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Word W is aninstanceof word V' provided there is a homomorphisgnmapping letters to nonempty words so that
#(V) = W. For example, taking such thatp(c) = fr, #(0) = e and¢(l) = zer, we see that “freezer” is an
instance of “cool”.

LetL,(V, [q]) be the probability that a random lengthword on the alphabdy] = {1,2, - - - ¢} is an instance oV.
Having previously shown thdim,, . I, (V, [g]) exists, we now calculate this limit for two Zimin word8; = aba
andZs; = abacaba.
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1 Introduction

Our present interest is in words—not the linguistic unitthvgxical value, but rather strings of symbols
or letters. We are interested in words as abstract dischetetsres. In particular, we are investigating
elements of a free monoid. A monoid is an algebraic structonsisting of a set, an associative binary op-
eration on the set, and an identity element. A free monoidiimdd over some generating set of elements,
which we view as an alphabet of letters. Its binary operasaimply concatenation, its elements—called
free words—are all finite strings of letters, and its idgngitement is the empty word (generally denoted
with ¢ or A). Often, the operation of a monoid is called multiplicatieo it is fitting that a “subword”

of a free word is called a “factor.” For example, in the freenoial over alphabefa, b, ¢, d, r}, the word
cadabra is a factor ofabracadabra becausebracadabra is the product ofibra andcadabra.

1.1 Combinatorial Limit Theory

In an era of massive technological and computational acddsmee have large systems for transportation,
communication, education, and commerce (to name a few drajnjpVe also possess massive quantities
of information in every part of life. Therefore, in many ajggltions of discrete mathematics, the useful
theory is that which is relevant to arbitrarily large diderstructures. For example, graphs can be used
to model a computer network, with each vertex representidgvace and each edge a data connection
between devices. The most well-known computer network]riternet, consists of billions of devices
with constantly changing connections; one cannot simphater a database of all billion-vertex graphs
and their properties.
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We use the term “combinatorial limit theory” in general mefiece to combinatorial methods which
help answer the following question: What happens to discsétuctures as they grow large? In the
combinatorial limit theory of graphs, major recent devehgmts include the flag algebras of Razborov
) and the graph limits of Borgs, Chayes, Freedmana&nySchrijver, Sos, Szegedy, Vesztergombi,
etc. (see Lové12). Given the fundamental relianckexfd methods on graph homomorphisms and
graph densities, we strive to apply the same ideas to fredsyor henceforth, simply “words.”

1.2 Definitions

Definition 1.1. For a fixed sef, called analphabetdenote with* the set of all finite words formed
by concatenation of elementsXf calledletters Words inX* are calledX-words The set of length-
Y-words is denoted witli”. Theempty word denotedt, consisting of zero letters, is¥a-word for any
alphabet>.

The set:*, together with the associative binary operation of conwatien and the identity element
forms a free monoid. We denote concatenation with juxtdjmosi Generally we use natural numbers or
minuscule Roman letters as letters and majuscule Romamddtspeciallyi’, U, V, W, X, Y, and Z) to
name words. Majuscule Greek letters (especiElfndy) name alphabets, though for a standgidtter
alphabet, we frequently use the §gt= {1,2,...,q¢}.

Example 1.2. Alphabet{3] consists of letters 1, 2, and 3. The sef3fwords is
{1,2,3} = {e,1,2,3,11,12,13,21,22,23,31,32,33,111,112, 113,121, .. .}.

Definition 1.3. A word W is formed from the concatenation of finitely many letterdetter x is one of
the letters concatenated to forfr, we sayx occurs inW, or z € W. For natural numbem € N, an
n-fold concatenation of wordil” is denoted?V ™. Thelengthof word W, denoted W, is the number of
letters inW, counting multiplicity.L. (W), thealphabet generated By, is the set of all letters that occur
in W. Forg € N, word W is g-ary provided|L(W)| < ¢q. We usg|1V|| to denote the number of letter
recurrences iV, so||W|| = |W| — |L(W)|.

Example 1.4. LetW = bananas. Thena,b € W, butec ¢ W. Also|W| =7, L(W) = {a,b,n, s}, and
W]l = 3.
For the empty word, we havye| = 0, L(¢) = (), and||¢|| = 0.

Definition 1.5. Word W has(‘W2|+1) (nonemptyyubstringseach defined by an integer pdi, j) with
0 <i < j < |W|. Denote withiW[i, j] the word in the(i, j)-substring, consisting of — i consecutive
letters of IV, beginning with théi + 1)-th.

Word V' is a factor of W, denotedV < W, providedV = Wi, j] for some integers and j with
0 <i < j <|WJ; equivalentlyW = SVT for some (possibly empty) wordsandT.

Example 1.6. nana < nana < bananas, with nana = nanal0, 4] = bananas[2, 6).

Definition 1.7. For alphabetd™ and¥, every (monoid) homomorphispn T'* — 3* is uniquely defined
by afunctiony : I' — X*. We call a homomorphismonerasingrovided itis defined by : T' — ¥*\{e};
that is, no letter maps te.

Example 1.8. Consider the homomorphist: {b,n,s,u}* — {m,n,o,p,r,v}* defined by Tablﬂ 1.
Theng(sun) = moon and¢(bus) = vroom.
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Tab. 1: Example of a nonerasing function.
T | b |n| s | U
¢(x)|vr|n|m|00

Definition 1.9. U is aninstance of/, or a V-instance providedU = ¢(V') for some nonerasing homo-
morphismg; equivalently,

e V =xpz1 -+ z,m—1 Where eacly; is a letter;
o U= ApA;--- A,_1 with each word4; # ¢ and A; = A; whenever; = ;.

W encounterd’, denoted/ < W, providedU < W for someV-instancel. If W fails to encountet’,
we saylW avoidsV'.

