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We prove that the game colouring number of theth power of a forest with maximum degre®e > 3 is bounded
from above by
(A _ 1)77L _ 1
A—2
which improves the best known bound by an asymptotic fadtar o

+2™+1,
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1 Introduction

Graph colouring considers the problem to assign coloutsgeertices of a given graph in such a way that
adjacent vertices receive distinct colours. Classicgllglouring can be regarded as a one-player game,
where the single player has the goal to colour every vertskam a way that she uses a minimum number
of colours. Competitive graph colouring considers theaditin that there is a second player, too, who has
the goal to increase the number of colours used. nma&er-breaker graph colouring gamie players
are usually called Alice, who tries to minimize the numbecolfours, and Bob, who tries to maximize
the number of colours. In the basic variant of such a gameylpdped to the graph theory community
by [Bodlaendg¢r|(1991), the players move alternately. In eache they colour exactly one uncoloured
vertex of the given graph the vertices of which are initialhycoloured. Alice begins. The most important
parameter considered concerning this game is the so-gal®e chromatic numbgwhich is the smallest
number of colours that is sufficent to colour every vertexasechoth players use optimal strategies.

The maximum game chromatic number for graphs from manyestirg classes of graphs has been
examined by many authors. The first class of graphs whosenmaxigame chromatic number was
determined were forests. The result is contained in thalimpaper of| Faigle et al{ (1993). In order to
prove that 4 is an upper bound for the game chromatic numbartdfe, Faigle et al. used a so-called
activation strategyor Alice. This type of strategy was named and generalizeKieysteali [2040) and
modified and used by many authors to obtain upper boundsdagyaime chromatic number of other classes
of more complex graphs (some references can be found in theyspaper of Bartnicki et al| (20p7), some
more recent references concerning graph colouring ganmebectaken from Andrgs (20112) re@ng
)). A remarkable fact about the activation strategias it does not consider the colours of vertices

ISSN 1365-8050  (© 2015 by the author(s) Distributed under a Creative CommadtribAtion 4.0 International License



http://arxiv.org/abs/1505.05718v3
http://dmtcs.episciences.org/
http://dmtcs.episciences.org/648

2 Stephan Dominique Andres, Winfried Hogéliger

but only the order in which they are coloured. This fact [1999) to introduce the following
maker-breaker marking ganuefining a graph parameter that is simultanously an uppendéar the
game chromatic number and a competitive version of the cisigmumber named bl Erdés and Hajnal
). The following rules of this marking game are veryifmto those of Bodlaender’s colouring
game.

Alice and Bob alternately mark vertices of a given grapk- (V, E) until every vertex is marked. The
way they choose the vertices to be marked creates a lineariogd on the set’, where the smallest
element is the first vertex that was marked and the largesashgertex marked. Thisack degreéd< (v)
of a vertexv with respect to the ordering is defined as the number of previously marked neighbours
of v, i.e.

bd<(v) :=={w eV |vw e E,w < v}

Thescoresc(G, <) of G with respect to the linear orderingis defined by

se(G, <) =1+ Inea‘:}(bdg(v).

Alice’s goal is to minimize the score, Bob tries to maximizeliet <* be a linear ordering in case both
players play according to optimal strategies. Thergume colouring numberl, (G) of G is defined as

coly(G) := sc(G, <Y).
For a non-empty class of graphs we define

coly(C) := sup coly(G).
gec

Note that, for any graph, its game colouring number is greatequal than its game chromatic number.
An application of the game colouring number with regard t® ¢ginaph packing problem was given by
Kierstead and Kostochké (2Q09).

In this paper we consider the game colouring number of tres@épowers of forests.

We only consider finite, simple, and loopless graphs.(gjlwe denote the set of 2-element subsets of
a setV. Them-th powerG™ of a graphG = (V, E) is defined as the gralV, E,,) with

E, ={wwe (‘2/) | 1 < distg(v,w) < m},

where thedistancedistq (v, w) denotes, as usual, the number of edges on a shortest path frona
in G. In particular, we hav&® = (V, ) andG' = G. Thesquareof G is the 2nd powe62.

In order to examine the marking game on the poweér of a forestF’ we will often argue with the
forestF itself, which has the same vertex setfd8. The vertex sets are identified in a canonical manner.
It is useful to define &-neighbourof a vertexv as a vertexv with distg(v, w) = k. A k<-neighbour
of a vertexv is an ¢-neighbour for soméd < ¢ < k. Hence adjacency i corresponds ton<-
neighbourhood irF'.

