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Abstract. A walk u0, u1, . . . , uk−1, uk in a graph G is a weakly toll walk if u0ui ∈ E(G) implies ui = u1 and

ujuk ∈ E(G) implies uj = uk−1. A set S of vertices of G is weakly toll convex if for any two nonadjacent vertices

x, y ∈ S, any vertex in a weakly toll walk between x and y is also in S. The weakly toll convexity is the graph

convexity defined over weakly toll convex sets. If S and S \ {x} are convex sets, then x is an extreme vertex of S. A

graph convexity is said to be a convex geometry if it satisfies the Minkowski-Krein-Milman property, which states that

every convex set is the convex hull of its extreme vertices. It is known that chordal, Ptolemaic, weakly polarizable,

and interval graphs can be characterized as convex geometries with respect to the monophonic, geodesic, m3, and toll

convexities, respectively. Inspired by previous results in (Alcón, Brešar, Gologranc, Gutierrez, Šumenjak, Peterin,

and Tepeh, 2015), in this paper we prove that a graph is a convex geometry with respect to the weakly toll convexity

if and only if it is a proper interval graph. Furthermore, some well-known graph invariants are studied with respect to

the weakly toll convexity, namely the weakly toll number and the weakly toll hull number. In particular, we determine

these invariants for trees and we find bounds for interval graphs.

Keywords: Convex Geometry, Convexity, Proper Interval Graph, Weakly Toll Walk

1 Introduction

This paper is motivated by the results and ideas contained in (Alcón, Brešar, Gologranc, Gutierrez,

Šumenjak, Peterin, and Tepeh, 2015). We introduce a new graph convexity and show how this gives rise

to a new structural characterization of proper interval graphs. We begin with an overview of convexity

notions in graphs. For an extensive overview of other convex structures, see (van de Vel, 1993).

Let C be a collection of subsets (called convex sets) of a finite set X . In abstract convexity theory,

the following axioms determine the pair (X, C) as a convexity space: (i) ∅ and X are convex; (ii) the

intersection of any two convex sets is convex. Suppose that X = V (G) for some graph G. For a set

S ⊆ V (G), the smallest convex set containing S is called the convex hull of S. A set S ⊆ V (G) is a
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hull set if the convex hull of S is V (G). An element x ∈ S, where S ⊆ V (G) is a convex set, is called

an extreme vertex of S if S \ {x} is also convex. A convex geometry is a pair formed by a graph G and

a convexity on V (G) satisfying the Minkowski-Krein-Milman property (Krein and Milman, 1940): Every

convex set is the convex hull of its extreme vertices.

In the last few decades, graph convexity has been investigated in many contexts (Farber and Jamison,

1986; Pelayo, 2013; van de Vel, 1993). In particular, some studies are devoted to determine if a graph

equipped with a convexity is a convex geometry. Chordal, Ptolemaic, strongly chordal, interval, and

weakly polarizable graphs have been characterized as convex geometries with respect to the mono-

phonic (Duchet, 1988; Farber and Jamison, 1986), geodesic (Farber and Jamison, 1986), strong (Farber

and Jamison, 1986), toll (Alcón, Brešar, Gologranc, Gutierrez, Šumenjak, Peterin, and Tepeh, 2015), and

m3 (Dragan, Nicolai, and Brandstädt, 1999) convexities, respectively. Other classes of graphs that have

been characterized as convex geometries are forests, cographs, bipartite graphs, and planar graphs (see

the survey paper (Dourado, Gutierrez, Protti, Sampaio, and Tondato, 2022)). In addition, convex geome-

tries associated with the Steiner convexity and the ℓk-convexity (defined over induced paths of length at

most k) are studied in (Cáceres, Marquez, and Puertas, 2008) and (Gutierrez, Protti, and Tondato, 2023),

respectively.

The main result of this paper states that a graph is a convex geometry with respect to the weakly toll

convexity if and only if it is a proper interval graph. In order to prove this result we introduce the concept

of weakly toll walk, a walk with a special restriction on their end vertices. A walk u0, u1, . . . , uk−1, uk

is a weakly toll walk if u0ui ∈ E(G) implies ui = u1 and ujuk ∈ E(G) implies uj = uk−1. Note that

u1 (or uk−1) may appear more than once in the walk. A set S of vertices of G is weakly toll convex if for

any two nonadjacent vertices x, y ∈ S, any vertex in a weakly toll walk between x and y is also in S. The

weakly toll convexity is the graph convexity defined over weakly toll convex sets.

The concept of weakly toll walk is a relaxation of the concept of tolled walk, which was conceived to

capture the structure of the convex geometry associated with an interval graph. Likewise, weakly toll

walks are used as a tool to characterize proper interval graphs as convex geometries.

The paper is organized as follows: in Section 2, we give some definitions and necessary background. In

Section 3, we prove that proper interval graphs are precisely the convex geometries with respect to the

weakly toll convexity. In Section 4, we study some invariants associated with the weakly toll convex-

ity, namely the weakly toll number and the weakly toll hull number. In particular, we determine these

invariants in trees and we find bounds in arbitrary interval graphs. Section 5 contains a short conclusion.

2 Preliminaries

Let G be an undirected graph without loops or multiple edges. If C is a subset of vertices of G, G[C]
denotes the subgraph of G induced by C. Let xy ∈ E(G) and z, w be two nonadjacent vertices of G; the

graphG−xy+zw is obtained fromG by deleting the edge xy and adding the edge zw. For S ⊆ V (G), the

graphG′ = G−S is defined as follows: V (G′) = V (G)\S and E(G′) = {xy ∈ E(G) | {x, y}∩S = ∅}.