To help distinguish the encountered word and the encoungterord, “pattern” is elsewhere used to re-
fer toV in the encounter relatiol < W. Also, an instance of a word is sometimes called a “subsiitut
instance” and “witness” is sometimes used in place of engun

Definition 1.10. A word V' is unavoidablegprovided, for any finite alphabet, there are only finitely man
words that avoid/.

The first classification of unavoidable words was by BeangBfaucht, and McNulty] (19F9). Three
years later, Zimin published a fundamentally differenssléication of unavoidable words (Zinin 1982 in
Russian, Zimir] 1984 in English).

Definition 1.11. Define then-th Zimin wordrecursively byZ, := ¢ and, forn € N, Z,,11 = Z, 2, Z,,.
Using the English alphabet rather than indexed letters:

Z1=a, Zs=aba, Z3=abacaba, Z, = abacabadabacaba,

Equivalently,Z,, can be defined over the natural numbers as the word of Ie¥igth 1 such that the
i-th letter,1 <7 < 2", is the 2-adic order of.

Theorem 1.12(Zimin[L98%) A wordV with n distinct letters is unavoidable if and onlyf, encounters
V.

With Zimin’s concise characterization of unavoidable wgra natural combinatorial question follows:
How long must aj-ary word be to guarantee that it encounters a given unabt@deord? Defind(n, )
to be the smallest integéd such that every-ary word of length\/ encounters,,.

In 2014, three preprints by different authors appeared) eatependently proving bounds fém, ¢):
Cooper and Rorabaugh (2014), Tho (2414+), and Rytter and(BBL3).

2 Asymptotic Probability of Being Zimin

Definition 2.1. LetI,(V, q) be the probability that a uniformly randomly selected léngtg-ary word is
an instance o¥/. Thatis,

W eg™ | (V) = W for some nonerasing homomorphigm L(V)* — [q]*}|
q" '

I.(V,q)

Denotel(V, q) = lim,, 00 I,(V, q).
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Cooper and Rorabaugh (206+) prove ti{af ¢) exists for any word’. Moreover, they establish the
following dichotomy forg > 2: 1(V, q) = 0 if and only if V' is doubled (that is, every letter id occurs at
least twice). Trivially, ifVV is composed ok distinct, nonrecurring letters, thép(V, [¢]) = 1 forn > k,
sol(V,q) = 1. Butif V contains at least one recurring letter, it becomes a naailttask to compute
I(V, q). We have from previous work the following bounds for the amste probability of Zimin words.

Corollary 2.2. Forn,q € Z™*,

n—1 1

—2"4n+1
q gH(Zn,q)gj];[liq(% —

Proof: For the lower bound, note thitZ, || = |Z,.| — |L(Z,)| = (2" — 1) — (n). Theorem 3.3 from
Cooper and Rorabaugh (20]6+) tells us that fogadl Z* and nondoubled’, I(V, ¢) > ¢~ VI,

For the upper bound, observe that thdetters occurring inZ,, have the following multiplicities:
<7°j =2:0<j< n> Since there is exactly one nonrecurring letteZin ro = 2° = 1, Theorem 4.14

from Rorabaugh{(2015) provides an upper bounfl[gf; ﬁ O

D _1"

A nice property of these bounds is that they are asymptdtiegjuivalent as; — oo. For some
specificV, we can do better. Presently, we provide infinite series donuting the asymptotic instance
probability(V, ¢) for two Zimin words,V = Z, = aba (Sectior{B) and’ = Z5 = abacaba (Section}).
Table@ below gives numerical approximations 2oK ¢ < 6. Our method also provides upper bounds
onl(Z,,q) for generah (Section{b).

Tab. 2: Approximate values df(Z2, q) andI(Zs, q) for2 < ¢ < 6.
q P 3 4 5 6
I(Z2,q) | 0.7322132 | 0.4430202 | 0.3122520 | 0.2399355 | 0.1944229
I(Zs,q) | 0.1194437 | 0.0183514 | 0.0051925 | 0.0019974 | 0.0009253

3 Calculating I(Zs, q)

Definition 3.1. Nonempty word/ is a bifix of word W providedW = VA = BV for some nonempty
words A and B; that is, V' is both a proper prefix and suffix ®F. Moreover, if bifixV is an instance of
word Z, thenV is a Z-bifix of W. If word W has no bifixesi¥ is bifix-free. If W has noZ-bifix, W is
Z-bifix-free.

Lemma 3.2. If word W has a bifix, then it has a bifix of length at m¢gi/|/2].

Proof: Let W be a word with minimal-length bifix of length, ||W|/2] < k < |W|. Then we can write
W = W1WoWs whereW Wy = WolWs and|[W1Wa| = k = |WaWs|. But thenW has bifix W, with
|Ws| < k, which contradicts our selection of the shortest bifiX16f O

Although some words are neithgi-instances nor bifix-free, the proportion of such words gas
totically 0. Hence,l —I(Z5, q) was previously computed by Nielsgn (1p73) as the asympgtotisability
that a word is bifix-free. Equivalently, in a paper of Guibasl ©dlyzko {198[1) on the period, or overlap,
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of words,1 — I(Z5, q) was computed as the proportion of strings with no periodh&ahan restate these
results, we reformulate them presently for completenedsaara warm-up for calculatin§Zs, q).

Leta, = af) be the number of bifix-freg-ary strings of lengtlY. For ¢ = 2, this is sequence
oeis.org/A003000; fog = 3, oeis.org/A019308 (OEIS Foundation Ific. 2011).

Lemma 3.3(Nielsen[1973, Theorem 1)1, = a\? has the following recursive definition:

ap = 0
ar = dq;
a2 = (qagkg—1 — Qk;
a2k+1 = (a2k-

Proof: Fix ag¢-letter alphabet. LetV = UV be a bifix-free word withU| = [%W and|V| = {@J

Supposel/aV has a bifix for some lette. Then by the lemmal/aV has a bifix of length at most
|UaV'|/2. But W is bifix free, so the only possibility i§ = aV'.

