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In a recent preprint, Matherne, Morales and Selover conjectured that two different representations of unit interval
posets are related by the famous zeta map in q, t-Catalan combinatorics. This conjecture was proved recently by
Gélinas, Segovia and Thomas using induction. In this short note, we provide a bijective proof of the same conjecture
with a reformulation of the zeta map using left-aligned colored trees, first proposed in the study of parabolic Tamari
lattices.
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1 Introduction
The study of unit interval posets started in statistics (Wine and Freund, 1957) and psychology (Scott,
1964). However, it has since been connected to other objects in algebraic combinatorics, such as (3 +
1)-free posets Skandera and Reed (2003) and positroids Chavez and Gotti (2018). The connection to
(3 + 1)-free posets is particularly important, as these posets are at the center of the Stanley–Stembridge
conjecture in Stanley and Stembridge (1993), which states that the chromatic symmetric function of the
incomparability graph of a (3 + 1)-free poset has only positive coefficients when expanded in the basis
of elementary symmetric functions. Unit interval posets thus receive some attention as it can be used to
study the structure of (3+1)-free posets (Skandera and Reed, 2003; Guay-Paquet, Morales, and Rowland,
2014; Lewis and Zhang, 2013).

It is known in Wine and Freund (1957) that unit interval posets are counted by Catalan numbers, and
researchers have given two different bijections to represent a unit interval poset by Dyck paths (Skandera
and Reed, 2003; Guay-Paquet, Morales, and Rowland, 2014). In a recent preprint (Matherne, Morales,
and Selover), it was conjectured that the two bijections are related by the famous zeta map in q, t-Catalan
combinatorics (Haglund, 2008), which was first given in (Andrews, Krattenthaler, Orsina, and Papi, 2002).
In this short note, we settle this conjecture using bijections (see Theorem 4.6), in contrast to a recent
inductive proof of the same conjecture by Gélinas, Segovia, and Thomas. To this end, we first introduce a
bijection Ξposet between unit interval posets and plane trees. We then show that the two different known
bijections from unit interval posets are conjugates of special cases of some bijections Ξsteep and Ξbounce

from Ceballos, Fang, and Mühle (2020) constructed for the study of parabolic Tamari lattices. Using the
link between Ξsteep,Ξbounce and the zeta map established in the same article, we conclude our proof.
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The rest of the article is organized as follows. In Section 2 we give the basic definitions. Then we give
our bijection between unit interval posets and plane trees in Section 3, along with the related bijections
from Ceballos, Fang, and Mühle (2020). Finally in Section 4 we recall the two known bijections between
unit interval posets and Dyck paths, and then establish their link with the bijections in Section 3, leading
to a bijective proof of our main result (Theorem 4.6).

Acknowledgment We thank Adrien Segovia for bringing this conjecture to our attention. We also
thank the anonymous reviewers for their detailed and helpful comments. This work is not supported by
any funding with precise predefined goal, but it is supported by the publicly funded laboratory LIGM of
Université Gustave Eiffel.

2 Preliminary
For convenience, we write [n] for the set {1, 2, . . . , n}. We consider finite partially order sets (or poset
for short) of the form P = (Pelem,⪯), where Pelem is a finite set and ⪯ a partial order on Pelem. Given a
set S of real numbers x1 < x2 < · · · < xn, we define a partial order ⪯S on [n] by taking i ⪯S j if and
only if xi + 1 < xj . The order ⪯S can also be seen as defined on intervals of unit length starting at the
xi’s, where i ⪯S j if the interval starting with xi is on the left of that with xj without overlap. A poset P
with n elements is a unit interval order if there is some S ⊂ R with n elements such P ∼= ([n],⪯S). In
this case, we call S a starting set of P . We sometimes represent unit interval orders as ([n],⪯S) for some
S hereinafter.

We have the following characterization of unit interval orders.

Theorem 2.1 (Scott (1964, Theorem 2.1)). A poset P is a unit interval poset if and only if it is (3+1)-free
and (2 + 2)-free, that is, the order induced on any four elements cannot be a chain of 3 elements plus an
incomparable element, or two disjoint chains each containing 2 elements.