The distance between a pair of vertices u and v of G is the length of a shortest path (or geodesic) between u
and v in G, and is denoted by dG(u, v). The geodesic interval IG(u, v) between vertices u and v is the set

of all vertices that lie in some shortest path between u and v in G; in other words, IG(u, v) = {x ∈ V (G) :
dG(u, x)+dG(x, v) = dG(u, v)}. A subset S of V (G) is geodesically convex (or g-convex) if IG(u, v) ⊆
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S for all u, v ∈ S. Similarly, define JG(u, v) = {x ∈ V (G) : x lies in an induced path between u and v}
to be the monophonic interval between u and v in G. In the associated monophonic convexity, a subset S
of V (G) is monophonically convex (or m-convex) if JG(u, v) ⊆ S for all u, v ∈ S.

A tolled walk is any walk T : u0, u1, . . . , uk−1, uk such that u0 is adjacent only to the second vertex of

the walk, and uk is adjacent only to the second-to-last vertex of the walk. This implies that each of u1 and

uk−1 occurs exactly once in the walk.

Let TG(u, v) = {x ∈ V (G) : x lies in a tolled walk between u and v} be the toll interval between u and

v in G. In the associated toll convexity, a subset S of V (G) is toll convex (or t-convex) if TG(u, v) ⊆ S
for all u, v ∈ S.

Next, we introduce the concept of weakly toll convexity. Let u, v ∈ V (G). A weakly toll walk between u
and v in G is a sequence of vertices of the form

W : u = w0, w1, . . . , wk−1, v = wk, k ≥ 0,

such that if k > 0, then

• wiwi+1 ∈ E(G) for all i ∈ {0, . . . , k − 1},

• uwi ∈ E(G) implies wi = w1, i ∈ {1, . . . , k}, and

• wiv ∈ E(G) implies wi = wk−1, i ∈ {0, . . . , k − 1}.

In other words, a weakly toll walk is any walk W : u,w1, . . . , wk−1, v between u and v such that u is

adjacent only to the vertex w1, which can appear more than once in the walk, and v is adjacent only to

the vertex wk−1, which can appear more than once in the walk. Note that if uv ∈ E(G), then W : u, v
is a weakly toll walk, and if k = 0 then W : u is a wealky toll walk consisting of a single vertex. We

define WTG(u, v) = {x ∈ V (G) : x lies in a weakly toll walk between u and v} to be the weakly toll

interval between u and v in G. Finally, a subset S of V (G) is weakly toll convex if WTG(u, v) ⊆ S for

all u, v ∈ S.

Note that any weakly toll convex set is also a toll convex set. Also, any toll convex set is a monophonically

convex set, and a monophonically convex set is a geodesically convex set.

On the other hand, consider the graph K1,3 with vertices a, b, c, d, where b is the vertex with degree three,

and let S = {a, b, c}. It is clear that S is toll convex but not weakly toll convex, since a, b, d, b, c is a

weakly toll walk between a and c that contains d /∈ S.

The weakly toll convex hull of a set S ⊆ V (G) is the smallest set of vertices in G that contains S and is

weakly toll convex (alternatively, it is the intersection of all weakly toll convex sets that contain S). In

this particular convexity, the concept of extreme vertex can also be defined. A vertex x of a weakly toll

convex set S of a graph G is an extreme vertex of S if S \ {x} is also a weakly toll convex set in G.

A graph is an interval graph if it has an intersection model (or interval model) consisting of closed

intervals on a straight line. Given an interval I, let R(I) and L(I) be, respectively, the right and left

endpoints of I. Given a family of intervals {Iv}v∈V (G), we say that Ia is an end interval if L(Ia) =
Min

⋃
Iv or R(Ia) = Max

⋃
Iv . A given vertex a in an interval graph G is an end vertex if there exists

some interval model where a is represented by an end interval.
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A graph is chordal if every cycle of length at least four has a chord. A vertex x of a graph G is called sim-

plicial if N [x] is a clique in G, where N [x] = {u ∈ V (G) : ux ∈ E(G)}∪{x}. The ordering x1, . . . , xn

of the vertices of G is a perfect elimination order of G if for all i, xi is simplicial in G[{xi, . . . , xn}].

Theorem 2.1. (Dirac, 1961) A graph is chordal if and only if it has a perfect elimination order.

Lekkerkerker and Boland (1962) proved that a chordal graph is an interval graph if and only if it contains

no asteroidal triple. Three vertices of a graph form an asteroidal triple if for any two of them, there exists

a path between them that does not intersect the closed neighborhood of the third.

Gimbel (1988) studied the end vertices of an interval graph:

Theorem 2.2. (Gimbel, 1988) A vertex v of an interval graph G is an end vertex if and only if G does not

contain any of the graphs in Figure 1 as an induced subgraph with v as the designated vertex.

A simplicial vertex v of an interval graph G is called end simplicial vertex if it is an end vertex of G.

In Figure 1, consider the graphs star1,2,2, Bn (n > 5), and the bull graph. Note that v is a simplicial ver-

tex in any of such graphs. In addition, consider the walks v1, v2, v3, v, v3, v4, v5 (in the graph star1,2,2),

v1, v2, v, v2, vn−1, vn (in the graph Bn), and v1, v2, v, v3, v4 (in the bull graph). Note that these walks are

weakly toll walks. Hence v is not an extreme vertex of any graph in Figure 1.

v1 v2 v3 v4 v5

v

star1,2,2

v v3 v4 v5 vn−1 vn

v2 v1

Bn (n > 5)

v2 v3

v1 v4

v

bull

v

Fig. 1: Gimbel’s graphs.

