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Let C), denote a cycle of length k and let Sy, denote a star with k edges. For multigraphs F', G and H, an (F, G)-
decomposition of H is an edge decomposition of H into copies of F' and GG using at least one of each. For L C H
and R C rH, an (F,G)-packing (resp. (F,G)-covering) of H with leave L (resp. padding R) is an (F, G)-
decomposition of H — E(L) (resp. H+E(R)). An (F, G)-packing (resp. (F, G)-covering) of H with the largest (resp.
smallest) cardinality is a maximum (F, G)-packing (resp. minimum (F, G)-covering), and its cardinality is referred
to as the (F, G)-packing number (resp. (F, G)-covering number) of H. In this paper, we determine the packing
number and the covering number of MK, , with C}’s and Si’s for any A, n and k, and give the complete solution
of the maximum packing and the minimum covering of AK,, ,, with 4-cycles and 4-stars for any A and n with all
possible leaves and paddings.
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1 Introduction

For positive integers m and n, K,, , denotes the complete bipartite graph with parts of sizes m and n. If
m = n, the complete bipartite graph is referred to as balanced. A k-cycle, denoted by Cy, is a cycle of
length k. A k-star, denoted by S, is the complete bipartite graph K . A k-path, denoted by Py, is a path
with k vertices. For a graph H and a positive integer A, we use AH to denote the multigraph obtained
from H by replacing each edge e by A\ edges each having the same endpoints as e. When A = 1, 1H is
simply written as H.

Let F', G, and H be multigraphs. A decomposition of H is a set of edge-disjoint subgraphs of H whose
union is H. An (F, G)-decomposition of H is a decomposition of H into copies of F' and G using at
least one of each. If H has an (F, G)-decomposition, we say that H is (F, G)-decomposable and write
(F,G)|H. If H does not admit an (F, G)-decomposition, two natural questions arise:

(1) What is the minimum number of edges needed to be removed from the edge set of H so that the
resulting graph is (F, G)-decomposable, and what does the collection of removed edges look like?
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(2) What is the minimum number of edges needed to be added to the edge set of H so that the resulting
graph is (F, G)-decomposable, and what does the collection of added edges look like?

These questions are respectively called the maximum packing problem and the minimum covering prob-
lem of H with F' and G.

Let F', G, and H be multigraphs. For L C H and R C rH, an (F, G)-packing of H with leave L is an
(F, G)-decomposition of H — E(L), and an (F, G)-covering with padding R is an (F, G)-decomposition
of H + E(R). For an (F, G)-packing & of H with leave L, if |Z?| is as large as possible (so that | L] is
as small as possible), then &2 and L are referred to as a maximum (F, G)-packing and a minimum leave,
respectively. Moreover, the cardinality of the maximum (F, G)-packing of H is called the (F, G)-packing
number of H, denoted by p(H; F, G). For an (F, G)-covering ¥ of H with padding R, if |%| is as small
as possible (so that | R| is as small as possible), then € and R are referred to as a minimum covering and a
minimum padding, respectively. Moreover, the cardinality of the minimum (F, G)-covering of H is called
the (F, G)-covering number of H, denoted by ¢(H; F,G). Clearly, an (F, G)-decomposition of H is a
maximum (F, G)-packing with leave the empty graph, and also a minimum (F’, G)-covering with padding
the empty graph.

