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On the number of vertices of each rank in
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We find surprisingly simple formulas for the limiting probability that the rank of a randomly selected vertex in a
randomly selected k-phylogenetic tree is a given integer.
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1 Introduction
Various parameters of many models of random rooted trees are fairly well understood if they relate to a
near-root part of the tree or to global tree structure. The first group includes, for instance, the numbers of
vertices at given distances from the root, the immediate progeny sizes for vertices near the top, and so on.
See [9] for a comprehensive treatment of these results. The tree height and width are parameters of global
nature, see [13, 6, 14, 19, 12, 18, 5, 17] for instance. In recent years there has been a growing interest
in analysis of the random tree fringe, i. e. the tree part close to the leaves, [1, 15, 16, 8, 2, 4, 11, 10, 7].
These articles either focused on unlabeled trees, or trees in which every vertex was labeled.

In this paper, we study another natural class of trees, those in which only the leaves are labeled. Some
trees of this kind have been studied from different aspects. See [3] for a result of the present author and
Philip Flajolet on the subject, or Chapter 5 of [20] for enumerative results for two tree varieties of this
class.

First, we will consider k-phylogenetic trees, that is, rooted non-plane trees whose vertices are bijectively
labeled with the elements of the set [n] = {1, 2, · · · , n}, and in which each non-leaf vertex has exactly k
children. See Figure 1 for the set of all three 2-phylogenetic trees on label set [3].

We define the rank of a vertex as the distance of that vertex from its closest descendent leaf, so leaves
have rank 0, neighbors of leaves have rank 1, and so on. Then for each fixed i, we are able to prove that
as n goes to infinity, the probability that a random vertex of a random phylogenetic tree on label set [n] is
of rank i converges to a limit Pk,i, and we are able to compute that limit. The obtained numerical values
will be much simpler than the numerical values obtained for other tree varieties, for instance in [2] or [4].
Indeed, we will prove that

Pk,i = k−ci − k−1−kci ,

where ci = ci,k = (ki − 1)/(k − 1). This will follow from an even simpler formula for the probability
that a random vertex in a random k-phylogenetic tree is of rank at least i.
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Fig. 1: The three 2-phylogenetic trees on leaf set [3].

The Lagrange inversion formula will be our main tool.
These results are notable for several reasons. First, the obtained formulas are surprisingly simple.

Second, the numbers Pk,i decrease very fast, in a doubly exponential way. To compare, note that in [4],
the corresponding numbers for binary search trees are shown to decrease in a simply exponential way.
Third, the obtained explicit formulas make it routine to prove that the sequence Pk,i is log-concave for
any fixed i, a fact that is plausible to conjecture, but probably hopeless to prove, for many other tree
varieties. Fourth, in the last section we will show an example to illustrate that even for 2-phylogenetic
trees, there are similar questions that lead to much more complicated numerical answers, so the simplicity
of our results is surprising.

We end the paper by a few open questions, asking for combinatorial proofs of some of the mentioned
phenomena.

2 Enumeration
2.1 Our trees and the Lagrange inversion formula
Let tk,n be the number of k-phylogenetic trees on leaf set [n], and set tk,0 = 0. Let Tk(x) =

∑
n≥0 tk,n

xn

n!
be the exponential generating function of the sequence of these numbers.

Removing the root of such a tree, we get either the empty set, or an unordered set of k such trees,
leading to the functional equation

Tk(x) = x+
T k
k (x)

k!
. (1)

This means that Tk(x) is the compositional inverse of the power series Fk(x) = x − xk/k!, so the
coefficients of Tk(x) can be computed by the Lagrange inversion formula. However, that does not imply
that the power series Tk(x) has a simple closed form. In fact, it usually does not, since it is a solution of
a functional equation of degree k, where k can be arbitrarily high.

Let mi,k(n) denote the number of all vertices that are of rank at least i in all k-phylogenetic trees on
leaf set [n]. Let Mi,k(x) be the exponential generating function of the numbers mi,k(n). Similarly let
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ri,k(n) be the number of k-phylogenetic trees on leaf set [n] in which the root is of rank at least i, and let
Ri,k(x) be the exponential generating function of the numbers ri,k(n).