Therefore, for every bifix-free word of lengttk there arey bifix-free words of lengti2k + 1. For
every bifix-free word of lengtk — 1, there arey bifix-free words of lengtt2k, with exception of the the
length2k words that are the square of a bifix-free word of lenigth O

Theorem 3.4. For ¢ > 2,

= ()

1(Z2.q) = Y

j:o 1_.[.]7;;:0 (1 J— q(172k+1)) .

Proof: Sincea, = agq) counts bifix-free words, the number gfary words of length\/ that areZ,-

instances is (without double-count)
[M/2]-1

M-—2¢
§ aeq )

=0
so the proportion of-ary words of lengthV/ that areZ,-instances is

1 [M/2]—1 [M/2]—1
M—2¢ ag
Py Z aeq = Z 2
=0 =0

Therefordl(Z,, q) = f(1/¢%), wheref(z) = f(9(z) is the generating function fda,} 2 ,:

oo
flx) = Z apxt.
£=0
From the recursive definition af;, we obtain the functional equation

f(x) = gz + gz f(x) — f(a?). 1)
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Solving (1) for f(x) gives

Corollary 3.5. For g > 2:

1 1
- <l(Z2,q) < —.
. (Z2,9) =)
Moreover, as; — oo,
1 1+o0(1)
I(Z =— —
( 27Q) q—l qg

Proof: The lower bound follows from the fact that a word of lendth > 2 is a Z-instance when the
first and last character are the same. This occurrence hasflity 1/¢q. Note thatf(@)(¢~2) is an
alternating series. Moreover, the terms in absolute vataarenotonically approaching 0; the routine
proof of monotonicity can be found in the appendices (Len@AHence, the partial sums provide

successively better upper and lower bounds:

(1 = (- (¢)
" (_2) ;o [Tz (1= (¢>))

o (1 L (o)
() > S e

>
i=0
_ Ve _ Vg
1-1/¢ (1-1/9)(1—-1/¢)
B 1 1+o(1)
R

> — :
q =0T _ (1 —q q%)z )
B I 1+ 0(1) N 1/¢°
-1 ¢ (1-1/9)(1-1/¢*)(1 - 1/¢°)

1 1+0(1) +O(1)
q—1 & @
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Tab. 3: Approximate values of(Z, ¢) for 2 < ¢ < 8.

q 2 3 4 5 6 7 8
g ! 0.50000 .33333 .25000 .20000 .16667 .14286 .12500

1(Zo, q) 0.73221 .44302 .31225 .23994 .19442 .16326 .14062
(g—1)"'—¢3 | 087500 .46296 .31771 .24200 .19537 .16375 .14090
(g—1)" 1.00000 .50000 .33333 .25000 .20000 .16667 .14286

4 Calculating 1(Zs, q)

Will use similar methods to compuié¢Zs, ¢). To avoid unnecessary subscripts and superscripts, assume
throughout this section that we are using a fixed alphabet gvit- 1 letters, unless explicitly stated
otherwise. Since/; has more interesting structure thap, there are more cases to consider in developing
the necessary recursion.

Lemma 4.1. Fix bifix-free wordL. LetW = LAL be aZ,-instance with aZ5-bifix. ThenL AL can be
written in exactly one of the following ways:

(i) LAL = LBLCLBL with LBL the shortest,-bifix of W and |C| > 0;
(ii
(iii
(v) LAL = LLFLLFLL with LLFLL the shortest,-bifix of W;

) LAL = LBLLBL with LBL the shortestZ,-bifix of IV;
) LAL = LBLBL with LBL the shortes,-bifix of W;

(v) LAL = LLLL.

Proof: With some thought, the reader should recognize that the iftedl cases are in fact mutually
exclusive. The proof that these are the only possibilitidiefs.

Given thatWW has aZ,-bifix and L is bifix-free, it follows thati¥ has aZs-bifix LBL for some
nonemptyB. Let LBL be chosen of minimal length. We break this proof into nineesadepending on
the lengths of. and L BL (Figure[l). Setn = |W|, ¢ = |L|, andk = |LBL|.

Case (1):2k < m. Thisis(3).
Case (2):2k = m. Thisis(ii).

Case (3):m < 2k < m + £. In LAL, the first and last occurrences bB L overlap by a length strictly
betweerD and/. This is impossible, sincé is bifix-free.

Case (4):2k = m + £. This is (¢i4)

Case (5):m + ¢ < 2k < m + 2¢. The first and last occurrences bBL overlap by a length strictly
betweery and2/. This is impossible, sincé is bifix-free.
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Case (1)~ (i) Case (2)— (ii) Case (3~ =<«
2k <m 2k =m m<2k<m+/{
L|B|L L| B |L L| B |L
w w w
L|\B|L Ll B |L Ll B |L
Case (4)— (iii) Case (5 =< Case (6)— (iv) /| =<
2k =m+/¢ m+£ <2k <m-+ 20 m+ 20 =2k <2(m—{)
Ll B |L Ll B |L L B L
w w w
Ll B |L Ll B |L Ll B |L
Case (7}~ =< Case (8) (v) / =< Case (9 =<«
m+ 20 < 2k < 2(m —¥) k=m—1¢ m—L<k<m
L B L L B L L B L
w w w
L B L L B L L B L

Fig. 1: All possible ways the minimaZ.-bifix of W can overlap, withm = |W|, ¢ = |L|, andk = |[LBL|

Case (6):m + 2¢ = 2k < 2(m — {). LAL = L(DL)(LE)L whereDL = B = LE. ThusL is a bifix
of B,soLAL = LLFLLFLL whereB = LFL. If |F| > 0, thisis (iv). If |F| = 0, then
LAL = LLLLLL. But this contradicts the minimality df BL, sinceL L LLLL hasZ,-bifix
LLL,whichis shorterthaBL = LLLL.