Recently, decomposition into a pair of graphs has attracted a fair share of interest. Abueida and
Daven [3] investigated the problem of (K}, Sk )-decomposition of the complete graph K,,. Abueida and
Daven [4]] investigated the problem of the (Cy, F3)-decomposition of several graph products where Fs
denotes two vertex disjoint edges. Abueida and O’Neil [7] settled the existence problem for (Cy, Sk—1)-
decomposition of the complete multigraph MK, for k € {3,4,5}. Priyadharsini and Muthusamy [12} [13]]
gave necessary and sufficient conditions for the existence of (G,,, H,, )-decompositions of AK,, and AK,, ,,
where G,,, Hy, € {C,,, Py, Sn—1}. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs
G and H on m non-isolated vertices such that G U H is isomorphic to K,,. Abueida and Daven [2]] and
Abueida, Daven and Roblee [3] completely determined the values of n for which MK, admits a (G, H)-
decomposition where (G, H) is a graph-pair of order 4 or 5. Abueida, Clark and Leach [1]] and Abueida
and Hampson [6] considered the existence of decompositions of K,, — F' for the graph-pair of order 4 and
5, respectively, where F' is a Hamiltonian cycle, a 1-factor, or almost 1-factor. Furthermore, Shyu [14]
investigated the problem of decomposing K, into paths and stars with k edges, giving a necessary and
sufficient condition for £ = 3. In [[15}[16], Shyu considered the existence of a decomposition of K, into
paths and cycles with & edges, giving a necessary and sufficient condition for & € {3,4}. Shyu [17]
investigated the problem of decomposing K, into cycles and stars with k edges, settling the case k = 4.
In [18]], Shyu considered the existence of a decomposition of K,, ,, into paths and stars with k edges,
giving a necessary and sufficient condition for k& = 3. Recently, Lee [9] and Lee and Lin [10] estab-
lished necessary and sufficient conditions for the existence of (Cy, Sy )-decompositions of the complete
bipartite graph and the complete bipartite graph with a 1-factor removed, respectively. However, much
less work has been done on the problem of packing and covering graphs with a pair of graphs. Abueida
and Daven [3] obtained the maximum packing and the minimum covering of the complete graph K,, with
(Kk, Sk). Abueida and Daven [2] and Abueida, Daven and Roblee [5] gave the maximum packing and
the minimum covering of K, and AK,, with G and H, respectively, where (G, H) is a graph-pair of order
4 or 5. In this paper, we determine the packing number and the covering number of AK,, ,, with k-cycles
and k-stars for any A, n and k, and give the complete solution of the maximum packing and the minimum
covering of MK, ,, with 4-cycles and 4-stars for any A and n with all possible leaves and paddings.
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2 Preliminaries

In this section we first collect some needed terminology and notation, and then present a result which is
useful for our discussions to follow.

Let G be a multigraph. The degree of a vertex x of G, denoted by deg., x, is the number of edges
incident with x. The vertex of degree k in Sy is the center of Si and any vertex of degree 1 is an
endvertex of Sy,. For W C V(G), we use G[W] to denote the subgraph of G induced by W. Furthermore,

p(uv) denotes the number of edges of G joining w and v, (v1, ..., vx) and vy . .. vy denote the k-cycle and
the k-path through vertices vy, . . ., vy in order, respectively, and (x;y1, .. .,yx) denotes the k-star with
center x and endvertices y1, ..., y,. When G1, G, ..., G} are multigraphs, not necessarily disjoint, we

write G1 UG2U--- UG, or U§=1 G, for the graph with vertex set U§=1 V(G;) and edge set U§=1 E(G)).
When the edge sets are disjoint, G = U§:1 G; expresses the decomposition of G into G1, Go, . .., Gs.
Given an Sy-decomposition of G, a central function ¢ from V(G) to the set of non-negative integers is
defined as follows. For each v € V(G), ¢(v) is the number of k-stars in the decomposition whose center
is v.

The following result is essential to our proof.

Proposition 2.1 (Hoffman [8]]) For a positive integer k, a multigraph H has an Si-decomposition with
central function c if and only if

() kXevn cv) = EH)],

(ii) forallz,y € V(H), (xy c(x ) —|— c(y)7

(iii) forall SCV(H), k) c(v)<e Z min{c(x), u(zy)}.
veES rES,yGV(H)—S

where £(S) denotes the number of edges of H with both ends in S.

In the sequel of the paper, (A, B) denotes the bipartition of AK,, ,,, where A = {ag, a1,...,an—1} and
B ={bg,b1,...,bp_1}

3 Packing numbers and covering numbers

In this section the packing number and the covering number of the balanced complete bipartite multi-
graph with k-cycles and k-stars are determined. We begin with a criterion for decomposing the complete
bipartite graph into k-cycles.

Proposition 3.1 (Sotteau [19]]) For positive integers m, n, and k, the graph K, ,, is Cy-decomposable if
and only if m, n, and k are even, k > 4, min{m,n} > k/2, and k divides mn.

Let K, ,, denote the symmetric complete bipartite digraph with parts of size m and n, and let C’_>k
denote the directed k-cycle.

Proposition 3.2 (Sotteau [19]) For positive integers m, n, and k, the digraph K7, , is C->'k-decomp0sable
if and only if k is even, k > 4, min{m,n} > k/2, and k divides 2mn.

Removing the directions from the arcs of directed cycles in a Cx-decomposition of K, .., we obtain

m,n?
the following result by Proposition[3.2]
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Lemma 3.3 For positive integers m, n, and k, the multigraph 2K,, ,, is Ci-decomposable if k is even,
k >4, min{m,n} > k/2, and k divides 2mn.

Lemma 3.4 Ler A\, k, m, and n be positive integers with \m = An = k=0 (mod 2) and min{m,n} >
k/2 > 2. If m or n is divisible by k, then A\K,y, ,, is Cy-decomposable.