Esperet and Zhy (2009) and Yarjg (2012) determined upperdsdon the game colouring number of
squares of graphs depending on the maximum degree of theajr@gaph.|Andres and Theuser (2016)
generalized a global bound for squares of graphs from ther speret and Zhd (2d09) to arbitrary

powers of graphs and obtained the following upper boundersfiecial case of powers of forests.
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Theorem 1 (Andres and Theuser[(2016))Let F be a forest with maximum degrée > 3. Letm € N.
Then we have

(A-1)m—1

my <
coly(F™) <2 N

+ 2.

Here we will prove a bound which is better by facter2 for large A.

Theorem 2 Let F' be a forest with maximum degrée> 3. Letm € N. Then we have

(A-1)"™ -1

1,(F™) <
COQ( )— A_2

+2™ 4 1.

2 Proof of Theorem B

In casem = 1, Theoren{P specializes to the resul{ of Faigle pffal. (198®)the game colouring number
of a forest is at most 4.

Let us give a brief review of the strategy for Alice Faigle btessentially used in order to prove this
upper bound. Lef’ be a forest (with maximum degre¥). During the game, a special sétof vertices,
called active vertices is updated. At the beginnindg, = (). Whenever a player marks the first vertex
in a component” (which is a tree) off, this vertex is activated and becomes root of tilee of active
verticesof T, which is a rooted tree induced by the vertex 8¢f') N A. We denote the tree of active
vertices of the componefit by T4 and its root by-(T4). In her first move, Alice marks an arbitrary
vertex. Whenever Bob marks a vertein a component’, letw be the first active vertex on the path from
vtor(T4) (v = w might be possible). After Bob’s move, every vertex on théhgedm v to r(74) is
activated i.e. it becomes a member df. Alice’s next move depends on whethere w or v # w. Note
thatv = w if and only if v = (T4) or v was active ¢ € T) at the timev was marked by Bob. Alice
uses the following strategy:

Alice’s basic activation strategy:

Rule Al If v # w andw is unmarked, then Alice marks.

Rule B Otherwise, Alice chooses a component tigethat contains an unmarked vertex and; (if;)
exists, she marks an unmarked vertex with smallest distmager(73'), if 7(73') does not exist,
she marks a vertex ifiy (which will becomer (7).

It is easy to see that if Alice uses this strategy, during thelergame every unmarked vertex has at
most two active children. Therefore it has at most three edh(f-)neighbours, heneel, (F') < 4.
—Andres and Theusef (2416) applied this strategy to the lyidgrforest " of its m-th powerF" in
order to prove Theoren] 1. For this purpose we consider thegami' instead ofF"™ and have to count
the maximal number of marked < -neighbours an unmarked vertex may have.

In the proof of Theorerﬂz we use a modification of Alice’s basitivation strategy. The main differ-
ence is the additional rule A2, which gives us a significargrimvement in the upper bound we establish.
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Alice’s refined activation strategy:

Rule Al If v # w andw is unmarked, then Alice marks.

Rule A2 If v # w andw is marked and there is an unmarked vertex on the path fodov-(74), then
Alice marks the first unmarked vertex on this path (i.e. thenarked vertex on the path that is
nearest tav).

Rule B Otherwise, Alice chooses a component tigethat contains an unmarked vertex and; (i)
exists, she marks an unmarked vertex with smallest distimaner(73'), if 7(7') does not exist,
she marks a vertex ifiy (which will becomer (7).

Proof of Theorem [i: Letm > 2. Alice uses the strategy explained above. In the followirgueents
we consider the underlying forest We will show that at any time in the game after Alice’s move th
invariant holds that any unmarked vertexfohas at most

(A—1)" -1

M,, = N

+2Mm -1

markedm <-neighbours. Since Bob can increase the number of markedheighbours of an unmarked
vertex in his next move by at most one, this means that Alicefoece a score of at modt/,,, + 2 in the
marking game on the graph™.

We prove the validity of the invariant by induction on the rhenof moves. In Alice’s first move the
invariant obviously holds. Assume now it holds after somevenaf Alice. We consider the next pair of
moves of Bob and Alice.