Case (7):m +2¢ < 2k <2(m —{¢). LAL = LDLELD'L whereDLE = B = ELD’. SinceEL is a
prefix of B, LEL is a prefix of LAL. Likewise, sincel.E is a suffix of B, LE L is a suffix of
LAL. Therefore LEL is a bifix of LAL and|LEL| < |LDLEL| = |LBL|, contradicting the
minimality of LBL.

Case (8):k=m —¢. LAL = LLCLL whereLC = B = CL. If |C| = 0, this is(v). Otherwise LC'L
is a bifix of LAL, contradicting the minimality of. BL.

Case (9):m — ¢ < k < m. The first and last occurrences b3 L overlap by a length strictly between
k — ¢ andk. This is impossible, sincé is bifix-free.

O

For fixed bifix-free wordZ of length?, defineb!, to count the number of, words with bifix L that are
Zo-bifix-free g-ary words of lengthn. Then

1(Zs,q) = (ae > bfnq‘z’”> : @)



Asymptotic Density of Zimin Words 9

In order to form a recursive definition 6f, as we did for,,, we now describe two new terms. LéB
be a word of lengtiV with |A| = [W/2] and|B| = |[W/2]. ThenAB hasq length{n + 1) childrenof
the form Az B, each havingd B as itsparent In this way every nonempty word has exactlghildren and
exactly 1 parent, which establishes the tiatio of words of length to words of lengtm + 1. The set of
a word’s children together with successive generationsajgny we refer to as that word¥escendants

Theorem 4.2.b¢, = ¢!, + d’, wherec,, = ¢!, andd,, = d’, are defined recursively as follows:

For even? :
€1 =" =Cy
C20+1

Cqr

Cs¢

C504+1

Coe

C2k

C2k+1

di=---=dy

daes1
dse

dsey1
des
doy,

dog41
Forodd/ > 1:

Cl = = Cx
C20+1

Cay

Cs¢

C50+1

Cee

C2k

C2k+1

0,

q,

qcae—1 — (502 + 1),

qcse—1 — (Csg/2 +c30 — 1),

q(cse + c30 — 1),

qcer—1 — (c3e — 1+ c50/2);

qcor—1 — (Ck + Crypy2) fOrk > €,k & {2¢,5¢/2, 30},
q(cak + Cpey2) fOr k> £,k # 50/2,

0,
q,
qdse—1 — 1,
q(dse + 1),
qdee—1 — 1,

qd2k71 — (dk + korl + dk-l—f/?) for k > 26, k Q {56/2, 36},
q(d2k + d]g+g + korf/Q) fork > 20, k 7& 5[/2

0,

q,

q (64571 + CL%eJ) — (c2e + 1),
qcse—1 — (e — 1),

q(cse+car—1) — Crae)s

q (665—1 + CLHJ) — (e3¢ — 1),

2

¢
0 (con1+ ey s)) —enik > LR g {26, H ,36},

54
g2k = i ek > Lk F {?J ;
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di=---=dy = 0,
diev1 = ¢,
ds¢ = qdse—1 —1,
dser1 = q(dse + 1),
dee = qdgr—1—1,
5¢
dop, = q(dzk—l +dk+L%J)—(dk+dk+g);k>2€,k§{’73-‘,3@},
5¢
dok+1 = q(d2k+dk+[)_dk+|'%'|;k>2é,k7é {3J .
For/=1":
co=cr=ce = 0,
3 = g
ca = qez—1,
cs = qcg—(c3—1),
ce = qcs+ez—1)—(c3—1),
car = q(cor—1+ck) —crsk >3,
Cok+1 = qCap — Cpr13k > 2;
dy=dy=d3=dy = 0,
ds = q-—1,
ds = q(ds+1)—1,
dor = q(dox—1 +di) — (d +dpy1)i k> 3,
doky1 = q(dok + dpy1) — dpyri k> 2.

Proof: Fix a bifix-free wordL of length/. The full recursion is too messy to prove all at once, so we
build up to it in stages. Within each stagejndicates an incomplete definition. Example word trees with
smallg and shortZ are found in AppendiE|B.

Stage |
Sincel is bifix free, anyZs-instance withl as a bifix has to be of greater length thah Thus we have
by = --- = by = 0. The only such words of lengt®’ + 1 are of the formLxL for some letterz,
thereforepspr1 = g.

Every word of lengtln > 2¢ + 1 hasL as a bifix if and only if its parent hak as a bifix. This is why,
for k > ¢, the definition ofby, includes the termgbsi_1, and the definition obox 1 includes the term
qbak. If b, were countingZ,-instances with bifix., we would be done. However, we do not waptto
count words that have Z-bifix. Thus, we must deal with each of the 5 cases listed inmefd.]L.

First, let us deal with cas€i): LAL = LBLLBL with LBL the shortestZ,-bifix of LAL. The
number of these of lengthk, with k& > ¢, is b;. Therefore, in the definition dfzx, we subtracby.
Conveniently, the descendants of cas@-words are precisely words of cagg. Therefore, we have
accounted for two cases at once.
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Next, let us look at cas&ii): LAL = LBLBL with LBL the shortestZ,-bifix of LAL. For the
moment, assumg.| = ¢ is even. ThenL BLBL| is even. The number of such words of length with
k > {,isbye/2. We want to exclude words of this form, but we do not necelysarnt to exclude their
children. Therefore, in the definition 6%, we subtracb,,, ,/,, but then we adgb,, /- in the definition
of b2k+1.

Now we look at wherL| is odd, so|LBLBL| is odd. The number of such words of len@h + 1,
with k& > £, is byy¢/27. Therefore, in the definition .11 we subtracty /27, but then we add
qb(k—l)+[€/2] = qbk+|_€/2j in the definition 0fb(2(k—1)+1)+1 = bag.

Our work so far renders the following tentative definitiorbgf

For every :
by=-=by = 0,
bat1 = ¢,

bor  ~  gbag—1 — (br + bjyey2) fOr k > £,
b2k+1 ~ q(ka + bk+g/2) fork > ¢.

