
ar
X

iv
:1

50
8.

04
02

9v
3 

 [m
at

h.
C

O
]  

1 
Ju

n 
20

16

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 18:3, 2016, #10

Partitioning the vertex set of G to make G✷H

an efficient open domination graph
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A graph is an efficient open domination graph if there exists asubset of vertices whose open neighborhoods partition
its vertex set. We characterize those graphsG for which the Cartesian productG✷H is an efficient open domination
graph whenH is a complete graph of order at least 3 or a complete bipartitegraph. The characterization is based on
the existence of a certain type of weak partition ofV (G). For the class of trees whenH is complete of order at least
3, the characterization is constructive. In addition, a special type of efficient open domination graph is characterized
among Cartesian productsG✷H whenH is a5-cycle or a4-cycle.
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1 Introduction

The domination number of a graphG is a classical invariant in graph theory. It is the minimum cardinality
of a setS of vertices for which the union of the closed neighborhoods centered in vertices ofS is the entire
vertex set ofG. Hence, each vertex ofG is either inS or is adjacent to a vertex inS. In other words, we
can say that vertices ofS control each vertex outside ofS. A classical question in such a situation is: who
controls the vertices ofS? One possible solution to this dilemma is total domination.A setD ⊆ V (G)
is a total dominating set ofG if every vertex ofG is adjacent to a vertex ofD. (Hence, vertices ofD are
also controlled byD.)
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A natural question for a graphG is whether we can find a total dominating setD such that the union
of the open neighborhoods of the vertices inD is V (G) but so that these open neighborhoods also form
a partition ofV (G). The concept has been presented under the names total perfect codes Cockayne
et al. (1993), efficient open domination Gavlas and Schultz (2002) and exact transversals Cowen et al.
(2007). In the present work we follow the terminology of efficient open domination, and we say that
a graphG is an efficient open domination graph ifG has a total dominating setD such that the open
neighborhoods of the vertices ofD form a partition ofV (G). A similar concept for ordinary domination
was first investigated by Biggs (1973) and Kratochvı́l (1986). They call a graph 1-perfect if it contains a
perfect code, that is, a set of vertices whose closed neighborhoods partition the vertex set.

The problem of establishing whether a graphG is an efficient open domination graph is anNP -
complete problem; see Gavlas et al. (2003); McRae (1984). Gavlas et al. (2003) gave a recursive char-
acterization of the class of efficient open domination trees. Gavlas and Schultz (2002) presented various
properties of efficient open domination graphs. The efficient open domination graphs that are also Cayley
graphs were studied by Tamizh Chelvam and Mutharasu (2012) and efficient open domination grid graphs
by Cowen et al. (2007); Dejter (2008); Klostermeyer and Goldwasser (2006). Moreover, Abay-Asmerom
et al. (2008) characterized those direct product graphs that are efficient open domination graphs.

Several graph products have been investigated in the last few decades and a rich theory involving the
structure and recognition of classes of these graphs has emerged Hammack et al. (2012). The most studied
graph products are the Cartesian, strong, direct, and lexicographic. These four are also called thestandard
products. One approach to graph products is to deduce properties of a product with respect to (the same)
properties of its factors. See a short collection of these types involving total domination and perfect codes
in Dorbec et al. (2006); Gravier (2002); Henning and Rall (2005); Ho (2008); Jerebic et al. (2005); Klavžar
et al. (2006); Kuziak et al. (2014a,b); Mekiš (2010); Rall (2005). The domination related questions on
the Cartesian product seems to be the most problematic amongthe standard products. We just mention
Vizing’s conjecture, which says that the domination numberof a Cartesian product is at least the product
of the domination numbers of the two factors. Settling this conjecture is one of the most challenging
problems in the area of domination (see the recent survey on Vizing’s conjecture Brešar et al. (2012)).
Efficient open domination is no exception, which could be thereason it has not been studied intensively
yet in the Cartesian product setting. Other than the resultson grid graphs mentioned above, a step forward
in this direction was made only recently by Kuziak et al. (2014b) where some special types of Cartesian
products were considered. In the same paper complete descriptions of efficient open domination graphs
among lexicographic and strong products of graph were given.

The aim of this paper is to show how the problem of finding efficient open domination graphs among
Cartesian products can be approached by partitioning the vertex set of one factor. In the next section we
set the context by supplying needed definitions and previousresults in this area. In Section 3 we prove that
for r ≥ 3, the graphG✷Kr has an efficient open dominating set if and only ifV (G) has a weak partition
that satisfies certain properties. This provides a way to construct graphs with efficient open dominating
sets in this family of Cartesian products. In addition we give a structural characterization of the treesT

such thatT ✷Kr has an efficient open dominating set. Section 4 addresses this weak partition approach
to graphs of diameter 2.
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2 Definitions and previous results
Throughout the article we consider only finite, simple graphs. For most common graph theory notation
and definitions we follow the book by Hammack et al. (2012). Inparticular, our definitions and notation
for open (N(v)) and closed (N [v]) neighborhoods of a vertexv, for distance (dG(u, v)) between a pair of
vertices and for the diameter (diam(G)) of a graph are the same as theirs. The distancedG(e, v) between
an edgee and a vertexv in G is the shortest distance betweenv and the two end vertices ofe, while the
distancedG(e1, e2) between edgese1 ande2 is the shortest distance between the end vertices ofe1 and
the end vertices ofe2. In general, for nonempty subsetsP andQ of V (G), the distancedG(P,Q) between
them is the shortest distance between a vertex fromP and a vertex fromQ. A weak partitionof a setX
is a collection of pairwise disjoint subsets ofX whose union isX . We emphasize that, in contrast to a
partition, members of a weak partition are allowed to be empty. The subgraph induced by a subsetS of
V (G) is denoted by〈S〉. A matchingin G is any (possibly empty) set of independent edges. Ifr is a
positive integer, then the vertex set of each of the graphsPr, Kr, andCr (if r > 2) will be the interval[r]
defined by[r] = {1, . . . , r}.