While the Lagrange inversion formula cannot provide a closed form for most of our generating func-
tions, it is still useful for us in that it enables us to prove the following useful proposition. We include the
proof of the proposition, but it can be skipped without causing difficulties in reading the rest of the paper.

Proposition 2.1 Let p be a polynomial function. Then

lim
n→∞

[xn]p (Tk(x))

[xn]M0,k(x)
= 0.

Proof: Note that [xn]M0,k(x) as well as [xn]Tk(x), and hence, [xn]p (Tk(x)) are nonzero if and only if
n− 1 is divisible by k− 1. Indeed, growing a k-phylogenetic tree from a single root by turning leafs into
parents of leaves, each step will increase the number of leaves by k − 1.

Clearly, it suffices to prove the statement in the special case when p(x) = x`, that is, when p(Tk(x)) =
T `
k(x). Indeed, all polynomials are linear combinations of such monomials with constant coefficients. We

can also assume that ` > 0, since the stament is obviously true for the polynomial x0 = 1.
We use the following version of the Langrange inversion formula (see Chapter 5 of [20] for a proof).

Let n and ` be positive integers, and let F 〈−1〉(x) be the compositional inverse of the power series F (x).
Then

n[xn](F 〈−1〉(x))` = `[xn−`]

(
x

F (x)

)n

. (2)

Setting F (x) = Fk(x) = x− xk

k! , and recalling that F 〈−1〉(x) = Tk(x), formula (2) yields

n[xn]T `
k(x) = `[xn−`]

(
x

x− xk

k!

)n

.

From this, we compute

[xn]T `
k(x) =

`

n
[xn−`]

(
1− xk−1

k!

)−n
=

`

n
[xn−`]

∑
s≥0

(
−n
s

)(
−xk−1

k!

)s

=
`

n
[xn−`]

∑
s≥0

(
n+ s− 1

s

)
xs(k−1)

k!s
.

So, setting n − ` = s(k − 1), we have n = s(k − 1) + `, and the last displayed chain of equalities
implies that

[xn]T `
k(x) =

`

s(k − 1) + `

(
ks+ `− 1

s

)
1

k!s
. (3)

Note that in particular, for ` = 1, we get

[xn]Tk(x) =
1

s(k − 1) + 1

(
ks

s

)
1

k!s
. (4)
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On the other hand, as M0,k(x) counts all vertices of all k-phylogenetic trees on leaf set [n]. As we said
at the begining of this proof, this implies that n = (k − 1)s+ 1, for some nonnegative integer s, and it is
easy to see that such trees have exactly s non-leaf vertices, and therefore, ks + 1 total vertices. So each
coefficient of M0,k is ks+ 1 times as large as the corresponding coefficient of Tk(x).

Therefore, it follows from (4) that

[xn]M0,k(x) = (ks+ 1)
1

s(k − 1) + 1

(
ks

s

)
1

k!s
.

Comparing this with (3), we get that

[xn]
(
Tk(x)

`
)

[xn]M0,k(x)
=

`
s(k−1)+` ·

(
ks+`−1

s

)
· 1
k!s

(ks+ 1) · 1
s(k−1)+1

(
ks
s

)
· 1
k!s

=
1

ks+ 1
· (s(k − 1) + 1)`

s(k − 1) + `
· (ks+ `− 1)(ks+ `− 2) · · · (ks+ `− s)

(ks)(ks− 1) · · · (ks− s+ 1)
.

As n goes to infinity, so does n−1 = (k−1)s, and therefore, ks. So the product in the last displayed line
clearly converges to 0, since the first term converges to 0, the second one converges to the fixed integer `,
and the third one converges to 1. 2

2.2 Formulas for generating functions
We will now use the tools discussed in Section 2.1 to prove some enumerative lemmas.

Lemma 2.2 For all integers k ≥ 2, and for all integers i ≥ 0, the equality

Mi,k(x) = Mi,k(x) ·
Tk(x)

k−1

(k − 1)!
+Ri,k(x)

holds.