Unit interval orders are counted by Catalan numbers.

Proposition 2.2 (Wine and Freund (1957)). The number of unit interval posets with n elements is the n-th
Catalan number Catn = 1

2n+1

(
2n+1

n

)
.

By definition, we may represent a unit interval poset P by a set of real numbers S, though the choice
of S is clearly not unique. In the following, for convenience, we use this perspective of (starting points
of) intervals, which is arguably easier to manipulate. We denote by Pn the set of unit interval posets with
n elements.

There are many other families of combinatorial objects counted by Catalan numbers, such as Dyck
paths and plane trees. A Dyck path is a lattice path formed by north steps ↑ = (0, 1) and east steps
→ = (1, 0), starting at (0, 0) and ending on the diagonal y = x while staying weakly above it. The size
of a Dyck path is the number of its north steps. We denote by Dn the set of Dyck paths of size n. We
define plane trees recursively: a plane tree T is either a single node (a leaf ) or an internal node u linked
by edges to a sequence of plane trees called sub-trees. In the latter case, the node u is also called the root
of T , and the roots of sub-trees are called children of u. We denote by Tn the set of plane trees with n
non-root nodes. We recall the well-known fact that |Tn| = |Dn| = Catn. For a node u in a plane tree T ,
its depth, denoted by d(u), is the distance (number of edges) between u and the root of T .
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Fig. 1: Example of Λposet from a unit interval poset defined by a set of unit intervals to a plane tree

3 Unit interval posets and plane trees
We start by a new bijection between unit interval posets and plane trees.

Construction 3.1. Let S = {x1 < · · · < xn} be a starting set of a unit interval poset P = ([n],⪯S). We
define a plane tree T as follows (see Figure 1 for an example). We set x0 = x1 − 2. We denote by vi the
node of T corresponding to xi. For i ∈ [n], the parent of vi is vj if and only if j is the largest index such
that j ⪯S i. By the definition of x0, the parent of each vi is well-defined, and all nodes are descendants of
x0. We then order children of the same node from left to right with decreasing index. We thus conclude
that T is a well-defined plane tree. We note that T depends only on ⪯S . We define Λposet(P ) = T .

Construction 3.2. Given a plane tree T with n non-root nodes, we define an order relation ⪯S on [n]
induced by some S ⊂ R. Let rT be the root of T , and m the maximal arity of T , i.e., the maximal
number of children of nodes in T . Given a node u in T , if it is the i-th child of its parent from right
to left, then we define c(u) = i. We observe that 1 ≤ c(u) ≤ m. For a non-root node u in T , let
u0 = rT , u1, . . . , ud(u) = u be the nodes on the unique path from the root u0 = rT to ud(u) = u, where
d(u) is the depth of u. We then define a real number xu associated to u using base (m+ 2):

xu = d(u) + (0.c(u1)c(u2) · · · c(ud(u)))(m+2) = ℓ+

d(u)∑
i=1

c(ui)(m+ 2)−i. (1)

It is clear from (1) that xu is strictly decreasing from left to right for nodes of the same depth in T . Let S
be the set of xu for non-root nodes u in T . We define Ξposet(T ) = ([n],⪯S).

As an example of Construction 3.2, let T be the tree on the right part of Figure 1, with nodes labeled
as in the figure, and S the set of numbers in the construction. The maximal arity of T is m = 4, achieved
by the root. The number xv12 ∈ S for the node v12 is thus xv12 = 3 + (0.321)6 = 769/216, as v12 is of
depth 3, and it is the first child from right to left of its parent v8, itself the second child from right to left
of its parent v3, which is the third child from right to left of the root.

The following lemma gives a direct connection between a plane tree and its corresponding unit interval
poset obtained from Ξposet.

Lemma 3.3. For T ∈ Tn, we take S to be the set constructed in Construction 3.2, and xu the number
constructed from a non-root node u of T . Then for non-root nodes u, v, the parent of u in T is v if and
only if xv is the largest element in S smaller than 1 + xu.
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Proof: Suppose that T has maximal arity m. Let v′ be the parent of u. By (1), we have 1 < xu − xv′ <
1 + (m+ 2)−ℓ+1, with ℓ the distance from v′ to the root. Then, xv satisfying xv′ ≤ xv < 1 + xu means
0 ≤ xv − xv′ < (m + 2)−ℓ+1, which means v = v′ by (1), as it requires v and v′ to have the same
distance to the root, but in this case |xv − xv′ | cannot be smaller than (m + 2)−ℓ+1 if v ̸= v′. We thus
have the equivalence.