Since this present work concerns total domination on Cartesian products, we include several of the
important definitions here for the sake of completeness. We say that a vertexx of G dominatesa vertex
y (equivalently,y is dominated byx) if y ∈ N(x). A subsetD of V (G) is a total dominating setof G
if each vertex inG is dominated by at least one vertex inD. The total domination numberof a graph
G is the minimum cardinality of a total dominating set ofG and is denoted byγt(G). TheCartesian
product, G✷H , of graphsG andH is a graph withV (G✷H) = V (G) × V (H). Two vertices(g, h)
and(g′, h′) are adjacent inG✷H whenever (gg′ ∈ E(G) andh = h′) or (g = g′ andhh′ ∈ E(H)). For
a fixedh ∈ V (H) we callGh = {(g, h) ∈ V (G✷H) : g ∈ V (G)} aG-layer in G✷H . Similarly, an
H-layer gH for a fixedg ∈ V (G) is defined asgH = {(g, h) ∈ V (G✷H) : h ∈ V (H)}. Notice that the
subgraph ofG✷H induced by aG-layer or anH-layer is isomorphic toG or H , respectively. The map
pG : V (G✷H) → V (G) defined bypG((g, h)) = g is called aprojection map ontoG. Similarly, we
definepH as theprojection map ontoH . Projections are defined as maps between vertices, but frequently
it is more useful to see them as maps between graphs.

A graphG is anefficient open domination graph(shortly anEOD-graph) if there exists a setD, called
an efficient open dominating set(shortly anEOD-set), for which

⋃

v∈D N(v) = V (G) andN(u) ∩
N(v) = ∅ for every pairu andv of distinct vertices ofD. Note that two different vertices of an EOD-set
are either adjacent or at distance at least three. It is easy to see that the pathPn is an EOD-graph if and
only if n 6≡ 1 (mod 4), while the cycleCn is an EOD-graph if and only ifn ≡ 0 (mod 4). LetG andH
be graphs such thatG✷H is an EOD-graph with an EOD-setD. Note that the projection of an edge in
〈D〉 ontoG is either a vertex or an edge. When the projection of every edge in 〈D〉 ontoG is an edge, we
say thatD is aparallel EOD-setwith respect toG. A Cartesian product that contains a parallel EOD-set
with respect to one of its factors is called aparallel EOD-graph.

Among the class of nontrivial Cartesian products several infinite families of EOD-graphs have been
found. In Cowen et al. (2007); Klostermeyer and Goldwasser (2006) the authors investigated EOD-graphs
among the grid graphs (that is, Cartesian products of paths). Results from both papers are merged in the
following characterization.

Theorem 2.1 Cowen et al. (2007); Klostermeyer and Goldwasser (2006)Let t ≥ r ≥ 3. The grid
graphPr ✷Pt is an EOD-graph if and only ifr is an even number andt ≡ x (mod r + 1) for some
x ∈ {1, r − 2, r}.
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Some partial results on EOD-graphs in the family of torus graphs (Cartesian products of cycles) were
presented by Dejter (2008), by characterizing only those with a parallel EOD-set (there referred to as a
parallel total perfect code).

Theorem 2.2 Dejter (2008)The Cartesian productCr ✷Ct has a parallel EOD-set if and only ifr andt
are multiples of four.

Kuziak et al. (2014b) recently continued with the study of EOD-graphs among tori and cylinders (Carte-
sian product of a path and a cycle).

Proposition 2.3 Kuziak et al. (2014b)Let t ≥ 4. The torusC4 ✷Ct is an EOD-graph if and only ift ≡ 0
(mod 4).

In addition, they proved thatCr ✷Ct is not an EOD-graph ifr ∈ {3, 5, 6, 7} andt ≥ r. Based on the
above observations they posed the following conjecture.

Conjecture 2.4 Kuziak et al. (2014b)Let r and t be integers such thatr ≥ 3 and t ≥ 3. The torus
Cr ✷Ct is an EOD-graph if and only ifr ≡ 0 (mod 4) andt ≡ 0 (mod 4).

The same authors characterized the graphsG for whichG✷K2 is an EOD-graph. In order to do this
they introduced the so-called zig-zag graphs, Kuziak et al.(2014b). LetG be a graph on at least three
vertices andE′ = {e1, . . . , ek} a subset ofE(G), whereei = uivi for everyi ∈ [k], with the following
properties:

(i) N(ui) ∩N(vi) = ∅;

(ii) dG(ei, ej) ≥ 2 for 1 ≤ i < j ≤ k;

(iii) for everyx ∈ V (G) − {ui, vi : i ∈ [k]} there exist uniquej andℓ, j 6= ℓ, such thatdG(x, ej) =
dG(x, eℓ) = 1;

(iv) for every sequenceei1 , . . . , eij of distinct edges withj > 2 and with
dG(ei

ℓ
, ei

ℓ+1 (mod j)
) = 2 for ℓ ∈ {1, . . . , j}, j must be an even number.

We callE′ a zig-zag setof G and, if there exists a zig-zag set inG, we callG a zig-zag graph.

Theorem 2.5 Kuziak et al. (2014b)If G is a zig-zag graph, thenG✷K2 is an EOD-graph.

Not all EOD-graphs amongG✷K2 are given by the above theorem. Kuziak et al. observed that for
a description of all EOD-graphs among Cartesian products ofgraphs withK2, a certain combination of
zig-zag graphs and 1-perfect graphs is needed (see Kuziak etal. (2014b) for details).

One can observe that forr > 2, every EOD-set inG✷Kr is a parallel EOD-set with respect toG.
Namely, if an edge induced by two vertices of a vertex subsetA of G✷Kr projects to a single vertex
g ∈ V (G), then the layergKr contains a vertex that is dominated more than once byA. This observation
led to the idea of how to approach the problem of finding EOD-graphs amongG✷Kr for r > 2. This is
presented in the next section.
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3 G✷Kr for r > 2

In order to obtain a characterization of EOD-graphs amongG✷Kr, r > 2, we introduce a new concept,
based on a weak partition of the vertex set ofG. As we will see in later sections, a modification of this
concept can be used for the construction of EOD-graphs that are Cartesian productsG✷H whereH
belongs to several other special classes of graphs.

