =
∑

π∈S̄(j)
n

lec(π)=k

q(inv−lec)π.

Proof: Let B̄(j)
n (t, q) :=

∑
π∈S̄(j)

n
q(inv−lec)πtlecπ . We recall that, to derive the hook factorization of

a permutation, one can start from the right and factor out each hook step by step. Therefore, the hook
factorization of π = π1 · · ·πj−1πj1πj+2 · · ·πn in π ∈ S̄

(j)
n is pτ1 · · · τsτ ′1 · · · τ ′r, where pτ1 · · · τs and

τ ′1 · · · τ ′r are hook factorizations of π1 · · ·πj−1 and πj1πj+2 · · ·πn, respectively. When n > j, it is not
difficult to see that

lec(πj1πj+2 · · ·πn) = 1 + lec(πjπj+2 · · ·πn)

and
(inv− lec)(πj1πj+2 · · ·πn) = (inv− lec)(πjπj+2 · · ·πn).

Thus by (13), we have

B̄(j)
n (t, q) = Aj−1(t, q)qj−1

[
n− 1

j − 1

]
q

tAn−j(t, q) (27)

for n > j. Clearly, B̄(j)
j (t, q) = Aj−1(t, q)qj−1. So by (2), the exponential generating function∑

n≥j B̄
(j)
n (t, q) zn−1

(q;q)n−1
is the right side of (8). This finishes the proof of the lemma. 2

Remark 5 This interpretation can also be deduced directly from the interpretation in Lemma 4 using
Burstein’s bijection [1].

For X ⊂ [n] with |X| = m and 1 ∈ X , we can define S̄
(j)
X for 1 ≤ j ≤ m similarly as S̄(j)

m like this:

S̄
(j)
X := {π ∈ SX : π(j + 1) = 1} for 1 ≤ j < m and S̄(m)

X := {π′�1 : π′ ∈ SX\{1}}.

For 1 ≤ j ≤ n, we define a j-restricted two-pix-permutation of [n] to be a pair v = (π, p2) such that
p2 (possibly empty) is an increasing words on [n] and π ∈ S̄

(j)
X with X = [n] \ {cont(p2)}. Similarly,

we define lec(v) = lec(π) and inv(v) = inv(π) + inv(cont(π), cont(p2)). LetW(j)
n denote the set of all

j-restricted two-pix-permutations of [n].

Lemma 7 Let a, j be positive integers. Then∑
v∈W(j)

n
lecv=a

q(inv−lec)v =
∑
k≥1

[
n− 1

k − 1

]
q

B
(j)
k,a(q). (28)
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Proof: It follows from Lemma 6 and some similar arguments as in the proof of Lemma 2. 2

Lemma 8 Let 2 ≤ j ≤ n. Then there is an involution v 7→ u onW(j)
n satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u. (29)

Proof: Suppose v = (π, p2) ∈ W(j)
n and π = τ0τ1 · · · τr is the hook factorization of π such that τ0 is a

hook or an increasing word and τi (1 ≤ i ≤ r) are hooks. We also assume that p2 = x1 · · ·xl if p2 is not
empty. Note that 1 /∈ cont(τ0) since j 6= 1. We will use the involutions d and d′ defined in (14) and (15).
There are several cases to be considered:

(i) τr = �1. Then

u =

{
(d′(τ0)d(τ1) · · · d(τr−1)xl1x1x2 · · ·xl−1, ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1)�1, ∅), otherwise.

(ii) τr = ys1y1 · · · ys−1. Then

u =


(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d

′(p2), ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1)�1, y1 · · · ys), if p2 = ∅ and ys > ys−1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

(iii) 1 /∈ cont(τr). Then

u =


(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d

′(p2), ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1), d′(τr)), if p2 = ∅ and lec(τr) = |τr| − 1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

First of all, one can check that u ∈ W(j)
n . Secondly, as d, d′ are involutions, the above mapping is an

involution. Finally, this involution satisfies (29) in all cases. This completes the proof of the lemma. 2

Combining Lemmas 7 and 8 we obtain a bijective proof of Theorem 1.
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[20] R.P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combin. Theory
Ser. A, 20 (1976), 336–356.

[21] M.L. Wachs, On q-derangement numbers, Proc. Amer. Math. Soc., 106 (1989), 273–278.


	Introduction
	Bijective proofs of (6) and (7)
	Preliminaries
	 Bijective proof of (6)
	 Bijective proof of (7)

	A new recurrence formula for the (q,r)-Eulerian polynomials
	A symmetrical identity for restricted q-Eulerian polynomials
	An interpretation of Bn,k(j)(q) and a proof of Theorem 1
	Another interpretation of Bn,k(j)(q) and a bijective proof of Theorem 1