We now show that Λposet and Ξposet are bijections and are inverse to each other.

Proposition 3.4. For all n ≥ 1, the map Λposet is a bijection from Pn to Tn, with Ξposet its inverse.

Proof: By Proposition 2.2, we have |Pn| = Catn = |Tn|. We thus only need to show that Λposet ◦
Ξposet = id. Given a plane tree T ∈ Tn, let P = ([n],⪯S) = Ξposet(T ) and T ′ = Λposet(P ). Let
S = {x1 < · · · < xn} be the set of real numbers constructed in Construction 3.2 for ⪯S . Given i ∈ [n],
let ui be the node in T that gives rise to xi in S, and u′i the node in T ′ that represents xi. By Lemma 3.3
and Construction 3.1, for any i, j ∈ [n], the node ui is the parent of uj in T if and only if u′i is the parent
of u′j in T ′. Then, T ′ has the same order of siblings as T , as in both we order siblings with decreasing
order in their corresponding real numbers in S. We thus conclude that T = T ′.

We now restate two previously known bijections between plane trees and Dyck paths that will be used
to prove our main result.

Construction 3.5. Let n ≥ 1 and T ∈ Tn, we construct a Dyck path D by taking the clockwise contour
walk starting from the top of the root of T (see the Dyck path on the right of Figure 2). During the
walk, when we pass an edge for the first (resp. second) time, we append ↑ (resp. →) to D. We define
Ξsteep(T ) = D. The map Ξsteep is a bijection from Tn to Dn for all n ≥ 1, and we denote its inverse by
Λsteep.

Construction 3.6. Let n ≥ 1 and T ∈ Tn, we construct a Dyck path D by appointing the number
of north steps at each x-coordinate (see the Dyck path on the left of Figure 2). Let αℓ be the number
of nodes of depth ℓ (thus distance ℓ to the root), and ℓmax the maximal depth of nodes in T . We take
sℓ = α1 + · · · + αℓ. Given 1 ≤ k ≤ n − 1, there is a unique way to write k = sℓ − r with 0 ≤ r < αℓ

and 1 ≤ ℓ ≤ ℓmax. In this case, the number of north steps in D on x = k is the number of children of the
(r+1)-st node of depth ℓ. The number of north steps in D on x = 0 is the number of children of the root.
We define Ξbounce(T ) = D. The map Ξbounce is a bijection from Tn to Dn for all n ≥ 1, see Ceballos,
Fang, and Mühle (2020, Lemma 3.18), and we denote its inverse by Λbounce = Ξ−1

bounce.

Proposition 3.7 (Ceballos, Fang, and Mühle (2020, Theorem IV)). Let ζ be the zeta map from Dn to Dn

with n ≥ 1. We have ζ = Ξbounce ◦ Λsteep.

See Figure 2 for an illustration of Proposition 3.7. Here, we do not give the original definition of the
zeta map ζ in Andrews, Krattenthaler, Orsina, and Papi (2002), and will instead be using Proposition 3.7
in the following, as it is better suited to our approach.
Remark 3.8. Albeit the same notation, the maps Ξsteep and Ξbounce are only special cases of the ones
from Ceballos, Fang, and Mühle (2020, Construction 3.10 and Equation 14). More precisely, the central
objects of Ceballos, Fang, and Mühle (2020) are called LAC trees, which are plane trees with non-root
nodes divided into regions algorithmically. We are only using the special case where the region d consists
of nodes of depth d, which is also the one used in Ceballos, Fang, and Mühle (2020, Section 3.3) to prove
Proposition 3.7. In full generality, the map Ξsteep maps a LAC tree to a steep pair, which is a pair of
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ζ = Ξbounce ◦ Λsteep