Let r be an integer larger than 1. We call a graphG aKr-amenable graphif there exists a weak partition
{V0, V1, . . . , Vr} of V (G), such that

(A) if x ∈ V0, then|N(x) ∩ Vi| = 1 for everyi ∈ [r],

(B) 〈Vi〉 is a matching inG for everyi ∈ [r],

(C) 〈V1 ∪ · · · ∪ Vr〉 is a matching inG.

For the sake of clarity in the above definition we emphasize that the induced subgraphs〈Vi〉 and
〈V1 ∪ · · · ∪ Vr〉 do not contain any edges other than those in their perfect matchings.

We first prove thatK2-amenable graphs do not differ from zig-zag graphs.

Theorem 3.1 A graphG is aK2-amenable graph if and only ifG is a zig-zag graph.

Proof: LetG be aK2-amenable graph with a weak partition{V0, V1, V2} of V (G) that satisfies conditions
(A), (B) and (C). We will show thatE′ = 〈V1 ∪ V2〉 is a zig-zag set ofG by demonstrating that conditions
(i) − (iv) hold. Since〈V1 ∪ V2〉, 〈V1〉 and〈V2〉 are matchings,E′ is a set of edges{e1, . . . , ek}. By
the same argument we derive thatdG(ei, ej) ≥ 2 for i 6= j, and thus(ii) holds. Letei = uivi for
everyi ∈ [k]. If x ∈ N(ui) ∩ N(vi) for somei ∈ [k], thenx ∈ V0 by the matching argument again.
But this contradicts condition (A) since|N(x) ∩ Vi| ≥ 2 in this case. Hence(i) also holds. Ifx ∈
V (G) − {ui, vi : i ∈ [k]}, thenx ∈ V0. By (A) we have that|N(x) ∩ Vi| = 1 for everyi ∈ {1, 2},
which implies the existence of exactly two different edgesej andeℓ of E′ with dG(x, ej) = dG(x, eℓ) =
1. This proves(iii). To prove(iv), let ei1 , ei2 , . . . , eij , j > 2, be a sequence of distinct edges with
dG(ei

ℓ
, ei

ℓ+1 (mod j)
) = 2 for ℓ ∈ [j]. In addition, letxℓ be a common neighbor ofei

ℓ
andei

ℓ+1 (mod j)
.

As before,xℓ ∈ V0 for everyℓ ∈ [j]. Without loss of generality, suppose the end-vertices of the edgeei1
belong toV1. By condition (A) for the vertexx1, the end-vertices ofei2 belong toV2. The same argument
for the vertexx2 implies that the end-vertices ofei3 belong toV1. Continuing this way, we get a zig-zag
pattern for the end-vertices ofei1 , ei2 , . . . , eij . If j is an odd number, then the end-vertices ofei1 andeij
are both inV1, which gives a contradiction with condition (A) for the vertexxj . Thusj is an even number
and(iv) holds as well.

Now let G be a zig-zag graph with a zig-zag setE′ = {e1, . . . , ek} whereei = uivi. We setV0 =
V (G) − {ui, vi : i ∈ [k]}. Observe thatE′ can be partitioned asE′ = E1 ∪ · · · ∪ Et such that for each
i ∈ [t], the following holds. The setEi is a maximal set of edges such that between any two distinct edges
ej anden fromEi there exists a sequenceej = ej0 , ej1 , . . . , ejℓ = en, ℓ ≥ 1, of distinct edges where the
distance between two consecutive edges in this sequence is2. Such a sequence is called a2-step sequence
of lengthℓ.

Observe that there exists a partition ofE′ = E1 ∪ · · · ∪Et, such thatEi, for everyi ∈ [t], consists of a
maximal set of edges such that between any two distinct edgesej andek fromEi there exists a sequence
ej = ej0 , ej1 , . . . , ejℓ = ek, ℓ ≥ 1, of distinct edges such that the distance between two consecutive edges
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in this sequence is2 (we call such sequence a2-step sequence of lengthℓ). Now, in Ei fix an arbitrary
edgee. For an arbitrary edgef in Ei there exists a 2-step sequence betweene andf . Property(iv)
implies that the lengths of all different 2-step sequences betweene andf are of the same parity. Thus,
edges ofEi can be partitioned into two setsE1

i andE2
i . The setE1

i consists ofe and all edgesf for which
the length of a 2-step sequence betweene andf is even, andE2

i = Ei − E1
i . For everyi ∈ [t] let V 1

i

denote the set of end-vertices of edges inE1
i , andV 2

i the set of end-vertices of edges inE2
i . Finally, let

V1 = V 1
1 ∪ · · · ∪ V 1

t andV2 = V 2
1 ∪ · · · ∪ V 2

t .
We will show that{V0, V1, V2} is a weak partition ofV (G) satisfying conditions (A), (B) and (C).

Properties (B) and (C) clearly follow, sincedG(ei, ej) ≥ 2 for every pairei, ej ∈ E′. To prove (A) let
x ∈ V0. By (iii) there exist exactly two different edgesep, er ∈ E′ such thatdG(x, ep) = 1 = dG(x, er).
Note thatep ander belong to the sameEi in the partition ofE′. Recall that we have fixed the edge
e ∈ Ei. If a 2-step sequence betweene andep and a 2-step sequence betweene ander have the same
parity, then we obtain a contradiction with(iv). Hence, end-vertices of one edge, sayep, belong toV1,
and end-vertices ofer belong toV2. Since, in addition,N(ui) ∩ N(vi) = ∅, by (i) for everyi we have
|N(x) ∩ V1| = 1 = |N(x) ∩ V2| and condition (A) holds. ✷

Theorem 3.2 Let r be a positive integer such thatr > 2 and letG be a graph. The Cartesian product
G✷Kr is an EOD-graph if and only ifG is aKr-amenable graph.