A proper interval graph is an interval graph that has a proper interval model, i.e., an interval model in

which no interval strictly contains another. More precisely, there exists a collection of intervals I =
{Iv}v∈V (G) such that:

1. uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅;

2. Iv * Iu and Iu * Iv if u 6= v.

Roberts (1969) proved that proper interval graphs are exactly the K1,3-free interval graphs. Observe that

star1,2,2 and Bn (see Figure 1) are not proper interval graphs. In addition, in a proper interval model of
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the graph P5, the end intervals are necessarily associated with the vertices of degree one. Therefore, we

have the following corollary:

Corollary 2.1. A vertex v of a proper interval graph G is an end vertex if and only if G does not contain

any of the graphs in Figure 2 as an induced subgraph with v as the designated vertex.

v1 v v2 v2 v3

v1 v4

v

bull

Fig. 2: Forbidden configurations for an end vertex in proper interval graphs.

In order to determine whether a graph is a convex geometry with respect to some convexity, it is important

to know which vertices are the extreme vertices of convex sets in that convexity. As said above, chordal

graphs are associated with the monophonic convexity, and in this case the extreme vertices are exactly

the simplicial vertices (Farber and Jamison, 1986). In the case of interval graphs, associated with the

toll convexity, the extreme vertices are the end simplicial vertices (Alcón, Brešar, Gologranc, Gutierrez,

Šumenjak, Peterin, and Tepeh, 2015).

Theorem 2.3. (Alcón, Brešar, Gologranc, Gutierrez, Šumenjak, Peterin, and Tepeh, 2015) A graph is a

convex geometry with respect to the toll convexity if and only if it is an interval graph.

Lemma 2.1. Let G be an interval graph. Every vertex of G which is not an end simplicial vertex lies in a

weakly toll walk between two end simplicial vertices.

Proof: Since G is an interval graph, by Theorem 2.3, G is a convex geometry with respect to the toll

convexity. This means that every vertex of G that is not an end simplicial vertex lies in a tolled walk

between two end simplicial vertices. As every tolled walk is a weakly toll walk, the lemma follows.

Lemma 2.2. Let C be a weakly toll convex set of a graph G. If x is an extreme vertex of C, then x is a

simplicial vertex in G[C].

Proof: Suppose that x is an extreme vertex of C that is not simplicial in G[C]. Then there exist two

neighbors of x in C, say u and v, which are not adjacent. But then u, x, v is a weakly toll walk in G.

Hence C \ {x} is not a weakly toll convex set, which is the desired contradiction.

Lemma 2.3. A vertex v of a proper interval graph G is an extreme vertex of the weakly toll convex set

V (G) if and only if v is an end simplicial vertex of G.

Proof: Suppose that v is an extreme vertex that is not an end simplicial vertex. Since v is an extreme

vertex, no induced path contains v as an internal vertex; hence, v is a simplicial vertex so that v is not an

end vertex. Using Corollary 2.1 and the observations after Theorem 2.2, v is not an extreme vertex, which

is a contradiction.
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Conversely, assume, in order to obtain a contradiction, that there exists a weakly toll walk W between

two nonadjacent vertices x and y of G containing an end simplicial vertex v as an internal vertex. Write

W : x,w1, . . . , wi, v, wi+2, . . . , wn, y. Since v is an end simplicial vertex, we can assume that there

exists a proper interval model {Iu}u∈V (G) such that Iv appears as the first interval on the line. First,

we will show that x is not adjacent to v. Suppose that x is adjacent to v. As W is a weakly toll walk,

w1 = v. Moreover, since v is a simplicial vertex, wi and wi+2 are adjacent to x. Thus wi = wi+2 = v.

Clearly wk = v for k ∈ {1, . . . , n}. Then W is the walk x, v, y. Since v is a simplicial vertex and x, y
are adjacent to v, we have that x is adjacent to y, which is a contradiction.

Since x and y are not adjacent to v, and x is not adjacent to y, we have Iv ∩ Ix = ∅, Ix ∩ Iy = ∅, and

Iv ∩ Iy = ∅. Thus, we can assume that Iv , Ix, and Iy appear in this order on the line.

On the other hand, the weakly toll walk W : x,w1, . . . , wi, v, wi+2, . . . , wn, y goes from x to v through

w1, w1 is the only vertex adjacent to x, and G is a proper interval graph. Thus L(Ix) ∈ Iw1
and

L(Iw1
) < L(Ix). Also, the weakly toll walk W : x,w1, . . . , wi, v, wi+2, . . . , wn, y goes from v to y

through w1 because the only vertex adjacent to x is w1. Thus R(Ix) ∈ Iw1
and R(Ix) < R(Iw1

).
Hence, we have Ix $ Iw1

, which is a contradiction because {Iu}u∈V (G) is a proper interval model of

G.

Lemma 2.4.

1. Let x, y and z be vertices forming an asteroidal triple in a graph G. If C is the weakly toll convex hull

of the set {x, y, z}, then C does not have extreme vertices.

2. Let a, b, c, and d be vertices inducing a K1,3 in a graph G. If C is the weakly toll convex hull of the set

{a, b, c, d}, then C does not have extreme vertices.

Proof:

1. Let w be a vertex of C, different from x, y, and z. Assume, in order to obtain a contradiction, that

w is an extreme vertex in C. Thus C \ {w} is a weakly toll convex set. Also C \ {w} contains x,

y, and z. This is a contradiction.