Proof: Since AK,, , is isomorphic to AK,, ,,, it suffices to show that the result holds for k | m. If A
is odd, then m and n are even from the assumption Am = An = 0 (mod 2). Since k divides mn,
Proposition implies that K, ,, is Cj-decomposable. If A is even, then 2K,, ,, | AK,, . Since k
divides 2mn, 2K, ,, is Cj-decomposable by Lemma@ Hence AK,, ;, is Cj-decomposable. O

Lemma 3.5 If k is a positive even integer with k > 4, then A\K}, i, is (C, Sk)-decomposable.

Proof: Note that AK}, ;, = AK} j—2 U AK}, 2. By Lemma 3.4, AK}, .2 is Cy-decomposable. Trivially,
MK}, o is C-decomposable. Therefore, AK}, i, is (Cy, Sy )-decomposable. a

Lemma 3.6 Let k be a positive even integer and let n be a positive integer with 4 < k < n < 2k. If
An—k)? < k, then NK,, ,, has a (Cy, S)-packing with leave NK,, i, . and a (Cy,, Sy )-covering with
padding Py x(n—k)2+1-

Proof: Let n = k + r. The assumption k& < n < 2k implies 0 < r < k. We first give the required
packing. Note that
>\Kn,n = >\Kk,k U )\Kk,r U )\Kr,k U )\Kr,r~
By Lemrna AK i, has a C),-decomposition Z;. Trivially, AK}, , and AK, j, have Sj-decompositions
24 and 23, respectively. Thus U?Zl 2, is a (Cy, Sy)-packing of A\K,, ,, with leave MK, ., as desired.
Now we give the required covering. Let s = A\r?. Let Ag = {ao, a1, - -, aj(s—1)/2) 1> A1 = A — Ao,
By = {bo,b1,...,bk—1} and By = B — By. Define a k-cycle C and a (k — s 4+ 1)-path P as follows:

C = (bo,ao,b1,a1,...,byj2_1,ar/2-1)
p_ { boay/2—1bk/2-10k/2—2 - - - b(s41)/20(5—1)/2 if s is odd,
boak/z,lbk/g,lak/g,g e as/gbs/g if s is even.
Let
H = AK,,., — E(C) + E(P).
Note that V(H) = V(AK,,.), |[E(H)| = An? —k+ (k—s) = An? — X2 = Mk(k +2r), and p(uv) < A
for all u,v € V(H). Furthermore, for H' = H[A U By, we have

Me—2 ifve Ay —{a|s—1)/2)}
degy v = Ak —p ifv=ays-1)/2]
Ak ifve Ay,

where p = 1if s is odd, and p = 2 if s is even. Define a function ¢ : V(H) — N as follows:

[0 ifven,
A=Y A otherwise.
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Now we show that there exists an S-decomposition of H with central function ¢ by Proposition 2.1}

First, k3, cy (s c(v) = kA(k+2r) = |[E(H)|. This proves (i). Next, if u,v € By, then c(u) +c(v) =
0 = p(uv); otherwise, c(u) +¢(v) > A > u(uw). This proves (ii). Finally, for S C V(H) and i € {0, 1},
let SNA; = X;and SN B; =Y. Moreover, let X = XoU X; and Y = Yy U Y;. Define a set T of
ordered pairs of vertices as follows:

T={(w,v)lue X,ve By —Yioruec X;,ve By—YporuecY,veA— X}

Note that
kD e(w) = BA(IX] + 1)), (1)
weS
e(S) = MIXIVi|+ X1 Yo+ D p(uo), 2)
u€Xp,veEYy

and foru € Sandv e V(H) — S

A if (u,v) € T,
min{c(u), p(uv)} =< pluv)  ifu € Xo,v € By — Yo, (3)
0 otherwise.

For S C V(H), let

g(S) =¢(S) + Z min{c(u), u(uv)} — k Z c(w).

ueS,weV(H)—S weS
Note that
S o)t Y aw)
u€Xo,vEYy u€Xp,vEBy—Yo
= > p(w)
u€Xo,vEBy
_ { |X0|(/\]{? — 2) ifaL(S,l)/QJ ¢ X(),
| Xo|(Me—2)+2—p ifa|s—1y/2) € Xo-
By f and | Xo| 4+ | X1| = | X]|, we have
9(8) = MIXI[+[XiYoh)+ > p(w)

u€eXo,vEYy
FAX[(r = M) + [Xa|(k = [Yol) + Y[ (k + 7 — [X]))
+ ) al(uww) = RA(X|+ i)
u€Xo,vEBy—Yp
_ { A(r| X[+ [Ya|(r — | X)) — 2| X0l if aj(s—1)/2) ¢ Xo,
B Ar| X[+ M(r = [X]) = 2[Xo| +2—p  ifa|s—1)/2) € Xo.
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IfaL(S_l)/QJ ¢ X, then |X()| < |(s— 1)/2J, which implies —2‘X0| > —s. If a|(s—1)/2] € Xy, then
|Xo| < [(s—1)/2] +1, which implies —2| Xo|+2—p > =2[(s—=1)/2] —p=—2(s—p)/2—p = —s.
Thus for | X| > r, we have