Proof: Let G be aKr-amenable graph with corresponding weak partition{V0, . . . , Vr} of V (G). We
define a subsetD of V (G✷Kr) byD = {(g, i) : i ∈ [r] andg ∈ Vi}. It follows thatD contains at most
one vertex from eachKr-layer. To prove thatG✷Kr is an EOD-graph we will show that every vertex
of G✷Kr is dominated by exactly one vertex ofD. Let i ∈ [r] and letg ∈ V (G). First, assume that
g ∈ V0. By (A), the vertexg has a unique neighborxi in Vi. Consequently,(g, i) is adjacent to(xi, i)
and(xi, i) ∈ D. Moreover, by the uniqueness ofxi, no other vertex ofD dominates(g, i). Now assume
thatg ∈ Vi. Since〈Vi〉 is a perfect matching,g has a unique neighborg′ in Vi. It follows that(g′, i) ∈ D

and that(g′, i) is the only neighbor of(g, i) in D. Finally, assume thatg ∈ Vj for somej ∈ [r] such
thatj 6= i. By the definition ofD this implies that{(g, j)} = D ∩ gKr. In addition, since (B) and (C)
hold,(g, i) has no neighbor inGi∩D. The result is that(g, i) is dominated by exactly one vertex, namely
(g, j), of D. Consequently,D is an EOD-set ofG✷Kr andG✷Kr is an EOD-graph.

To prove the converse, suppose thatG✷Kr is an EOD-graph with an EOD-setD. For i ∈ [r] let
Vi = {v ∈ V (G) : (v, i) ∈ D}, and letV0 = V (G) − (V1 ∪ · · · ∪ Vr). As we observed in Section 2,
D is necessarily parallel with respect toG. This means that everyvKr contains at most one vertex ofD,
and we thus infer that{V0, V1, . . . , Vr} is a weak partition ofV (G). We prove that conditions (A), (B),
and (C) of the definition ofKr-amenable hold. If condition (A) is not satisfied, then thereexistx ∈ V0

andi ∈ [r], such that|N(x) ∩ Vi| = 0 or |N(x) ∩ Vi| > 1. In the first case(x, i) is not dominated by
any vertex ofD, and in the second case(x, i) is dominated by more than one vertex ofD. Both cases
are in contradiction with the assumption thatD is an EOD-set ofG✷Kr. Hence, the weak partition
{V0, V1, . . . , Vr} satisfies property (A). Leti ∈ [r] and letg ∈ Vi. Since|D ∩ gKr| ≤ 1 and(g, i) has
exactly one neighbor inD, it follows that|N(g) ∩ (V1 ∪ · · · ∪ Vr)| = 1 = |N(g) ∩ Vi|. Hence, both (B)
and (C) hold. Therefore,G is aKr-amenable graph. ✷

Let r be an integer larger than 1. In the rest of this section we present a recursive description of the
family of all Kr-amenable trees. The following construction generalizes the construction of zig-zag trees
(that is,K2-amenable trees) from Kuziak et al. (2014b). We will denote by K+

1,r the tree of order2r + 1
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obtained from the starK1,r by subdividing each edge exactly once. It is clear thatK+
1,r is aKr-amenable

tree, and the corresponding partition ofV (K+
1,r) is unique up to a permutation of[r]. We now define an

infinite family Tr of trees. Each member ofTr will have a weak partition{V0, V1, . . . , Vr} of its vertex
set associated with it.

Suppose thatT ′ is a tree of ordern such that{V ′
0 , V

′
1 , . . . , V

′
r} is a weak partition ofV (T ′) and that

T ′′ is a tree of orderm such that{V ′′
0 , V ′′

1 , . . . , V ′′
r } is a weak partition ofV (T ′′).

We say that a treeT of ordern +m − 2 is obtained fromT ′ andT ′′ by aType-a construction ifT is
isomorphic to the tree formed by choosing anyi ∈ [r], any edgeu′

iv
′
i in 〈V ′

i 〉, any edgeu′′
i v

′′
i in 〈V ′′

i 〉 and
then identifying the verticesu′

i with u′′
i (now calledui) andv′i with v′′i (now calledvi) to obtain the edge

uivi in T . The associated weak partition{V0, V1, . . . , Vr} of V (T ) is defined byVj = V ′
j ∪ V ′′

j if j 6= i,
andVi = (V ′

i ∪ V ′′
i ∪ {ui, vi})− {u′

i, v
′
i, u

′′
i , v

′′
i }.

A treeS of ordern+m is obtained fromT ′ andT ′′ by aType-b construction ifS is isomorphic to the
tree formed from the union ofT ′ andT ′′ by adding an edgexy for somex ∈ V ′

0 and somey ∈ V ′′
0 . The

associated weak partition{V0, V1, . . . , Vr} of V (S) is given byVi = V ′
i ∪ V ′′

i for 0 ≤ i ≤ r.
The familyTr is defined recursively as follows. A treeT belongs toTr if and only if T = K+

1,r with its
partition as indicated above orT can be obtained from smaller trees inTr by a finite sequence of Type-a
or Type-b constructions.

Theorem 3.3 Let r be an integer such thatr ≥ 2. The path of order 2 isKr-amenable. IfT is a tree of
order more than 2, thenT is aKr-amenable graph if and only ifT ∈ Tr.

Proof: Let r be an integer such thatr ≥ 2. For the path of order 2, letV1 = V (P2), V0 = ∅ = Vi for
2 ≤ i ≤ r. This weak partition{V0, V1, . . . , Vr} satisfies the definition showing thatP2 is aKr-amenable
graph. For the remainder of this proof we assume that all trees under consideration have order at least 3.
As noted above, the treeK+

1,r is aKr-amenable tree. One can conclude directly from the definitions that
if T ′ andT ′′ are bothKr-amenable trees, then a tree obtained fromT ′ andT ′′ by a Type-a or a Type-b
construction is also aKr-amenable graph. Thus, it follows by induction (on the number of Type-a and
Type-b constructions) that every member ofTr is aKr-amenable graph.