For odd/ :
by=---=by = 0,
b1 = q,

bor =~ qbar—1 + bryie2)) —bxfork > ¢,
b2k+1 = qka — bk_‘_w/g] fork > ¢.

We continue with casév): LAL = LLFLLFLL with LLFLL the shortesZ,-bifix of LAL. Note
that| LLFLLFLL|is even. It would apear that the number of such words of leBgtivould beb,_,
(counting words of the forni. F'L), which we could deal with in the same fashion as we did foe¢&s).
However, when counting words of the forb?’ L, we do not want words of the forthLGLL, because
LLFLLFLL = LLLGLLLLGLLL is already accounted for in caég.

Stage Il
To address this issue, we will define two different recursidretd,, count theZs-instances of the form
LLALL that areZs-bifix free. Letc,, count all othetZ,-instances of the formi AL that areZ-bifix free.
Thereforep,, = ¢, + d,, by definition.

As with b,,, we quickly see that,, = 0 for n < 2¢ andcgp1 = g. Now the shortest words counted by
d,, are of the formL Lz L L for some letter:, sod,, = 0 forn < 4¢ anddse11 = g.

To deal with caseéi) and(ii), we can do the same things as before, but recognizingthas a bifix
of LBLLBL if and only if LL is a bifix of LBL. Therefore, subtraat; in the definition ofcy;, and
subtractdy, in the definition ofdyy, (both fork > ¢).

We also deal with caséii) as before, recognizing thdtl is a bifix of LBLBL if and only if LL
is a bifix of LBL. For even/: subtractc;,, ¢/, in the definition ofcy;, and addjcy.¢ /- in the definition
of cax41; subtractd 4/ in the definition ofdy, and addydy ¢/, in the definition ofday. 1. For odd:
subtractey, 1¢/27 in the definition ofcyy 1 and addjcy, 1| ¢/2) in the definition ofca; subtractdy, ; r¢/9)
in the definition ofdyy. 1 and addyd. (/2 in the definition ofds;..

Having splitd,, into ¢,, andd,,, we can address case&): LAL = LLFLLFLL with LLFLL the
shortestZ,-bifix of LAL. These words are counted by, not byc,,, and there ard;_, such words of
length2k. Therefore, we subtradi, , in the definition ofds;, and addydy. ., in the definition ofdax 1.
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This brings us to the following tentative definitions@fandd,,.

For every :
cp=--=cy = 0,
C20+1 = g,

cok A qeop—1 — (K + Cryes2),
Cokt1 A q(cak + Crig/2);
di=---=dy = 0,
daer1 = g,
dor =~ qdor—1 — (dp + dpye + diyi2),
doky1 =~ q(dog + dpye + digrs2).

For odd/ :
cp=--=cy = 0,
C+1 = ¢,
cor =~ q(car—1 + Cryles2)) — Ck,
Cok+1 = qC2k — Cpy[e/2]5
dy=--=dy = 0,
daer1 =~ q,

dor, =~ q(dog—1+ digye/2)) — (dr + dige),
doky1 =~ q(dog + dire) — digres2)-

Stage llI
Next, let us deal with cas@): LLLL. We merely need to subtract 1 in the definitiorcgf. Since all of
the words counted by,, are descendants &fL L. L, this is what prevents overlap of the words counted by
¢, andd,,.

There was a small omission in the previous stage. When dpaifih caseg:) and(ii), we pointed
out thatL L is a bifix of LBLLBL if and only if L L is a bifix of LBL, this was a true and important
observation. The one problem is thak. . hasL L as a bifix but is not of the formb L AL L. Therefore,
LLLLLL was “removed” in the definition afs, when it should have been “removed” frafg,. We must
account for this by adding 1 in the definition@f, and subtracting 1 in the definition df,.

Similarly, in dealing with caseiii), we “removed”’LLLLL in the definition ofcs, and “replaced” its
children in the definition ofs,1. These should have happeneditp Therefore, we add 1 and subtract
g in the definitions ofcs, andese41, respectively, then subtract 1 and agih the definitions ofis, and
dsey1, respectively.

SinceLLL does not cause any trouble with cdse), we are done building the recursive definition for
even/? as found in the theorem statement.

Stage IV
The recursion for odd has the additional caveat théat# 1. When? = 1, there exist conflicts in the
recursive definitionsd? + 1 = 5¢ and5¢ + 1 = 64. After consolidating the*adjustments” for these cases,
we get the definition fof = 1 as appears in the theorem statement. O
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With our recursively defined sequenegsandb,,, the latter in terms of,, andd,,, we are now able to
formulate Theorerf 3.4 faf;.

Theorem 4.3. For integersqg > 2,

) = Y (z +H@>).

=0

where

Gli) =G = (‘””1% (1)_157'1—_(;&‘; ).
=0

{+1 14
50+ —|—ZCG;

r(z) = réq) () = qu? 1 -2 425 —go
(
¢

) (z) = 1- gz~ + 27
N H@OG - () S ()
HO=HEW = Hk o (1—q=2"") 7

Bl+1 _ 460,

u(@) = (@) = gzt -2 g

v(z) = v@q) () = 1—qzt P42t —qu™2 42~

Proof: Recalling Equation[{2),

I(Z3,q) = i <ae i bfnq_2m>

=1 m=1

< 2 ) q2m> :

Similar to our proof forl(Zs, q), let us define generating functions for the sequenrges- ¢/, and
d, =d’;

I
Mg
Mg

g(x) chx andh(z Zd "

Despite having to write the recursive relations three diffé ways, depending oty the underlying recur-
sion is fundamentally the same and results in the followingcfional equations:

oa) = a(ogle) +a~lgla?) + 2 =) ®
_ (g(xQ) + xilg(IQ) 4 I4l _ I5l _ IGZ) :
h(z) = q(zh(z)+ 2" 72 h(2?) + 2! h(2?) + 2T + 25 4)

— (h(2®) + 27 h(2?) + 2~ h(2?) + 2% + 25) .
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Solving (3) forg(z), we get

(o) — s(w)g(a?) ©

g(z) = =g ;

with r(z) ands(z) as defined in the theorem statement. Expancﬁhg (5) gives

gla) = 1= g
@ [, s
L [ o g(<)>) s(@2)g(e)
= l—qa:(l @ T 2>
- 1T£xq):z: (1 a igg 1T£xq1)72 ( - jg;;g(:v“)»

S G =T G ©)

i=0 HZ:O (1—q2?")