9(8) = A(r[X| = [(|X]=7)) —s
= Ar| X[ = V|(|X] — 7)) — Ar?
= M| X|=r)(r—[¥1])
> 0.
If \r = 1 and | X| < r, then | Xo| = |X| = 0, which implies —2|X| = —Ar|Xo|. If Ar > 2, then
—2|Xg| > —Ar|Xo|. Note that 2 — p > 0. Hence for | X| < r, we have
9(5) (r| X[+ [Y1|(r — | X)) = Ar[Xo|

> A
= A(r|Xa | + [V l(r — [X]))
>0

This settles (iii) and completes the proof. ]
Before going on, the following results are needed.

Proposition 3.7 (Ma et al. [[11]]) For positive integers k and n, the graph obtained by deleting a I-factor
Sfrom K, ,, is Cy-decomposable if and only if n is odd, k is even, 4 < k < 2n, and n(n — 1) is divisible
by k.

Lemma 3.8 If )\ and p are positive integers and k is a positive even integer with k > 4, then there exist
Apk /2 — p edge-disjoint k-cycles in NK}, /5 pp, (also in AKpy, 1 /2)-

Proof: It suffices to show that the result holds for AKj /o i If A or k/2 is even, then by Lemma
there exists a Cy-decomposition & of AK}, /5, With |Z| = Apk/2, in which k-cycles are edge-disjoint.
If k/2 is odd, then by Propositionthere exists a C,-decomposition 2’ of K, /2,672 — I with |2'| =
(k — 2)/4, where I is a 1-factor of Kj, /5 /2. Since Kj /s, can be decomposed into 2p copies of
K} /2,12, there exist 2p|2'| = pk/2 — p edge-disjoint k-cycles in K2, pr- For odd A with A > 3,
MKy 2 = (A1) K 2 UK} 2 1 By Lemmathere exists a Cx-decomposition 2" of (A— 1)Ky 2.pk
with |2"| = (A —1)pk/2. Hence there exist (A — 1)pk/2+pk/2 —p = Apk/2 — p edge-disjoint k-cycles
in )‘Kk/2,pk- O

Lemma 3.9 Let A and r be positive integers and let k be a positive even integer with k > 4 and r < k. If
t = [Ar?/k], then there exist [t/2] edge-disjoint k-cycles in A\K}, /5 .. Moreover, if X > 2 orr < k —2
and A\r® > k, then |t/2| + 1 < \r/2 and there exist [t/2] + 1 edge-disjoint k-cycles in XK} /5 .

Proof: Since r < k, we have t < Ar. Thus ¢t + 1 < Ar;in turn, [¢/2] < (t +1)/2 < Ar/2 < Ak/2,
which implies [t/2] < Ak/2 — 1. By Lemma there exist [t/2] edge-disjoint k-cycles in AK}, /3 .
When A2 = k, the result is trivial. When A\r® > k, we have r > 2/+/X since k > 4. For A > 2,

art —)\r—#<)\r— 2\ < Ar — 4
r+1 1+1/r 24V 2442

Ar?
<
S
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Forr <k —2,
Lr2 Ar? N 2\

2
< B N AN VAN
P R iy I\

Therefore, t = [M?/k] < Ar — 2. Intumn, [t/2] +1 < ¢/2+1 < Ar/2for A > 20rr <k —2. It
implies [t/2] + 1 < Ak/2. Hence |t/2] + 1 < Ak/2 — 1 for A > 2 or r < k — 2. This assures us that
there exist [#/2] + 1 edge-disjoint k-cycles in AK}, /5 j, by Lemma O

< Ar—1.

Lemma 3.10 Let k be a positive even integer and let n be a positive integer with 4 < k < n < 2k. If
A(n —k)? > k, then A\K,, ,, has a (Cy, Si)-packing & with | 2| = | An?/k| and a (C}., Sy )-covering €
with |€| = [Mn?/k].