Conversely, letT be aKr-amenable tree of order at least 3 with a corresponding weak partition
{V0, V1, . . . , Vr} and letk = |V0|. SinceT has order at least 3, it follows from the definition thatk ≥ 1.
We use induction onk to show thatT ∈ Tr. Let k = 1 andV0 = {v}. By property (A)deg(v) = r;
let N(v) = {u1, . . . , ur} whereui ∈ Vi. By (B) everyui has a unique neighborwi in Vi and by (C)ui

andwi have no neighbors inVj for j 6= i. Moreover,ui andwi have no additional neighbors inV0 since
k = 1. Thus,T is isomorphic toK+

1,r and henceT ∈ Tr.
Now suppose thatk > 1. Note that every vertex inV0 has degree at leastr. If there existsv ∈ V0 with

deg(v) > r, then there existsw ∈ V0 ∩N(v). LetT ′ be the component ofT − vw that containsv and let
T ′′ be the component that containsw. For0 ≤ i ≤ r, letV ′

i = Vi∩V (T ′) and letV ′′
i = Vi∩V (T ′′). The

resulting weak partitions ofV (T ′) andV (T ′′) clearly satisfy properties (A), (B) and (C), and furthermore
|V ′

0 | < k and|V ′′
0 | < k. By the induction hypothesis bothT ′ andT ′′ belong toTr. SinceT is obtained

from T ′ andT ′′ by a Type-b construction, it follows thatT ∈ Tr.
Now, suppose that all vertices ofV0 are of degreer (and hence〈V0〉 contains no edges). Chooseu andv

fromV0 with the property thatdT (u, v) is minimum among all different pairs of vertices fromV0. Clearly,
2 ≤ dT (u, v) ≤ 3. Letw be the neighbor ofu on the shortestu, v-path inT . Without loss of generality
we may assume thatw ∈ V1. By (B),w has a unique neighbor, sayw′, in V1. The forestT − uw has two
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connected components. The component that containsu is denoted byTu and the one that containsv is
denoted byT ′′. Let T ′ be the tree obtained fromTu by adding verticest andt′ and adding edgesut and
tt′. LetV ′′

i = Vi ∩ V (T ′′) for 0 ≤ i ≤ r, letV ′
1 = (V1 ∩ V (Tu)) ∪ {t, t′}, and letV ′

i = Vi ∩ V (Tu) for
i = 0 and2 ≤ i ≤ r. Properties (A), (B) and (C) clearly hold for the above defined weak partitions of
V (T ′) andV (T ′′). Thus,T ′ andT ′′ areKr-amenable trees. By the induction hypothesis, they are alsoin
Tr. Note thatT is isomorphic to the tree obtained fromT ′ andT ′′ by a Type-a construction that identifies
t with w, andt′ with w′. Consequently,T ∈ Tr. ✷

This theorem together with Theorem 3.2 combine to give us thefollowing characterization of those
treesT such thatT ✷Kr is an EOD-graph forr ≥ 3.

Corollary 3.4 Letr be a positive integer larger than 2 and letT be a tree. The Cartesian productT ✷Kr

is an EOD-graph if and only ifT = P2 or T ∈ Tr.

4 G✷H with diam(H) = 2
In this section we consider Cartesian products of graphs where (at least) one factor has diameter2. Moti-
vation for the study of such graphs arises from the previous section. An EOD-set ofG✷H that is parallel
with respect toG whendiam(H) = 2 shares an important property with such a set inG✷Kr for r ≥ 3.
This is given in the following lemma.

Lemma 4.1 LetH be a graph of diameter 2 and letG be a graph such thatG✷H has an EOD-setD.
For every vertexg in G, |D ∩ gH | ≤ 2. If in additionD is parallel with respect toG, then|D ∩ gH | ≤ 1
for everyg ∈ V (G). If |D ∩ gH | = 2, then the two distinct vertices inD ∩ gH are adjacent.

Proof: Assume thatD is an EOD-set ofG✷H and suppose that(g, u) and(g, v) are distinct vertices in
D. The graphH has diameter 2, and this implies thatuv ∈ E(H) or u andv have a common neighbor
w in H . Since every vertex ingH is dominated exactly once byD, we infer that(g, u) and(g, v) are
adjacent, and|D ∩ gH | ≤ 2. It follows immediately that ifD is parallel with respect toG, then no
H-layer can contain two members ofD. ✷ ✷

As we will see, finding an appropriate weak partition of vertices inG will be useful in the characteri-
zation of (parallel) EOD-graphs among Cartesian productsG✷H wherediam(H) = 2. First we show
that the Cartesian product of a graph of diameter2 and a tree on at least three vertices does not admit a
parallel EOD-set with respect to the tree.

Theorem 4.2 LetH be a graph withdiam(H) = 2 and letT be a tree. IfT is different thanK2, then
T ✷H does not contain a parallel EOD-set with respect toT .

Proof: LetH be a graph withdiam(H) = 2. Suppose, in order to obtain a contradiction, that there exists
a treeT different thanK2, such thatT ✷H admits a parallel EOD-setD with respect toT .

First, we claim thatT h ∩D = ∅ for every non-universal vertexh in H . If this does not hold, then there
exist vertices(u0, h), (v0, h) ∈ D which are adjacent inT ✷H . Sinceh is not universal inH , there is
h′ ∈ V (H) such thatdH(h, h′) = 2. Observe that(u0, h

′) and(v0, h′) are not dominated by(u0, h) and
(v0, h). Moreover, they are not dominated by any vertex inu0H andv0H (sincediam(H) = 2 we have
that|xH ∩D| ≤ 1 for everyx ∈ V (T ) by Lemma 4.1). Therefore, there exists a neighboru1 of u0 and a
neighborv1 of v0, such that(u0, h

′) is dominated by(u1, h
′) ∈ D and(v0, h′) is dominated by(v1, h′) ∈
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D. Moreover, since(u1, h
′), (v1, h

′) ∈ D, there exist(u2, h
′), (v2, h

′) ∈ D, whereu2u1, v2v1 ∈ E(T ).
To dominate vertices(u2, h) and(v2, h), there must exist(u3, h), (v3, h) ∈ D whereu3u2, v3v2 ∈ E(T ).
Continuing in this way we obtain a two-way infinite walk. . . u2u1u0v0v1v2 . . . in T . SinceT is a tree, all
vertices of this walk are pairwise different. But this is in contradiction withT being finite, and the claim
is proved.