Proof: Removing the root of a k-phylogenetic tree in which one non-root vertex of rank at least i is
marked, we get one such tree with one marked vertex of rank at least i, and an unordered set of k−1 trees
with no marked vertices. By the product formula of exponential generating functions, such collections
have generating function Mi,k(x) · Tk(x)

k−1

(k−1)! . On the other hand, trees in which the root is marked and is
of rank at least i are simply counted by Ri,k(x). 2

Therefore,

Mi,k(x) =
Ri,k(x)

1− Tk(x)k−1

(k−1)!

. (5)

Proposition 2.3 For all i ≥ 1, the recurrence relation

Ri,k(x) =
Rk

i−1,k(x)

k!
(6)

holds.
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Proof: Removing the root of a k-phylogenetic tree in which the root has rank at least i, we get an
unordered set of k such trees in which the root has rank at least i − 1. The claim now follows from the
product formula. 2

Let us introduce the notation

ci = ci,k =
ki − 1

k − 1

for shortness.

Corollary 2.4 For all i ≥ 0, the equality

Ri,k(x) =
Tk(x)

ki

k!ci
(7)

holds.

Proof: This is straightforward by induction. Indeed, for i = 0, the equality Ri,k(x) = Tk(x) holds, since
in each tree, the root is of rank at least 0. Let us assume that the statement is true for i− 1, that is,

Ri−1,k(x) =
Tk(x)

ki−1

k!ci−1
.

Now take the kth power of both sides, then divide by k!. By Proposition 2.3, this turns the left-hand side
into Ri,k(x), so we get the equality

Ri,k(x) =
Tk(x)

ki

k!kci−1+1
.

This proves our claim since kci−1 + 1 = ci. 2

Corollary 2.5 For all i ≥ 0, the equality

Mi,k(x) =
1

k!ci
· Tk(x)

ki

1− Tk(x)k−1

(k−1)!

(8)

holds.
In particular, the generating function for the total number of vertices is

M0,k(x) =
Tk(x)

1− Tk(x)k−1

(k−1)!

. (9)

2.3 Our main results
Now we are in a position to state and prove the main result of this paper.

Theorem 2.6 For all integers k ≥ 2, and for all integers i ≥ 1, the equality

lim
n→∞

mi,k(n)

m0,k(n)
=

1

kci
=

1

k
ki−1
k−1

(10)

holds.
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That is, for large n, about 1
kci

of all vertices are of rank at least i.

Proof: We proceed by splitting a constant multiple of Mi,k(x) into two parts, one of which will turn
out to be a constant multiple of M0,k(x), and the other one of which will turn out to be negligible, by a
divisibility argument.

To that end, we consider the rightmost factor in (8), and essentially divide the numerator by the denom-
inator, noting that

Tk(x)
ki

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)

(k−1)ci

(k−1)!ci − 1
)
(k − 1)!ciTk(x) + (k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)

(k−1)ci

(k−1)!ci − 1
)
(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

+
(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)

(k−1)ci

(k−1)!ci − 1
)
(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

+ (k − 1)!ciM0,k(x).

We have used (9) in the last step.
Now note that f ci − 1 = (f − 1)(f ci−1 + f ci−2 + · · · + f + 1). Using this formula for f =

Tk(x)
k−1/(k − 1)!, we see that the first summand of the last line in the last displayed array of equations

is a polynomial function of Tk(x), that is, we have proved that

Tk(x)
ki

1− Tk(x)k−1

(k−1)!

= p (Tk(x)) + (k − 1)!ciM0,k(x).

By Proposition 2.1, the contribution of p (Tk(x)) to the coefficient of xn on the right-hand side is negligi-
ble. Comparing this observation with (8) completes the proof. 2

Corollary 2.7 Then for each fixed i, as n goes to infinity, the probability that a random vertex of a random
k-phylogenetic tree on label set [n] is of rank i converges to a limit Pk,i, and

Pk,i =
1

kci
− 1

kci+1
=

1

kci
− 1

kkci+1
.
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