Now, we will show that no vertex of the set {x, y, z} is an extreme vertex. Let P and Q be the

induced paths between x, y (avoiding neighbors of z), and y, z (avoiding neighbors of x), respec-

tively. By concatenating P and Q, we obtain a weakly toll walk between x and z containing y
(observe that no vertex of Q can be adjacent to x, and no vertex of P can be adjacent to z). Thus,

there is a weakly toll walk between two vertices of the asteroidal triple containing the other vertex

of the asteroidal triple. Hence no vertex forming the asteroidal triple is an extreme vertex in C.

2. As in the proof of 1, if w is a vertex of C, different from a, b, c, and d, then w is not an extreme

vertex.

Let a, b, c, d be the vertices of a K1,3 such that b has degree three. Since a, b, c, b, d is a weakly toll

walk between a and d, b and c are not extreme vertices of K1,3. Likewise, we prove that a and d
are not extreme vertices of K1,3.
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3 Proper interval graphs as convex geometries

Recall that if a graph is a convex geometry with respect to a particular convexity, then V (G) and every

convex subset of G is the convex hull of its extreme vertices with respect to that convexity.

Theorem 3.1. A graph G is a convex geometry with respect to the weakly toll convexity if and only if G
is a proper interval graph.

Proof: Let G be a convex geometry w.r.t. the weakly toll convexity. We will show that G is a proper

interval graph, using induction on the number of vertices of G. The claim is true if G has one or two

vertices. Assume that G has n vertices and that the claim is true for all graphs with fewer than n vertices.

Let x be any extreme vertex of V (G). Clearly G− x is a convex geometry. By the induction hypothesis,

G− x is a proper interval graph. In particular, G− x is a chordal graph. By Lemma 2.2, x is a simplicial

vertex in G; thus, G is chordal. If G has an asteroidal triple, then, by Lemma 2.4, the weakly toll convex

hull C of the asteroidal triple has no extreme vertices. This implies that C is not the weakly toll convex

hull of its extreme vertices, which is a contradiction. Thus G is a chordal graph with no asteroidal triple,

and this implies that it is an interval graph. Now, we claim that G does not contain K1,3 as an induced

subgraph. In order to obtain a contradiction, suppose that G contains G′ = K1,3 as an induced subgraph.

Let C be the weakly toll convex hull of the set V (G′). It is clear, using Lemma 2.4, that C has no

extreme vertices. This implies that C is not the weakly toll convex hull of its extreme vertices, which is a

contradiction. Hence, G is a proper interval graph.

Conversely, every convex subset of a proper interval graph G induces a proper interval graph. Thus it

suffices to show that V (G) is the convex hull of its extreme vertices. Since G is a proper interval graph,

then it is an interval graph. By Lemma 2.1, every vertex of G that is not an end simplicial vertex lies in a

wealky toll walk between two end simplicial vertices. Recall that, by Lemma 2.3, the set of end simplicial

vertices is equal to the set of extreme vertices in the weakly toll convexity if G is a proper interval graph.

Hence every vertex of G that is not an extreme vertex lies in a weakly toll walk between two extreme

vertices. This implies that G is a convex geometry.

4 Some invariants associated with the weakly toll convexity

In this section, we consider some standard invariants with respect to the weakly toll convexity that have

been extensively studied for other graph convexities. We consider the weakly toll number and the weakly

toll hull number of a graph.

The definition of weakly toll interval for two vertices u and v can be generalized to an arbitrary subset S
of V (G) as follows:

WTG(S) =
⋃

u,v∈S

WTG(u, v).

If WTG(S) = V (G), S is called a weakly toll set of G. The order of a minimum weakly toll set in G is

called the weakly toll number of G, and is denoted by wtn(G). For any non-trivial connected graph G, it

is clear that 2 ≤ wtn(G) ≤ n.

As mentioned earlier, the weakly toll convex hull of a set S ⊆ V (G) is defined as the intersection of all

weakly toll convex sets that contain S, and we will denote this set by [S]WT . A set S is a weakly toll
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hull set of G if [S]WT = V (G). The weakly toll hull number of G, denoted by wth(G), is the minimum

among all the cardinalities of weakly toll hull sets.

Given a set S ⊆ V (G), define WT
k(S) as follows: WT

0(S) = S and WT
k(S) = WT (WT

k−1(S))
for k ≥ 1. Note that [S]WT =

⋃
k∈N

WT
k(S). From the definitions, we immediately infer that every

weakly toll set is a weakly toll hull set, and hence wth(G) ≤ wtn(G).

By the proof of Theorem 3.1, the weakly toll number (as well as the weakly toll hull number) of a proper

interval graph coincides with the number of its extreme vertices. Indeed, every weakly toll set of G
contains Ext(G). Furthermore, every vertex that is not an extreme vertex lies in a weakly toll interval

between two extreme vertices. We then derive the following fact:

Proposition 4.1. If G is a proper interval graph, then wtn(G) = wth(G) = |Ext(G)|, where Ext(G) is

the set of extreme vertices of G.

It is known that, among the trees, only paths are proper interval graphs. In the following theorem, we

determine the weakly toll number and the weakly toll hull number of any tree.

Theorem 4.1. Let G be a non-trivial tree. Then wtn(G) = wth(G) = 2.

Proof: Let a and b be two leaves of G. Clearly, every vertex of V (G)\{a, b} lies in some weakly toll walk

between a and b; hence wtn(G) ≤ 2. Since G is a non-trivial graph, wtn(G) = 2. As wth(G) ≤ wtn(G)
and G is a non-trivial graph, it follows that wth(G) = 2.