We infer thatH has to contain universal vertices and that the projection ofevery edge in〈D〉 ontoH is
a universal vertex. Now, leth be a universal vertex ofH , such thatT h ∩D 6= ∅ and let(u, h), (v, h) ∈ D

be adjacent vertices. Together they dominate all vertices of uH andvH . There also exists a non-universal
vertexh′ in H becausediam(H) = 2. SinceT is different thanK2, at least one ofu andv, sayu,
has a neighborw in T . Note that(w, h) is dominated by(u, h), and(w, h′) is not dominated by(u, h)
nor (v, h). SinceT h′

∩ D = ∅, there exists another universal vertexh1 ∈ V (H), such that(w, h′) is
dominated by(w, h1) ∈ D. This yields a final contradiction, since(w, h) is dominated by both(u, h) and
(w, h1) fromD, which is not possible in an EOD-setD. ✷

4.1 G✷Km,n

In this subsection we give a necessary and sufficient condition on a graphG such thatG✷Km,n is an
EOD-graph for1 ≤ m ≤ n. The condition will be the existence of a weak partition ofV (G) that satisfies
very specific requirements. While it may not be easy to determine whether a given graphG has such a
weak partition, the requirements of the weak partition willmake it straightforward to construct graphsG

such thatG✷Km,n is an EOD-graph.
SinceKm,n has diameter 2 and we are not requiring the EOD-set ofG✷Km,n to be parallel with

respect toG, we will refer often to Lemma 4.1. For ease of explanation we assume throughout this
subsection that1 ≤ m ≤ n and thatKm,n has partite setsA andB given byA = {1, . . . ,m} and
B = {m + 1, . . . ,m + n}. With this notation we letCm,n be a weak partition ofV (G) containing
mn+m+ n+ 1 parts indexed as follows:

• V0, V1, . . . , Vm, Vm+1, . . . , Vm+n; and

• V[i,m+j] for 1 ≤ i ≤ m and1 ≤ j ≤ n.

We will say thatCm,n isKm,n-amenableif it is a weak partition satisfying the following conditions.

(I) For 1 ≤ i ≤ m+ n, the induced subgraph〈Vi〉 is a matching.

(II) For 1 ≤ i ≤ m andm+ 1 ≤ j ≤ m+ n, 〈Vi ∪ Vj〉 is a matching.

(III) For 1 ≤ i < j ≤ m or m + 1 ≤ i < j ≤ m + n, eachx in Vi has exactly one neighbor inVj and
eachy in Vj has exactly one neighbor inVi.

(IV) If x ∈ V[i,m+j] for some1 ≤ i ≤ m and some1 ≤ j ≤ n, thenN(x) ⊆ V0.

(V) If x ∈ V0, then|N(x) ∩
(

∪1≤j≤nV[i,m+j] ∪ Vi

)

| = 1 for 1 ≤ i ≤ m, and
|N(x) ∩

(

∪1≤i≤mV[i,m+j] ∪ Vm+j

)

| = 1 for 1 ≤ j ≤ n.

A graph G will be called Km,n-amenableif V (G) has a weak partition that isKm,n-amenable.
With this definition we are now able to give a constructive characterization of those graphsG such that
G✷Km,n is an EOD-graph.
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Theorem 4.3 Let m andn be positive integers such thatm ≤ n and letG be a graph. The Cartesian
productG✷Km,n is an EOD-graph if and only ifG isKm,n-amenable.

Proof: Assume thatG is Km,n-amenable and thatCm,n is a weak partition ofV (G) indexed as above
and satisfying the conditions (I)-(V) in the definition above. We define a subsetD of V (G✷Km,n) by
specifying its intersection with eachKm,n-layer. If r is an integer such that1 ≤ r ≤ m+ n andg ∈ Vr,
thenD ∩ gKm,n = {(g, r)}. If r and s are integers with1 ≤ r ≤ m and1 ≤ s ≤ n such that
g ∈ V[r,m+s], thenD ∩ gKm,n = {(g, r), (g,m + s)}. Finally, if g ∈ V0, thenD ∩ gKm,n = ∅. Since
Cm,n is a weak partition, the setD is well-defined. We now show thatD is an EOD-set ofG✷Km,n by
showing that each vertex ofG✷Km,n has exactly one neighbor inD.

Let (x, t) be an arbitrary vertex inG✷Km,n. Assumex ∈ V0. Suppose first that1 ≤ t ≤ m. By (V)
there existsy ∈ V (G) such that{y} = N(x) ∩

(

∪1≤j≤nV[t,m+j] ∪ Vt

)