Likewise, solving [() forh(z), we get

. 2
hz) = u(z) : i(;)ch(:v ) @
S (—l)iu(x2i) I o(+*) o

i=0 [T—o (1 — q2*") 7

with u(x) andv(x) as defined in the theorem statement. O

Corollary 4.4. For integersN > 0 andM > 0,

N 2M+1
S ( S (@) + Hu»)
=1

=0

A
=
N
@
e

I(Z3,q)

A
)Q\
=z
_l’_
] =
&
[\)
NE
Q
T
=
=

=0
with G(i) = G\” (i) and H (i) = H " (i) as defined in Theoref }.3.

Proof: For fixed integeryy > 2 and? > 1, > ;° (G(i) + H(i)) is an alternating series. We need to
show that the sequen¢@(i) + H (i)| is decreasing. Since-1)'G(i) > 0 and(—1)"H (i) > 0 for each

i, |G(i) + H(i)| = |G(i)] + |H(:)|. Thus it suffices to show thd{G (:)|};=, and{|H(i)|},~, are both
decreasing sequences, the routine proof of which can belfouthe appendices (Lem .2).
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Now for any integeiM > 0:

2M+1

ZGe + Ho(i Zb q_2m<ZGe + Ho(i

Moreover, since the, are nonnegative, the lower bound for the theorem is evidenta bifix-free word
L of length?, >°°°_ b, g=2™ is the limit, asM — oo, of the probability that a word of length/ is a
Zs-instance of the fornrk AL BLAL. A necessary condition for such a word is that it starts ars$ evith
L, which (for M > 2¢) has probability;~2¢. Also a, counts the number of bifix-free words of length
soa, < ¢'. Hence for any integeN > 0:

o
bfnq—2m+ Z qf (q 20

M=

]I(Z37Q) < ayp
=1 (=N+1
o0
¢ 2 e
g+ Y g
=1 (=N+1

b P +q .

IA Il
e M 10

o~
I
N
3
]
o

Tab. 4: Approximate values of(Z3, q) for 2 < ¢ < 6.
¢ | 2 | 38 | 4 | 5 | 6
1(Zs,q) | 0. 11944370| 0. 01835140| 0. 00519251| 0. 00199739| 0.00092532

The values in Tablg¢|4 were generated by the Sage code founppamdix, which was derived
directly from Corollary 44 and can be used to comgiité;, ¢) to arbitrary precision for any > 2.

5 Bounding I(Z,, q) for Arbitrary n

This programme is not practical farin general. The number of cases for a generalization of LeBuha
is likely to grow withn. Even if that stabilizes somehow, the expression for catmd1(7,,, ¢) requires

n nested infinite series. Nevertheless, ignoring some of theeraubtle details, we proceed with this
method to obtain computable upper bound<{df,,, q).

Fix a Z,,_s-instancelL of length? > 1, let Bfn be the number of words of length of the formLAL
for A £ ¢ but not of the formLBLBL, LBLLBL, or LBLCLBL. This corresponds to Stage | from
the proof of Theorer 42. As we do not account for the strectdi., b is an overcount for the number
of Z,,_,-instances of the fornk AL that do not have &,, ;-bifix of the form LAL. Thenb,,, = bf is
recursively defined as follows:
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For everv :
bop=-=by = 0,
bow = qbar_1 — (Bk + l;k+g/2) fork > ¢,
boks1 = qlbok + byyeso) for k > 2.
For odd/ :
bo=-=by = 0,
b = qbok—1 + biy(eja)) — bi fork > ¢,
boks1 = qbor — byyreyo) fOr k > ¢.

The associated generating functifiiiz) := £ % (z) = >°°_, b¢, 2™ satisfies

m=1"m

fi(z) = q(@® " + 2 f(2) + 2" f(2) = (f(2®) + 27" f(2?)).
Therefore, setting(z) = t\ (z) = 1 — gz~ + 27,

folz) = g —ty(w) f(a?)

1—qx
. (_1)ix(2i)(2é+1) H;B t (xzf)
i=0 Hi:o (1—q2?")
Now fz(q”) gives an upper bound for the limit (as word-length approacéh#nity) of the probability
that a word is &, -instance of the fornrk ALBL AL with |L| = ¢.

Taking this one step further, for sondg-instancei’ of length?;, the asymptotic probability that a word
is aZ,-instance constructed wit—**+! copies ofK is at most

oo oo
= ln—o=1

é'H»l 1 — m=

oo
Afi A€n73/\ln72 —2m
bfi+1 T bzn72bm q *
1

Consequently,

I(Zn,q) < i i iaelgf;-'l;ﬁz:ﬁgfﬁ”q_?m

l1=1 Ly_2=1m=1

oo oo R Aéﬂf R 3
= Z Z aélbii'“ben,szﬂ(q 2).

l1=1 lp—2=1

We need to get control of the tails to turn this into a complgtaiom. A trivial upper bound for the
asymptotic probability that a word is4, -instance constructed witt—¢ copies ofK, and thus starts and
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ends withK, is ¢~%%. Since there are at mogt: Z;-instances of lengtli;, the asymptotic probability
that a word is &,,-instance with &,-component of lengtl; is at mosiy—¢. Therefore, the asymptotic
probability that a word is &,,-instance with &;-component of length greater tha is at most

i q
g "=

—1

—N;