We now need to recall a special representation of interval graphs. More details can be found in (Fulkerson

and Gross, 1965). Let C(G) be the set of all maximal cliques of an interval graph G. A canonical

representation I of G is a total order Q1, . . . , Qk of the set C(G) in which for each vertex v of G, the

cliques in the set Qv = {Q ∈ C(G) | v ∈ Q} occur consecutively in the order (see Figure 3). Maximal

cliques Q1 and Qk are called end cliques of the representation. In addition, for two maximal cliques

Qi, Qj with i ≤ j, we denote by G[Qi, Qj ] the subgraph of G induced by Qi ∪ Qi+1 ∪ . . . ∪ Qj , and

by I[Qi, Qj ] the canonical representation Qi, Qi+1, .., Qj of G[Qi, Qj ]. The clique intersection graph

K(G) is defined as follows: V (K(G)) = C(G) = {Q1, . . . , Qk}, and there is an edge QiQj in K(G)
if and only if Qi ∩ Qj 6= ∅. We denote by GI the acyclic spanning subgraph of K(G) consisting of

the path Q1, Q2, . . . , Qk. The graph GI is intrinsically associated with the canonical representation I . It

is a particular case of a clique tree of a chordal graph (recall that interval graphs are chordal). For more

details, see (Buneman, 1974; Gavril, 1974). In the case of interval graphs, clique trees are paths. Note that

in every canonical representation I of star1,2,2, Bn (n > 5), and the bull graph,N [v] is a clique that is not

an end clique (see Figure 1). Moreover, if G is an interval graph which contains star1,2,2, Bn (n > 5), or

the bull graph as an induced subgraph and Q ∈ C(G) contains N [v], then in each canonical representation

I of G, Q is an internal vertex of GI .

In this context, a given simplicial vertex v in an interval graph G is an end vertex if there exists some

canonical representation where N [v] is an end clique of this representation. This can be proved as follows:

if v is a simplicial vertex and N [v] is an end clique of a canonical representation, then v cannot be the

designated vertex in any configuration depicted in Figure 1. Thus, by Theorem 2.2, v is an end vertex.

In what follows, we show some properties of the canonical representation I of an interval graph G.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7

v1 v v8

v3
v4

v5
v6

v7

v2

v3 v6

v2

v4 v5

(a)

(b)

(c)

(d)
Q3 Q4 Q5

Fig. 3: (a) Interval model of graph G = B8 (see Figure 1); (b) clique tree GI , associated with canonical representation

I = Q1, Q2, . . . , Q7; (c) interval model of the graph H = G[Q3, Q5]; (d) clique tree HJ , associated with canonical

representation J = I [Q3, Q5].

Proposition 4.2. Let G be a connected interval graph, and I a canonical representation of G such that

Q is an end vertex of GI and Q′, Q′′ is a pair of vertices of GI such that Q∩Q′ 6= ∅ and Q∩Q′′ 6= ∅. If

Q,Q′, Q′′ appear in this order (or in reverse order) in I , then Q ∩Q′′ ⊆ Q ∩Q′.

Proof: Assume Q,Q′, Q′′ appear in this order in I . Let x be a vertex in Q ∩ Q′′. Clearly Q,Q′′ ∈ Qx.

Since Q′ ∈ I[Q,Q′′], it follows that Q′ ∈ Qx. Thus x ∈ Q ∩Q′, that is, Q ∩Q′′ ⊆ Q ∩Q′.

If the vertices appear in the order Q′′, Q′, Q in I , then Q′ ∈ I[Q′′, Q], and the proof uses the same

arguments.

Proposition 4.3. Let G be a connected interval graph, I a canonical representation of G, and si an

end simplicial vertex of G such that N [si] is end clique of I for i = 1, 2. If there exist maximal cliques

Q1, Q2, Q3, and Q4 of G such that N [s1], Q1, Q2, Q3, Q4, N [s2] appear in this order or in reverse order

in I , Q1 ∩Q2 ⊆ N [s2] and Q3 ∩Q4 ⊆ N [s1], then Q3 ∩Q4 = Q1 ∩Q2.

Proof: Let x ∈ Q1 ∩ Q2. Since Q1 ∩ Q2 ⊆ N [s2], it follows that {Q1, Q2, N [s2]} ⊆ Qx. Recall

that the cliques in Qx occur consecutively in I . This implies that Q3 ∈ Qx and Q4 ∈ Qx, that is,

x ∈ Q3 ∩ Q4. Hence, Q1 ∩ Q2 ⊆ Q3 ∩ Q4. Analogously, we can prove that Q3 ∩ Q4 ⊆ Q1 ∩ Q2.

Therefore Q3 ∩Q4 = Q1 ∩Q2.
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Proposition 4.4. Let G be a connected interval graph, I a canonical representation of G, and s an end

simplicial vertex of G such that N [s] and Q are the end cliques of I . If G − N [s] has k + 1, k ≥ 1,

connected components, then there exist k vertices q1, . . . , qk in G−N [s] such that:

1. every qi is an end simplicial vertex of G;

2. N [s], N [q1], . . . , N [qk] appear in this order or in reverse order in I;

3. if k ≥ 2, then for i = 2, . . . , k, N [qi] ∩N [s] ⊆ N [qi−1] ∩N [s];

4. for i = 1, . . . , k, there exists a maximal clique Q′

i such that N [qi] ∩Q′

i ⊆ N [s], and N [qi], Q
′

i are

consecutive vertices in GI ;

5. for i = 1, . . . , k, there exists another canonical representation Ii such that N [qi] and Q are its end

cliques;

6. G[N [qk], Q]−N [qk] is a connected graph.

Proof: Since G − N [s] is not a connected graph, there exist consecutive vertices Qi, Q
′

i in GI for i =
1, . . . , k such that Q1 6= N [s], Qi ∩ Q′

i ⊆ N [s], and the vertices of Qi \ N [s] and Q′

i \ N [s] belong to

different connected components of G−N [s], for i = 1, . . . , k. Note that, for i = 1, . . . , k−1, clique Qi+1

can coincide with Q′

i; in addition, if k = 1, the graph G−N [s] has exactly two connected components.