ΞsteepΞbounce

Λbounce Λsteep

Fig. 2: The zeta map as composition of bijections mediated by trees. The nodes of the same depth of the tree are
grouped together. For the Dyck path on the left, the number of north steps on x = k is the number of children of
the k-th node in the tree, ordered by increasing depth, then from right to left. The one on the right comes from a
clockwise contour walk.

nested Dyck paths with a steep upper path, i.e.,without two consecutive east steps except on the maximal
height. The map Ξbounce sends a LAC tree to a bounce pair, which is a pair of nested Dyck path with a
bounce lower path, i.e., a concatenation of sub-paths of the form ↑k→k for all k. This explains the words
“steep” and “bounce” in their notation.

Remark 3.9. The bijection Ξsteep is classical, except that we do the contour walk from right to left instead
of from left to right. The bijection Ξbounce is quite close to the classical bijection between plane trees
and Łukasiewicz words, as given in Flajolet and Sedgewick (2009, Section I.5.3)), which can be seen as
sequences (z0, z1, . . . , zn−1) with zi ≥ −1 such that

∑k
i=0 zi ≥ 0 for 0 ≤ k < n− 1, and the sum of all

zi’s is −1. However, in the classical bijection of Łukasiewicz, we deal with nodes in a depth-first order,
but in Ξbounce they are processed in a breadth-first order.

4 Unit interval posets and the zeta map
In the following, we give the two representations of unit interval posets as Dyck paths, and we detail how
they are related to the bijections detailed in Section 3, leading to a proof of our main result (Theorem 4.6).

We start by the first representation, which was first defined implicitly using anti-adjacency matrices of
unit interval posets in Skandera and Reed (2003), only involving the poset structure. The following form
was first given in Chavez and Gotti (2018).

Construction 4.1. Given P = ([n],⪯S) a unit interval poset with S ⊂ R, we define a Dyck path D as
follows. Let S+ = {x+ 1 | x ∈ S}. Without loss of generality, we can choose S such that S ∩ S+ = ∅.
Then suppose that S ∪ S+ = {y1 < · · · < y2n}. For i ∈ [2n], the i-th step of D is ↑ if yi ∈ S, and is →
otherwise. We define φ(P ) = D. See Figure 3 for an example.

This form of the map φ in Construction 4.1 was given in Chavez and Gotti (2018, Section 5) and
proved in Lemma 5.7 therein to be equivalent to the original definition, which is the one used in Matherne,
Morales, and Selover, Section 2.3. Although defined here using the set S, the map φ does not depend on
the choice of S.

Proposition 4.2. We have φ ◦ Ξposet = Ξbounce, and φ is a bijection from Pn to Dn for all n ≥ 1.
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S = ψ(D′)

D′D = φ(S)

ψφ
Area(D′)

a13 = 2
a14 = 2

a11 = 1
a12 = 1

a9 = 2
a10 = 0

a7 = 2
a8 = 1

a5 = 0
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a4 = 1

a1 = 0
a2 = 0

a1

a2

a5

a10

a3
a4

a6
a8

a11
a12

a7
a9

a14
a13

Fig. 3: Example of the bijections φ and ψ

Proof: Let T ∈ Tn and D = Ξbounce(T ). We take P = Ξposet(T ) = ([n],⪯S) ∈ Pn with S = {x1 <
· · · < xn} given in Construction 3.2. Let D′ = φ(P ). To show that D′ = D, we first notice that a Dyck
path is determined by the number of north steps on each line x = k for 0 ≤ k ≤ n − 1. Thus, we only
need to show that for each k, D′ has the same number of north steps on x = k as D has according to
Construction 3.6.