Now in the upper bound df Z,,, q), we can replace the partial tail

N’Vl
Z )DIID DD DI PN ST AN
l1=1 Li—1=1L;=N;+14;11=1 Ly —2=1
with
Ny N, — N7
i—2 4
Do > anby b —
l1=1 li_1=1 q
—N,
20 22\ 4
1<5<i
—N;
_—
< Nj | Vi —.
= H ild -1
Therefore,
Ny N, n-2 [ (i1 N
7 Aénf R — ;—
[(Zn,q) < Z Z ag byt by 7 foa(q™?) + HNj g™ lq——l
=1 by _o=1 i=1 j=1
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A Proofs and Computations for Sections 3 and g

A.1 Proofs of Monotonicity

Lemma A.1. For fixedq > 2, {|F'(i)|},2, is a decreasing sequence, where

_1)igt-2
F(i) = F1(i) = Z.( Y'q _.
[Timo(l—¢*%)
Proof: For: > 0:
PG ¢
|F(i — 1) 27 (1= ¢g7?)
q72<7‘*1) 1 +q172i

1—q-2 1 + g2
g2 (1 +q1—2i)

14+ q2*2i+1
(2)_2«1)—1) (1 i (2)1_20))
14 (0)
= 271 (1+2'7?)
< 1

<

O

Lemma A.2. For fixed¢ > 1 andq > 2, {|G(i)|};2, and{|H(i)|};=, are both decreasing sequences,
where

i il i o+l
| | (=1 (a2 ) 2y s(a®™)
G(i)=Gi(i) = ; e} ;
[Tizo (1 — gt )
((E) _ qx2€+l _ x4€ 4 x5€ _ qxf)@-l-l 4 1‘66;

q
¢
s(r)=sl(r) = 1—qgz'"+ah
(—1)iu(q_2i“) H;;%) U(q_2j+1)
[Tieo L=

-
50+1 :CGZ;

ule) =ufla) = q@'* =2+ g

v(z) =vi(z) = 1—qz" " +a27" —qa' 2 2%
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Proof: For: > 0:

G()

G(i — 1)

|H (2))|

[H(i—1)]

(o) o)

@) T

q

1-2%(46+2) _ qui(sz) + qui(loe) _ q172i(105+2) + qui(uz)

g2 (20H1) — =27(40) 4 ¢—27(50) _ g1-21(50+1) 4 ¢—27(60)

1_ q1+2i(571) + qﬂ
1—ql=2'(2)
q1—21(4é+2) . qzle
gL 2 ) — 2140 ] g1-27(2)
q1—21’(3£+2)

g~ 122

gl (20HD) — g—27(40) _ g2-27(2043) 4 ¢1-27(46+2) '

q72i(z+1)
1— q7172i(2£71) _ q172i(2) + q2i(25+1)
(2)=2 ((W+D)
1— (2)71721(2(1)71) _ (2)1721(2) +0
2—4
1—2-3_-2-3

w(e®”) o(o?)
() T
gl—2 (30+2) _

<1;

g~2'(00) 4 g1-2'(106+2) _ (=27 (120)

ql2 (A1) — =20(50) 4 g1-27(50+1) — g—27(60)

1_ q1+2i(4—1) + qzie _ q1+2i(2e—1) + qzi(%)

g 1+27(20+1)

1— ¢ -2
q1721(se+2) . qzl(ze)
g 2 A1) — 2150 ] — g1-2(2)
q172i(62+2) q71+2i(4e+1)
gL 2 (A1) — g =2T(50) _ 2-27(4043) 4 ¢1-27(50+2) ’ g 12 A+
—2%(20+1)

q

1 — g~ 1-27(=1) — g1-21(2) 4 ¢2'(¢+1)
(2)721(2(1)“)

1—2-1-273

1—(2)~ 12" (-1 = (2)1-2'(®) 1 0

276
< 1.

19
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A.2 Sage Code for Table | of I(Zs, ¢)-Values
The following code to generate Taljje 4 was run with Sage §Sttefin et al[2034).

# Calculate G(i), term i of expanded g(g¥2)).
def r(L, g, x):
X = x"L
return gx*X"2 — X4 + X°5 — g»x+X"5 + X°6
def s(L, g, x):
return 1— g+x"(1 — L) + x"(-L)
def G(L, q, i):
num = prod([s(L, q, q"27°(j + 1))) for j in range(i)])
den = prod([1- gq"(1 — 2°(k + 1)) for k in range(i + 1)])
return (—1)7i = r(L, q, q°(=27(i + 1))) * num / den
# Calculate H(i), term i of expanded h(q¥2)).
def u(L, g, x):
return ogx (4L + 1) — x"(5%L) + g*x"(5*xL + 1) — x"(6%L)
def v(L, g, x):
return 1— g*x" (1 — L) + x*(—-L) — g*x"(1 — 2xL) + x"(—2xL)
def H(L, q, i):
num prod([v(L, g, g°27(j + 1))) for j in range(i)])
den prod([1- g (1 — 2°(k + 1)) for k in range(i+1)])
return (—1)"i = u(L, q, q°(—=27(i + 1))) * num / den
# Generate the first N terms ofa.n}.
def a(q,N):
A = [0, q]
for n in range(2, N + 1):
A.append(gA[—-1] — ((n + 1)%2})A[floor(n/2)])
return A
# Calculate the partial sum of (B, q).
def 1(gq, N, M):
A, partial = a(q, N), 0
for L in range(l1, N+1):
terms = [G(L, g, n) + H(L, g, n) for n in range(M + 1)]
partial += A[L]*sum(terms)
return partial
# Output bounds on (B, q) for small values of q.
N = 31 # Level of precision.
for q in range(2, 7):
print 'q = %d:’ %q
L, U= round(l(gq, N, 4), N), round(l(g, N, 5) + 2%N), N)
print 'Lower bound with N =%d and M = 4:’ %N, L
print 'Upper bound with N = %d and M = 5:" %N, U
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B Word Trees lllustrating Theorem @2

From Sectior[|4: “For fixed bifix-free word length¢, defineb?, to count the number af, words with
bifix L that areZ,-bifix-free ¢g-ary words of lengthn.”