In order to fix ideas, assume that N [s], Q1, Q
′

1, . . . , Qk, Q
′

k, Q appear in this order in I . The graph

GI −QiQ
′

i+Q′

iN [s] is clearly associated with another canonical representation Ii of G, for i = 1, . . . , k.

Note that Qi is an end clique of Ii, so there exist simplicial end vertices qi ∈ Qi, which are end vertices of

G, for i = 1, . . . , k. As qi is simplicial, N [qi] is a maximal clique of G and Qi = N [qi] for i = 1, . . . , k.

Furthermore, by Proposition 4.2, if k ≥ 2, then N [qi] ∩N [s] ⊆ N [qi−1] ∩N [s], for i = 2, . . . , k.

Let G2 = G[N [qk], Q]. Since G −N [s] has k + 1 connected components, it follows that N [qk], Q
′

k are

the only cliques of G2 such that N [qk] ∩ Q′

k ⊆ N [s]. Thus G2 −N [qk] is a connected graph. Note that

G2 −N [s] has exactly two connected components.

Two vertices u and v of a graph G are called twins if N [u] = N [v].

Proposition 4.5. Let G be a connected interval graph, I a canonical representation of G, and s1 and

s2 end vertices of G such that N [s1] and N [s2] are distinct end cliques of I . Then, every vertex of

G− (N [s1] ∪N [s2]) lies in a weakly toll walk between s1 and s2.

Proof: Let y and w be vertices of G such that y ∈ N(s1), w ∈ N(s2), and |Qv| is maximum for each

v ∈ {y, w}. Note that y may be equal to w. Let x be a vertex of G− (N [s1] ∪N [s2]).

If y = w or y, w are twins then Qy = C(G). Therefore, W : s1, y, x, y, s2 is a weakly toll walk between

s1 and s2, which captures x.

Assume that y 6= w and y, w are not twins. If y is adjacent to w, then there is a maximal clique Q ∈ C(G)
containing both y andw. Thus, {N [s1], Q} ⊆ Qy and {Q,N [s2]} ⊆ Qw, and the cliquesN [s1], Q,N [s2]
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appear in this order (or in reverse order) in I . Suppose without loss os generality that N [s1], Q,N [s2]
appear in this order in I . Since the cliques in Qy (or in Qw) occur consecutively in I , Qy contains all

the cliques in I from N [s1] to Q, and Qw contains all the cliques in I from Q to N [s2]. Therefore,

Qy ∪ Qw = C(G). Moreover, x is clearly adjacent to y or w. Thus either W1 : s1, y, x, y, w, s2,

W2 : s1, y, w, x, w, s2, or W3 : s1, y, x, w, s2 is a weakly toll walk between s1 and s2, which captures x.

Now, suppose that y is not adjacent to w. Let P : y, x1, .., xn, w be an induced path between y and w in

G. By the choice of y and w, xi /∈ N [s1] ∪N [s2].

Let x0 = y and xn+1 = w. Since xixi+1 ∈ E(G), let Qi be a clique of C(G) containing both xi and

xi+1, for i = 0, . . . , n. Since P is induced, Qi ∩ {x0, . . . , xn+1} = {xi, xi+1}, and this implies that (a)

Qi 6= Qj , for distinct indices i, j ∈ {0, . . . , n}, and (b) Q0, Q1, . . . , Qn or Qn, Qn−1, . . . , Q0 is a total

order. Hence, N [s1], Q0, . . . , Qn, N [s2] appear in this order (or in reverse order) in I . Suppose without

loss of generality that N [s1], Q0, . . . , Qn, N [s2] appear in this order in I . Note that (i) Qy contains all

the cliques in I from N [s1] to Q0, (ii) Qxi
contains all the cliques in I from Qi to Qi+1, for i = 0, . . . , n,

and (iii) Qw contains all the cliques in I from Qn to N [s2]. Therefore, Qy ∪ Qw ∪
⋃n

i=1 Qxi
= C(G).

To conclude the proof, observe that x = xi or x must be adjacent to y or w or xi for some 1 ≤ i ≤ n.

Therefore, s1, P, s2 or s1, y, x, P, s2 or s1, P, x, w, s2 or s1, y, x1, . . . , xi, x, xi, . . . , xn, w, s2 (for some

i ∈ {1, . . . , n}) is a weakly toll walk between s1 and s2, which captures x.