We use the same notions, namely the set of active verficastive rooted tre@“ with rootr(74) as
in the description of the special case= 1 above. To be able to argue more precisely we also consider
T as rooted tree with root(74). In this rooted tree, for a vertex letp(z) be the predecessor ofand
C(z) the set of children of.. Fork > 1 we define the iterates

p'(z) = p(=),
P ) = p(*()),
Coz) = {a},
@) = | cw).
yeCk(z)
For a vertext, letcy, o, c3, . . ., Cdeg(a)—1 be the children of in the order they are activated in the course

of the game; then we call thei-th active childof . In the following lemmata we use the notionieth
active child even before the move after which it is activated
The rules of the above refined activation strategy imply

Lemma 3 (Consequence of Rule A1)At the time Bob marks a vertex in the subtree rooted in thergbco
active child of a vertex, the vertexc will be marked after Alice’s move.
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Proof: We may assume that is unmarked before Bob’s move. By Rule B, Alice will never kan
inactive vertex that is not adjacent to a marked vertex. &foee, when Bob, for the first time, marks a
vertexvg in the subtree rooted in the second active childf z, the vertexvy is the first active vertex
in the subtree rooted i,. Therefore the first active vertex on the path fromto the rootr(TA) is the
vertexz. By Rule A1, the vertex will be marked in Alice’s next move. O

By contraposition, we conclude

Lemma 4 After Alice’s move, for any unmarked vertexthere is at most one child € C(u) of u such
that in the rooted subtree ef(includingc) there exists at least one marked vertex. O

Lemma 5 (Consequence of Rule A2)At the time Bob marks a vertex in the subtree rooted inkttie
active child of a vertex, k > 3, the verticep(z), . . ., p*~2(x) will be marked after Alice’s move.

Proof: As above, by the rules of the game, Alice will never mark arciiwa vertex that is not adjacent
to a marked vertex. Therefore the first marked vertein thei-th child tree ofz, ¢ = 2,...,k, must
be marked by Bob. By Lemnﬂ 3, the vertexvill be marked after Alice’s move immediately after Bob
markedv,. By induction oni, it follows from Rule A2 thatp’~2(z) will be marked after Alice’s move
immediately after Bob marked, i = 3,... k. O

Letu be an unmarked vertex after Alice’s move. By Lenﬂna 4, at nvastrteighbours ofi are marked,
one childey and the parent(u). We will determine

(i) an upper bound for the number of verticesitT'4) N |J;~, C*(u), namely
om _ 1,
and

(i) an upper bound for the number of vertices in the ancéspart of the active tree with distance at
mostm from u, namely
(A-1)m -1
A-2

Summing these two values obviously gives an upper boundhéontimber of markeg: < -neighbours of
an unmarked vertex after Alice’s move.

Bound in (i): This bound is proved by a series of lemmata. We first introduagy notion. Abig vertex
isavertex: € V(T4)N U;”;ll C* (u) with the property

(V1) eitherz hasb > 3 active children and was marked by Alice by Rule A1,
(V2) orz hasb > 2 active children and was marked by Alice by Rule A2 or marked@b.

A rabbit of a big vertexz is an active child: of z which is in case (V1) neither the first nor the second
active child ofz and in case (V2) not the first active child of

Let S, resp.S; be the set of rabbits of some big vertex of type (V1) resp. (48). Let B, be the set
of big vertices of type (V2). LeD, be the set of active vertices [Uzl:_lg C*(u) with exactly one active
child.

Arguing with Rule A2 we can prove
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Lemma6 (a) Letz € C%(u), 1 <k < m — 1, be a big vertex of type (V1) withchildren. Then there
existb — 2 vertices fromV/ (T4) N Uf;ll C*(u) which were marked by Alice by Rule A2 when Bob
marked a vertex in the subtree rooted in a rabbitof

(b) Letz € C*(u), 1 < k < m — 1, be a big vertex of type (V2) withchildren. Then there exist— 1
vertices fromV/ (T4) N Uf;ll C'(u) which were marked by Alice by Rule A2 when Bob marked a
vertex in the subtree rooted in a rabbit of

Proof: Alice, by her strategy, will never mark a vertex in a subtreeted in a rabbit ot unless every
vertex on the path from to r(74) is marked (which does not hold sinee= p*(z) is unmarked).
Therefore, every rabbit will be created by Bob. Moreoverase (a), by Lemmﬂ 3, will be marked by
Alice before Bob creates the first rabbit. In case (b), agyihémma[B,z will be marked by Bob or by
Alice before Bob creates the first rabbit, otherwiseould not be of type (V2). Since is marked, the
path fromz to u is active before the first rabbit is created. Whenever Bohterea rabbit, Alice marks a
vertex on the path from to (7). Sinceu is unmarked, this vertex, by Lemrfla 5, indeed must lie on the

path fromz to u, i.e. the vertex is i/ (T4) N Uf;ll C'*(u), which proves the lemma. O
The preceding lemma helps us to prove the following key lerofithe proof.

Lemma 7 There exists an injective mappirfg S; U Sy — Bs U Ds.