In each of the following images, a word is struck through i§ihot counted by,,, but its descendants
are. Itis hashed through if its descendants are also eltedna

bi=2 bi=3 bl=6 bi=14 bi=25 b =52 b} = 100
[aj010[010]Y)
00000100 383999199
00000 0000100<:::: 000010100
0oo01100—— 383991199
00010 000011100
000100100

0001100<<"_ 00010100=— (00110100
. o
0010000<_ 00100000=— (01010000
00100 00101000 933093000 a
001100000
0011000<_ 00110000=— (01110000
001101000
00111000 9+101000
80200200—— 761010100
001010
00110 — 00101100 807891160
001100100
0011100<<_ 00110100=— (01110100
000 oo111100—=— 831193198
0000020<_ 00000010 900090010
000001010
00001 00001010=— (0011010
000368610
0001010<<_ 00010010<— 960110010
000101010
00010 00011010 990101010
000000110
0000110<_ 00000110 600010110
000001110
00011 00001110=— (00011110
000100110
0001110<"_ 00010110=— (00110110
000101110
0010 00011110== 333131110
o0z0020—— (000010 001001010
00101 00101010—— 991001010
0011010<_ 00110010 01190070
001101010
00110 00111010=—_ 001111010
0010110<"_ 00100110 807090770
001001110
00111 00101110=— (01011110
001100110
0011110<_ 00110110=— (61110110

001101110
00111110 p37111110

00100

Fig. 2: The ‘000’ half of an example word tree for Theor@ 42 wjtk- 2, L ='0’, £ = |L| = 1. The tree
from LLLL counted byd,, is boxed.
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>
%)
1
N
>
o
1

12=13

01000001<—__

0100001

%
A

010001

01010001<—__
01011001
01000101
0100110k<—___

0101001

01001

0100101

010101

b3=32

010000001 —
01001000F—
01000100F——
01001100 —
01010000 —
01011000F——
01010100 —
01011100F——
01000010F——
01001010 —
01000110F——
010011101 ——

b2,=58

a9

-

SOOOOOOOOOOOOOOOORDOOOOPO
OO0

DOOOOOOOOOOOOOOOOSOOOODO

01010101

0101101

01010010 F——
01011010F——

>XPC

DC
>XOPC

>XODC

AARAWA

0101110:<__

01100001<—__
01101001
01110001<—__
01111001
01100101

0110001

011001

0111001

01101

0110101

%
)

011101

01110101
0111110:<_

A NVANYANVAN

AWAWAWA

0111101

Fig. 3: Example word tree for Theore@.Z wigh= 2, L = ‘01, ¢ = |L| = 2. The tree from LLLL

counted by, is boxed.

01010110F——
01011110F——

01100000 —
01101000F—
01100100F——
01101100 F——
01110000F——
01111000F——
01110100 F——
01111100F——
01100010F——
01101010 F——
01100110F——
01101110F——
01110010 F——
01111010F——
01110110F——
01111110 F——

OO
OO

OO0

OO

—
HIR SN

SOOOOOOEOOOOOOOOOOOOOOOC

[@'c

I e o A
OO
=
OODOOOOOOEOOOOOOOOOOOOOOOODOOO0O0O
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b =2 bi=4 bj=8 bio = 16 b}, =30 b}, =63

100000000100
1000000106 10000000106= 10000100100
10000100106 100001000100
100001100100
100000010100
1000010106<_ 10000010108 10000110100
10000110106 100001010100
100001110100
6— 100010000100
1000100100< 100010100100
10001100109< 100011000100
100011100100
100010010100
1000110106<_ 10001010108< 300010110100
10001110106 100011010100
100011110100
100000001100
1000001106<_ 10000001108 300000101100
10000101106 100001001100
100001101100
100000011100
1000011106 10000011108 300000111100
10000111106 100001011100
100001111100
100010001100
1000101106<_ 10001001108 100010101100
10001101106 100011001100
100011101100
100010011100
10001011106
1000111109< 100010111100

100011011100
10001111109::100011111100

100100000100

10010000106 139190000100
1001000100 100101000100 @
10010100108<156161160100 -
100100010100
1001010106 10010010108 300100110100
10010110106 100101010100
100101110100
100110000100
10001000106
1001100100< 100110100100

100111000100
10011100109<:i100111100100

tossoroion 13RI

100111010
Gi:: 10011110109::i100111010100
100111110100

100100001100
10010001106
1001001100< 100100101100

10000010
1000010
10001010
100010
10000110
1000110

10001110

10010010
1001010
10011010

100110

100101001100

10010101108< 300101101100

100100011100

1001011106 10010011108< 300100111100

10010111106 100101011100

100101111100

10011001106 100110001100

1001101106 8~ 100110101100

10011101106 100111001100

100111101100

100110011100
10011011100

1001111109< 100110111100

100111011100
10011111106<C 70111111100

10010110

1001110

AL AL AL A

/NN /N /N /N N N N

10011110

Fig. 4: Example word tree for Theore@.z wigh= 2, L = '100’, ¢ = |L| = 3. The tree from LLLL
counted byd,, is boxed.
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bi=3 bi=8 bi=24 bi=78

d,l

n

000 0010 00110

0020 00120

esssssssssssvssssrssssssssss

01000

0100 01100

01200

010 0110 01110

01210

01020
0120 01120

01220

0200 02100

020 0210 02110

0220 02120

Fig. 5: Example word tree for Theore@.z with= 3, L = ‘0", £ = |L| = 1. The tree from LLLL
counted by, is boxed.
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