For the line x = 0, we observe that the number of elements in S strictly smaller than x1 + 1 must be
those with integer part equal to 1, thus those from the children of the root of T . For 1 ≤ k ≤ n− 1, from
Construction 4.1, we know that the number of north steps on the line x = k is the number of elements xi
such that xk−1+1 < xi < xk+1, as xk+1 corresponds to the k-th east step inD. Let uk be the node in T
corresponding to xk. By Lemma 3.3, the nodes in T corresponding to such xi are children of uk, meaning
that the total number of north steps on x = k is the number of children of uk. Furthermore, suppose that
uk is of depth ℓ, then we can write k = sℓ−r with 0 ≤ r < αℓ as in Construction 3.6. We know that uk is
the (r + 1)-st node of depth ℓ in T , as in Construction 3.1 the values corresponding to nodes of the same
depth are decreasing from left to right. We thus conclude that D = D′, and φ ◦ Ξposet = Ξbounce. As
both Ξbounce (Ceballos, Fang, and Mühle, 2020, Lemma 3.18) and Ξposet (Proposition 3.4) are bijections,
we conclude that φ is also a bijection.

The second presentation was first defined in Guay-Paquet, Morales, and Rowland (2014) for (3 + 1)-
free posets, and it takes a simpler form for unit interval posets. A more explicit presentation is given in
Guay-Paquet (2013, Section 2).

Construction 4.3. For n ≥ 1, let D ∈ Dn be a Dyck path of size n. Its area vector, denoted by
Area(D), is a vector (a1, . . . , an) with ai the number of full unit squares with the upper edge on y = i
between D and the diagonal y = x. Such area vectors are characterized by the conditions a1 = 0 and
ai ≤ ai−1 + 1 for 2 ≤ i ≤ n. It is clear that the area vector determines the Dyck path. We then define a
poset P = ([n],⪯) by taking i ≺ j for i, j ∈ [n] such that
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• Either ai + 2 ≤ aj ;

• Or ai + 1 = aj and i < j.

We define ψ(D) = P , and its inverse ψ−1(P ) = D. See Figure 3 for an example.

The following result ensures that ψ is well-defined. It is a special case of Matherne, Morales, and
Selover, Theorem 5.2, which is obtained by combining Guay-Paquet, Morales, and Rowland (2014, Re-
mark 3.2, Proposition 3.11). A self-contained direct proof of this special case can be found in Gélinas,
Segovia, and Thomas, Section 6.

Proposition 4.4 (Special case of Matherne, Morales, and Selover, Theorem 5.2). The map ψ is a bijection
from Dyck paths to unit interval posets preserving sizes.

Proposition 4.5. We have ψ = Ξposet ◦ Λsteep.

Proof: Let P = ψ(D), T = Λsteep(D) and P ′ = Ξposet(D). We write P = ([n],⪯) and P ′ = ([n],⪯S),
with S given in Construction 3.2. We show that P is isomorphic to P ′ after an implicit relabeling.

For i ∈ [n], let ui be the i-th non-root node in T that is visited in the clockwise contour walk of T . We
note that this order on nodes of T is different from the one used before, for instance in Construction 3.1.
Suppose that Area(D) = (a1, . . . , an). By Construction 3.5, the depth of ui is ai + 1. We now define a
partial order ⪯T on non-root nodes in T by taking ui ⪯T uj if and only if i ⪯ j in P . We recall that the
depth of v in T is denoted by d(v). By Construction 4.3, two non-root nodes v, w in T satisfy v ≺T w if
and only if

• Either d(v) + 2 ≤ d(w);

• Or d(v) + 1 = d(w), and the parent of w is either v or on the left of v.

Now, for v a non-root node in T , we take xv defined in (1). Suppose that there are two non-root nodes
v, w of T such that xv + 1 < xw. Then we have d(v) + 1 ≤ d(w). There are two possibilities: either
d(v) + 1 = d(w), or d(v) + 2 ≤ d(w). In the first case, let w′ be the parent of w, we have xw′ +1 < xw.
By Lemma 3.3, we know that xv ≤ xw′ . From (1), we know that either v = w′ or v is on the right of
w′, as xv is decreasing from left to right for nodes in T of the same depth. Combining with the second
case, we conclude that xv +1 < xw if and only if v ≺T w. By Construction 3.2, we have P ∼= P ′, which
concludes the proof.

Theorem 4.6 (Matherne, Morales, and Selover, Conjecture 7.1). We have φ ◦ ψ = ζ.

Proof: Combining Proposition 4.2 and 4.5, we have φ ◦ ψ = Ξbounce ◦ Λsteep, and we conclude by
Proposition 3.7.
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