Proof: The mappingf is defined by Alice’s reaction on Bob’s moves creating a ratsksome big vertex:
Each such rabbit is mapped to the vertex Alice marks immelyiat the next move. By construction and
the rules of the game, the mapping is injective. We only havghbw that it is well-defined, i.e. that it
maps toB; U D,. According to the proof of Lemmﬂ 6 a vertex in the imaffe&5; U S2) lies in the set

Z:f C*k(u). It suffices to show that such a vertgxc f(S; U Ss) will never become a big vertex of
type (V1). But this follows from the fact thatis marked by Alice by rule A2, implying thathas at most
one active child. Thereforgwill be in D5 as long as it has still one active child and become a big vertex
of type (V2), i.e. a member aBs, whenever a second child is activated. O

In order to analyse the number of marked neighbours, af vertex which is unmarked at the current
state of the game, we modify the pdrt of the active treel’'* with vertex setV (T") := V(T4) N
Ui, C*(u) in the following way. For every big vertex and every rabbit of ~ we delete the active
subtree rooted in, move it, and append it as a child 6fc).

Lemma 8 In the modified tredy of the partT” of the active tree every vertex has at most two children,
i.e. Ty is a binary tree rooted in the unique active childwof

Proof:

Case 1: Assume that= f(c) is a vertex that receives new children after the modificatibyi(c) € D,
the vertexf(c) has exactly one active child before the modification and grestly another
one after the modification. If(c) € B, it has exactly one active non-rabbit child before the
modifcation. Since every subtree rooted in a rabbif @f) is deleted, after the modificatiof{c)
has exactly two active children.
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Case 2: Assume thatis a vertex that does not receive marked children during tbdification. In
casev is a big vertex of type (V1), after the modification all but taotive child subtrees have
been moved away. I is a big vertex of type (V2), under the assumption of Cﬁse ter dfie
modification all but one active child subtree has been movwayalf v is not a big vertex, then,
by the definition of big vertices, Alice’s strategy and thewaption of Casﬂ 2; has at most two
active children.

This proves the lemma. ]

Lemma 9 T, has the same number of vertices as the original {fdrbf the active tree and none of the
moved vertices lies outsidg," ; C*(u).

Proof: The first assertion follows since we do not delete subtreesgaver, we move them. The second
follows from the fact that we move them to a lower level in thiedpy tree, but not below the level of the
root (the unique active child af). ]

Corollary 10 T, has at mosg™ — 1 vertices.

Proof: By Lemma[B,T; is a binary tree. By the second assertion of Lenim@9has height at most

m — 1. Therefore, at level we have at mos2’ vertices,i = 0, ..., m — 1. Summing up, we get at most
m—1
d oi=2m—1
1=0

vertices. O

Corollary 11 The number of markeah <-neighbours of: in the child trees of: is at most

<om_1. (1)

V(TN 6 C*(w)
k=1

Proof: By the first assertion of Lemnjh 9 and Corollary 10

C*(u)

C:=

V(TN = |V(Ty)] < 2™ — 1.

k=1

Corollary gives us the desired bound (i).

Bound in (ii): If we considep(u) and consider the treE as rooted int, then in the new “child” subtree
rooted inp(u) (which is the tree of foremothers and aunts and so on) theghtrbe at mostA — 1)%—!
marked vertices at distanésfrom v in the new subtree. Therefore the number of marked verticdsei
new subtree is at most )

a gk (A=Dm—1
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Combining (i) and (ii), i.e. adding the bouncﬂ; (1) aﬁb (2)tatal the number ofn<-neighbours after

Alice’s move is at most
(A-1)m—1

A—2
This completes the proof of Theore}]n 2. O

+2™ — 1= M,,.

3 Open problems
Andres and Theusef (2016) specify a lower bound for the gasteaidng number of the class ofi-th
powers of forests with maximum degrée based on an observationof Agnarsson and Halldor$soid}200

which is Q(AL%J ). Therefore even the improved bound in Theorﬁm 2 leaves a asgmptotic gap
between lower and upper bound.

Problem 12 Let F be the class of forests with maximum degteandm € N. Determine

col({F™ | F € F}).

If m = 2andA > 9, the gap in Problerh 12 was reduced by Esperet anfl [Zhu](20a9pvaved that

A+1<col, {F?|FeF}<A+3.

It might be that a generalization of the activation strategry be applied to powers of members of graph
classes with some tree decomposition structure.

Problem 13 Let7; be the class of partiat-trees with maximum degre® andm € N. Determine
coly {G™ | G € Ti.}).
More generally,
Problem 14 Let G be the class of-degenerate graphs with maximum degfeandm € N. Determine
coly({G™ | G € Gi}).

Exact values for the game colouring number of powers of gphémiests are only known for large paths,
cf. Andres and Theugef (2416).

Problem 15 Determine the exact valuesl, (#™) for all m € N and interesting special foresfs.
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