Proposition 4.6. Let G be a connected interval graph, let s1 6= s2 be two non-twin simplicial vertices

of G such that G − N [s1] and G − N [s2] are connected graphs, and let Si = {si} ∪ {x ∈ V (G) :
x is a twin of si} for i = 1, 2. Then,

(1) S1 ∪ S2 is a weakly toll set of G;

(2) if there exists v /∈ N [s1] such that for some y ∈ N [s1], Qv  Qy , and there exists an induced path

P between y and s2 with P ∩N [v] = {y}, then S = S1 ∪ {s2, v} is a weakly toll set of G;

(3) if there exist v /∈ N [s1] and w /∈ N [s2] such that for some y ∈ N [s1] and z ∈ N [s2], Qv  Qy

and Qw  Qz , and there exist induced paths P between y and s2 with P ∩ N [v] = {y} and P1

between z and s1 with P1 ∩N [w] = {z}, then S = {s1, v, s2, w} is a weakly toll set of G;

(4) 2 ≤ wtn(G) ≤ |S1 ∪ S2|.

Proof:

If G − N [s1] and G − N [s2] are connected graphs then, in every canonical representation of G, N [s1]
and N [s2] are end cliques.

(1) Let x ∈ V (G) \ (N [s1] ∪N [s2]). By Proposition 4.5, x lies in a weakly toll walk between s1 and

s2. Now, for i ∈ {1, 2}, let x ∈ N [si] \Si. Since x /∈ Si and G−N [si] is a connected graph, there

exists at least a vertex y ∈ N(x) \N [si] and an induced path P : y, . . . , sj avoiding the neighbors

of si. Note that no vertex of P is a neighbor of si. Then si, x, y, . . . , sj is a walk between si and

sj which contains x as internal vertex; in addition, this walk contains an induced path P1 between
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si and sj which contains x as an internal vertex. Hence P1 is a weakly toll walk between si and sj
containing x as an internal vertex. Thus S1 ∪ S2 is a weakly toll set of G and wtn(G) ≤ |S1 ∪ S2|.

(2) Let P = y, y1, . . . , yn, s2 such that P ∩N [v] = {y}. Since s1 6= s2, v /∈ N [s1], and Qv is properly

contained in Qy, we have that y1 /∈ N [s1]. Let s be a twin of s2. Since yi /∈ N [v], the walk

s1, y, y1, . . . , yn, s, yn, yn−1, . . . , y1, y, v is a weakly toll walk between s1 and v, which captures s.

Hence S = S1 ∪ {s2, v} is a weakly toll set and wtn(G) ≤ |S|.

(3) Every vertex of V (G) \ (S1 ∪ S2) is contained in the weakly toll interval of {s1, s2}, every vertex

of S2 is contained in the weakly toll interval of {s1, v}, and every vertex of S1 is contained in the

weakly toll interval of {s2, w}. Hence S = {s1, v, s2, w} is a weakly toll set and wtn(G) ≤ |S|.

(4) From the above, 2 ≤ wtn(G) ≤ |S1 ∪ S2|.

By the above proposition, the weakly toll number of an interval graph having two simplicial vertices s1
and s2, which are always in end cliques of every representation, is a number between two and the number

of twins of s1 and s2 plus two. The following example is elucidative.

1 3 4

2

Fig. 4: Interval graph with weakly toll number three.

In Figure 4, the graph has weakly toll number three. Observe that there is a weakly toll walk W between

1 and 4, namely W : 1, 3, 4, which captures vertex 3, but there is no weakly toll walk between 1 and 4
which captures vertex 2. Hence, {1, 2, 4} is a weakly toll set of G.

In the following theorem, we show that an interval graph with no end simplicial vertex having a twin has

weakly toll number at most three and weakly toll hull number equal to two.

Theorem 4.2. Let G be a connected interval graph. Let s1 be an end vertex of G such that N [s1] is an

end clique of a canonical representation I of G. If G−N [s1] is not a connected graph, then wtn(G) ≤ 3
and wth(G) = 2.

Proof: First, we will prove that wtn(G) ≤ 3.

Let s2 be an end vertex of G such that N [s2] is the other end clique of the canonical representation I .

By Proposition 4.5, every vertex x /∈ N [s1] ∪N [s2] lies in a weakly toll walk between s1 and s2.

On the other hand, if x ∈ N [s1] ∩ N [s2] then x lies in the weakly toll walk W = s1, x, s2, between s1
and s2.

Thus we just need to study vertices x ∈ (N [s1] ∪N [s2]) \ (N [s1] ∩N [s2]).
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Assume that G − N [s1] has at least two connected components. By Proposition 4.4, if G − N [s1] has

k+1 connected components, there exist end simplicial vertices q1, . . . , qk of G and Q′

1, . . . , Q
′

k maximal

cliques of G such that N [qi], Q
′

i are consecutive vertices in I , N [qi+1] ∩ N [s1] ⊆ N [qi] ∩ N [s1], and

N [qi] ∩Q′

i ⊆ N [s1] for i = 1, . . . , k − 1.

We will show that S = {s1, q1, s2} is a weakly toll set of G.

G a

b

q2

d e

q1

s1 s2

s1 q1 q2 s2

d

a

b

e

GI a, d, s1 a, b, d b, d, q1 d, q2 d, e e, s2

Fig. 5: The graph G − N [s1] is not connected, but G − N [s2] is connected. Note that G2 = G[N [q2], N [s2]] =
G[{q2, d, e, s2}] and Q′

2 = {d, e}. By (1) in Proposition 4.6, q2, d, e, s2 is a weakly toll walk, and since N [q2]∩Q
′

2 ⊆
N [s1], it follows that d ∈ N [s1] and s1, d, q2, d, e, s2 is a weakly toll walk which captures d, e and q2. In addition,

G1 = G[N [s1], N [q1]] = G[{s1, a, b, d, q1}]. Since G1 − N [q1] is a connected graph, by (1) in Proposition 4.6,

s1, a, b, q1 is a weakly toll walk which captures a and b.