. This implies that(y, t) ∈ D

and that(y, t) dominates(x, t). Furthermore, it follows from (V) andD ∩ xKm,n = ∅ that(y, t) is the
only neighbor of(x, t) that belongs toD. The casem + 1 ≤ t ≤ m + n is similar. Assume next that
x ∈ V[r,m+s] for somer ands such that1 ≤ r ≤ m and1 ≤ s ≤ n. By the definition ofD we get
that both(x, r) and(x,m + s) belong toD. Exactly one of these is adjacent to(x, t). Combining this
with property (IV) it follows that(x, t) has exactly one neighbor inD. Finally, assume thatx ∈ Vr for
somer with 1 ≤ r ≤ m. (The casem + 1 ≤ r ≤ m + n is similar.) This means that(x, r) ∈ D and
|D∩ xKm,n| = 1. There are three subcases to consider, namely (i)m+1 ≤ t ≤ m+n, (ii) t = r, and (iii)
t 6= r but1 ≤ t ≤ m. If m+1 ≤ t ≤ m+n, then(x, r) dominates(x, t) (from within the layerxKm,n).
From (I), (II) and (IV) we see that(x, t) is not adjacent to any vertex inD∩Gt. Thus, in subcase (i)(x, t)
has a unique neighbor inD. Assume thatt = r. By (I) there is a uniquey ∈ Vr ∩ N(x). By definition
(y, r) ∈ D and thus(x, r) is dominated byD. Properties (I) and (IV) together imply that(x, t) has no
other neighbor inD. Finally, assume subcase (iii) holds. By (III) there existsa uniquez ∈ Vt ∩ N(x).
Now (z, t) ∈ D and(x, t) is dominated by(z, t). Consequently, by (IV) it follows that(z, t) is the only
vertex inD that dominates(x, t). We have shown thatD is an EOD-set ofG✷Km,n.

Conversely, suppose thatS is an EOD-set ofG✷Km,n. SinceKm,n has diameter 2, we apply
Lemma 4.1 and conclude that|S ∩ gKm,n| ≤ 2 for every vertexg in G. We produce a weak parti-
tion C of V (G) as follows. The sets inC are those in the following specifications. Note that some of these
subsets might be empty.

• V0 = {x ∈ V (G) : S ∩ xKm,n = ∅},

• Vi = {x ∈ V (G) : S ∩ xKm,n = {(x, i)}} for 1 ≤ i ≤ m+ n,

• V[i,m+j] = {x ∈ V (G) : S ∩ xKm,n = {(x, i), (x,m+ j)}} for 1 ≤ i ≤ m and1 ≤ j ≤ n.

The verification thatC is Km,n-amenable (that is, it satisfies properties (I)-(V)) follows directly from
the assumption thatS is an EOD-set ofG✷Km,n and is left to the reader. ✷

The graphG in Figure 1 was constructed to have a weak partition that isK2,3-amenable. The partite
sets ofK2,3 are as in the development above,A = {1, 2} andB = {3, 4, 5}. For simplicity the vertices
of G are labeled to indicate the subset of the weak partition thatcontains them. For example, the vertices
labeled1 are inV1 while the vertex labeled[2, 5] is the only member ofV[2,5]. By Theorem 4.3 the
Cartesian productG✷K2,3 is an EOD-graph.
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0

[2, 5]

5 5

3 3

44

1

1

2

2

Fig. 1: A K2,3-amenable graphG

4.2 G✷Cr, r ∈ {4, 5}

In this subsection we first define a type of weak partition ofV (G) that will enable us to characterize
those Cartesian productsG✷C5 that are parallel EOD-graphs with respect toG. To describe these weak
partitions we need to modify Condition (C) as it was stated inSection 3 and add an additional condition.
The operations on the subscripts in these new conditions aremade modulo5.

(C′) 〈Vi ∪ Vi+1〉 is a matching inG for everyi ∈ [5],

(D) if x ∈ Vi, then|N(x) ∩ Vi+2| = 1 and|N(x) ∩ Vi−2| = 1 for everyi ∈ [5].

Notice that the condition (C′) is weaker than (C). We say thatG isC5-parallel amenableif there exists
a weak partition{V0, V1, V2, V3, V4, V5} of V (G) that satisfies conditions (A), (B), (C′) and (D).

Theorem 4.4 For any graphG, the Cartesian productG✷C5 is a parallel EOD-graph with respect to
G if and only ifG is aC5-parallel amenable graph.

Proof: Assume first thatG is aC5-parallel amenable graph and let{V0, V1, V2, V3, V4, V5} be a weak
partition ofV (G) that satisfies conditions (A), (B), (C′) and (D). We define a subsetD of V (G✷C5) by
D = {(g, i) : g ∈ Vi for i ∈ [5]}. Notice that|D ∩ gC5| = 1 for everyg ∈ V (G) − V0. We will show
that every vertex ofG✷C5 is dominated by exactly one vertex ofD. Let (g, j) be an arbitrary vertex of
G✷C5.

Assume first thatg ∈ Vi for somei ∈ [5]. If j ∈ {i − 1, i + 1}, then(g, j) is dominated by(g, i).
Moreover,(g, j) is dominated only by(g, i) in D, since(g, i) is the only vertex inD ∩ gC5 and (B) and
(C′) hold. If j = i, then(g, j) is dominated by(g′, i), wheregg′ is an edge in〈Vi〉 (notice thatg′ exists
by (B)). Note that(g, j) is dominated only by(g′, i) from D by (B) and the fact that|D ∩ gC5| = 1.
It remains to considerj = i + 2 andj = i − 2. Assumej = i + 2; the casej = i − 2 is similar.
By condition (D),g has a unique neighborxi+2 ∈ Vi+2. By definition (xi+2, i + 2) ∈ D, and thus
(xi+2, i + 2) dominates(g, j). As before, since|D ∩ gC5| = 1 and since condition (D) holds, it follows
that (xi+2, i + 2) is the only vertex ofD that dominates(g, j). Hence, ifg ∈ Vi for somei ∈ [5], then
(g, j) is dominated exactly once byD. Finally, assume thatg ∈ V0. By condition (A),g has a unique
neighborxj ∈ Vj . This implies that(xj , j) ∈ D and that(xj , j) is the only vertex inD that dominates
(g, j). Consequently,D is a parallel EOD-set ofG✷C5.
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Conversely, letG✷C5 be a parallel EOD-graph and letD be a parallel EOD-set with respect toG. Let
V0, V1, V2, V3, V4, V5 be subsets ofV (G) defined as follows. If|D ∩ gC5| = 0, theng ∈ V0. For i ∈ [5],
g ∈ Vi if and only if {(g, i)} = D ∩ gC5. By Lemma 4.1,|D ∩ gC5| ≤ 1 for everyg ∈ V (G), and thus
{V0, V1, V2, V3, V4, V5} is a weak partition ofV (G). Note that onlyV0 can be empty.