Let w1 and wn be vertices in N(s1) and N(s2), respectively, such that |Qw1
| and |Qwn

| are maximum.

Clearly, q1 ∈ N(w1).

First, suppose that x ∈ N(s1). If x ∈ N(q1) then s1, x, q1 is a weakly toll walk.

Assume that x /∈ N(q1). If w1 and wn are twins, then s2, w1, x, w1, q1 is a weakly toll walk.

Assume now that w1 and wn are not twins. Note that q1 /∈ N(wn). If Qw1
∩ Qwn

6= ∅, then the walk

W = s2, wn, w1, x, w1, q1 is a weakly toll walk.

Suppose that Qw1
∩Qwn

= ∅. Thus, there exists a connected componentC of G\ (N [s1]∪N [s2]) whose

vertices are in G[Q′

k, Q], where Q = N [s2] if G − N [s2] is a connected graph, or, by Proposition 4.4,
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G a

b

c

d e
f

q1

s1

q′1

s2

s1 q1 c q′1 s2

d

a

b

e

f

GI a, d, s1 a, b, d b, d, q1 d, c d, e e, f, q′1 e, f, s2

Fig. 6: The walk s1, d, b, q1, d, c, d, e, q
′

1, e, s2 is a weakly toll walk which captures V (G) \ {a, f}. The walk

s1, a, b, q1 is a weakly toll walk which captures a and b. Finally, the walk s1, d, e, f, e, d, q1 is a weakly toll walk

which captures f .

Q 6= N [s2] if G − N [s2] is not a connected graph; in addition, there exist vertices a ∈ N(w1) ∩ V (C)
and b ∈ N(wn) ∩ V (C). Let a, y1, . . . , ym, b be an induced path between a and b. Let i and j be the first

and the last indices such that yi is adjacent to wn and yj is adjacent to w1. Since w1 is not adjacent to wn,

j ≤ i. Thus, the walk q1, w1, x, w1, yj, yj+1, . . . , yi, wn, s2 is a weakly toll walk.

Now, suppose that x ∈ N(s2). If w1 and wn are twins, then s1, wn, x, wn, q1 is a weakly toll walk.

Consider now the case in whichw1 andwn are not twins. In this situation, q1 /∈ N(wn). IfQw1
∩Qwn

6= ∅
then s1, w1, wn, x, wn, w1, q1 is a weakly toll walk.

Suppose now that Qw1
∩ Qwn

= ∅. Thus, as exposed above, there exists a connected component C of

G \ (N [s1]∪N [s2]) whose vertices are in G[Q′

k, Q]; in addition, there exist vertices a ∈ N(w1)∩ V (C)
and b ∈ N(wn)∩ V (C). Let a, y′1, . . . , y

′

p, b an induced path between a and b. Let i and j be the first and

the last indices such that y′i is adjacent to wn and y′j is adjacent to w1. Since w1 is not adjacent to wn,

j ≤ i. Thus, the walk q1, y
′

j , . . . , y
′

i, wn, x, wn, y
′

i, . . . , y
′

j, w1, s1 is a weakly toll walk.

From the above, S = {s1, s2, q1} is a weakly toll set of G. Figures 5, 6 illustrate the idea of the proof.

Therefore, wtn(G) ≤ 3.

In order to prove that wth(G) = 2, first observe that, by Proposition 4.5, every end simplicial vertex,
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distinct from s1 and s2, lies in a weakly toll walk between s1 and s2.

Let x be a vertex of G that is not an end simplicial vertex. Since G is an interval graph, every vertex x of

G that is not an end simplicial vertex lies in a tolled walk between two end simplicial vertices, and every

end simplicial vertex lies in a weakly toll walk between s1 and s2; thus, it is possible to build a weakly

toll walk between s1 and s2 which captures x using vertices of both walks.

Therefore, S = {s1, s2} is a weakly toll hull set of G, i.e., wth(G) = 2.

In the remainder of this section, we consider an interval graph G, and study the weakly toll number of

G. Let s1 and s2 be two end simplicial vertices of G such that N [s1] and N [s2] are the end cliques of a

canonical representation I of G.

If G−N [si] is a connected graph for i = 1, 2, then, by Proposition 4.6, it follows that

wtn(G) ≤ |S1 ∪ S2|.

Suppose that G−N [si] is not a connected graph for some i ∈ {1, 2}. By Theorem 4.2, S = {s1, q1, s2}
is a weakly toll set of G.

Hence wtn(G) ≤ 3.

From the above, we obtain the following result.

Corollary 4.1. Let G be an interval graph, s1, s2 be two end simplicial vertices of G, which are not twins,

such that N [s1] and N [s2] are end cliques of a canonical representation I of G, and Si = {si} ∪ {x ∈
V (G) : x is a twin of si} for i = 1, 2. Then, 2 ≤ wtn(G) ≤ |S1 ∪ S2|.

5 Conclusions

In this work, we introduced a new graph convexity based on the concept of weakly toll walks, which

generalize induced paths, and showed how such a convexity gives rise to a new structural characterization

of proper interval graphs. Also, we found bounds for the weakly toll number and the weakly toll hull

number of an arbitrary interval graph.

We propose a further study of these two invariants in general graphs, namely, determining the graphs G
for which wtn(G) = wth(G) = |Ext(G)|. Other research direction is the study of the Carathéodory

number, the Radon number, and the Helly number in the context of the weakly toll convexity. Finally,

characterizing weakly toll convex sets in graph products is also an interesting open problem.
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