We will show that this weak partition satisfies conditions (A), (B), (C′) and (D). If (A) does not hold,
then there exists a vertex(g, i) where|D ∩ gC5| = 0 and either|N(g) ∩ Vi| = 0 or |N(g) ∩ Vi| > 1 for
somei ∈ [5]. In the first case(g, i) is not dominated byD and in the second case(g, i) is dominated by at
least two vertices, both contradicting the fact thatD is a parallel EOD-set. Thus, (A) holds. If (B) is not
satisfied, then there existsg ∈ Vi, for somei ∈ [5], such that eitherdeg〈Vi〉(g) = 0 or deg〈Vi〉(g) > 1,
which yields exactly the same contradiction as for (A). Hence, (B) is true as well. If (C′) does not hold,
then there existg ∈ Vi andg′ ∈ Vi+1 for somei ∈ [5], such thatgg′ ∈ E(G). We infer that(g, i + 1) is
dominated twice, that is by(g, i) and by(g′, i + 1), which is not possible. Finally, if (D) does not hold,
then for somei ∈ [5], there existsx ∈ Vi such that|N(x) ∩ Vi+2| 6= 1 or |N(x) ∩ Vi−2| 6= 1. Again we
get that some vertex is not dominated byD (if |N(x) ∩ Vi+2| = 0 = |N(x) ∩ Vi−2|) or that some vertex
is dominated more than once byD (if |N(x) ∩ Vi+2| > 1 or |N(x) ∩ Vi−2| > 1), which is not possible.
This shows that (D) is also true, which completes the proof. ✷

While the complete characterization of EOD Cartesian products where one factor isC4
∼= K2,2 was

given in Subsection 4.1, here we describe allG such thatG✷C4 is a parallel EOD-graph with respect to
G. ForC4 notice that computations on the subscripts are done modulo4 in the set[4], and in this case
i+ 2 = i− 2. Thus, we can restate condition (D) as

(D′) if x ∈ Vi, then|N(x) ∩ Vi+2| = 1 for everyi ∈ [4].

We say thatG is C4-parallel amenable if there exists a weak partition{V0, V1, V2, V3, V4} of V (G) that
fulfills conditions (A), (B), (C′) and (D′). The proof of the following theorem follows the same lines as
the proof of Theorem 4.4 if we take into consideration computation modulo4 instead of modulo5.

Theorem 4.5 For any graphG, the Cartesian productG✷C4 is a parallel EOD-graph with respect to
G if and only ifG is aC4-parallel amenable graph.

For r ∈ {4, 5} there exist many graphsG which are notCr-parallel amenable, but for whichG✷C4

is an EOD-graph (clearlyG✷C4 is not a parallel EOD-graph with respect toG in this case). One of the
smallest examples isP3, which is notC4-parallel amenable, butP3 ✷C4 is an EOD-graph, even a parallel
EOD-graph with respect toC4.

5 Conclusion
As already mentioned, this method of defining weak partitions is most easily implemented when one of
the graphs has small diameter. Despite this fact, there is noreason why one should not use it on graphs
with larger diameter. We illustrate this idea on a special case from the class of cycles.

Our goal is to define a weak partition of a graphG that consists ofV0 and a family of setsVA whereA
is a subset of[k] with certain properties. We derive these properties from the second graph in the product,
which isCk now. Again we have two possibilities for an edge from〈D〉, whereD is an EOD-set of
G✷Ck: either it projects toCk as an edge or as a vertex. If it projects to an edge inCk, thenA must
contain two consecutive elementsi andi+1. If an edge projects to a single vertexj ∈ V (Ck), thenj ∈ A
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but neitherj + 1 nor j − 1 is in A. Moreover, two non-consecutive elements ofA must differ by at least
3 modulok, so that no vertex in the product is dominated more than once.

[1, 2][1, 2] [4, 5]

0 [4, 5]

0[3, 6]

[3, 6]

Fig. 2: A “C6-amenable” graphG

In particular, forC6 we obtain the following weak partition:

V0, V1, V2, V3, V4, V5, V6, V[1,2], V[2,3], V[3,4], V[4,5], V[5,6], V[6,1], V[1,4], V[2,5], V[3,6] .

Clearly the size of the weak partition increases withk. Together with this weak partition, several condi-
tions are needed as well. For instance we need a condition similar to (A) and (V) to care about all vertices
from V0. As in the case ofK2,3-amenable graphs, it seems to be hard to decide whether a graph G is
a “Ck-amenable” graph. However, it is not difficult to construct (small) examples of such graphs. An
example of a “C6-amenable” graph is given in Figure 2. The labeling follows the prescription given for
Figure 1.

References
G. Abay-Asmerom, R. H. Hammack, and D. T. Taylor. Total perfect codes in tensor prod-

ucts of graphs. Ars Combinatoria, 88:129–134, 2008. URLhttps://www.scopus.
com/inward/record.uri?eid=2-s2.0-47949133881&partnerID=40&md5=
82cb6dcced332d41ac19d49db5afcd5f. cited By 4.

N. Biggs. Perfect codes in graphs. Journal of Combinatorial Theory, Series B, 15(3):
289–296, 1973. doi: 10.1016/0095-8956(73)90042-7. URLhttps://www.scopus.
com/inward/record.uri?eid=2-s2.0-0001058806&partnerID=40&md5=
8578eda2f5f5ed2464c88eac313b1b54. cited By 84.
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J. Jerebic, S. Klavžar, and S.̌Spacapan. Characterizing r-perfect codes in direct products of
two and three cycles. Information Processing Letters, 94(1):1–6, 2005. doi: 10.1016/
j.ipl.2004.12.010. URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.
0-13844320862&partnerID=40&md5=89fbf92310b578653cba376d19e55152. cited
By 9.
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