Proof: Let n = k + r. From the assumption k < n < 2k, we have 0 < r < k. Let A\r?2 = tk + s such
that s and ¢ are integers with 0 < s < k. Note that t = | \r?/k]. Hence |An?/k| = |\(k +7)?/k] =
Ak 4+ 2r) 4+t and

An® ] [Ak+m)?] _ f A(k+2r) +t ifs=0
E | k Tl ME+2r)+t+1 if s > 0.

Since A\(n — k)2 > k,t > 1. Let pg = [t/2] and p; = [t/2]. We have py = 1 and p; = 0 for ¢t = 1, and
po > p1 > 1fort > 2. In the sequel, we will show that AK, ,, has a packing & consisting of ¢ copies of
k-cycles and A(k + 2r) copies of k-stars with leave P, 1 (except in the case s = 0, in which the leave is
the empty graph), and a covering € with || = [An?/k].

Let Ay = {ao,al, .. .,ak/g,l}, A = {ak/z,ak/QJrl, . ,Cl,k_l}, Ay = A — (AO U Ay), By =
{bo,b1,...,bg_1} and By = B — By. In addition, letting A} = {ay/2, ar/241,- - A[(kts)/21—1} for
s > 0and G; = MK, »[A; U By] fori = 0,1. Clearly, Gy and G are isomorphic to AK}, 5 5. By
Lemma there exist p; edge-disjoint k-cycles in G; for i € {0, 1}, and there exist p; 4+ 1 edge-disjoint
k-cycles in Gy for A > 2orr < k—2. Letd = 0forp; = 0and § = 1 for p; > 1. Suppose that
Qio0,Qi,-..,Qip,—1 are edge-disjoint k-cycles in G; for 0 < ¢ < §. Moreover, for A > 2orr < k—2,
let @ be a k-cycle in G which is edge-disjoint with Q1 ; for 0 < j < p; — 1. Without loss of generality,
we assume that

Q = (bj17a’]€/2’bj2’ak/2+l7 . wbjk/yakfl)

Note, for A = 1 and r = k — 1, that \r? = (k — 1)? = k(k — 2) + 1, which implies t = k — 2 and s = 1.
For s > 0, define an (s + 1)-path P as follows:

a/20¢ ifA=1r=k—-1,
P =q bjagbj,arsaq1---bj, 0046 2-1b5, 001 if A>2o0rr <k —2,siseven,
bjl Clk/gbjzak/2+1 AN bj(s+1)/2a(k+s+1)/2,1 if A >2orr < k— 2,8 is Odd,
where ay, /20, is any edge (incident with ay /2) notin Q1.0,Q1,1,- -, Q1,p, —1- Let
) pifl

H=\K,, —E(J(|J Qin)UP).

i=0 h=0
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Note that V(H) = V(AK,, ), |E(H)| = An? — (tk + s) = An? — Ar? = Mk(k + 2r), and p(uv) < A
for all u,v € V/(H). Moreover, for H' = H[A U By, we have

Ak —2[t/2] ifv € Ay,
)\k*?(Li/QJ +1) ifs>0andv€A’1 7{a((k+s)/ﬂ_1},
degprv =19 M —2[t/2] —p ifs>0andv = afys)/2]-1
Mk —2|t/2] ifs>0andv e Ay — Aj,ors=0and v € Ay,
Ak ifv e A,
where p = 1 if s is odd, and p = 2 if s is even. Define a function ¢ : V(H) — N as follows:
C(U) o 0 ifv € By,
R otherwise.

Now we show that there exists an Si-decomposition & of H with central function ¢ by Proposition 2.1

First, k3, ey (a) ¢(v) = kA(k+2r) = |E(H)|. This proves (i). Next, if u,v € By, then ¢(u)+c(v) =
0 = p(uv); otherwise, ¢(u) + ¢(v) > A > p(wwv). This proves (ii). Finally, for S C V(H), i € {0, 1, 2},
and j € {0,1},let SN A; = X; and SN B;j = Y;. Moreover, letting SN A} = X{, X = XoUX; UXy,
and Y = Yy U Y. Define a set T' of ordered pairs of vertices as follows:

T={(u,v)|lu€e X,ve By —Yiorue€ Xq,v€ By—YyorueY,veAd— X}

Note that
kY e(w) = EA(IX| + V), 4)
weS
e(S) = M| X|[Y1| + | X2 [Yol) + > puv), 5)

ueXoUX1,v€Y0

and foru € Sandv e V(H) — S

A if (u,v) € T,
min{c(u), p(uv)} =< pluv)  ifue XoUXy,v € By —Y, (6)
0 otherwise.

For S C V(H), let
o)==+ Y minfe() plm)} kY elw).

ueS,weV(H)—S wesS

Note that

Y uw)+ Y aw)

ueXoUX1,v€Y0 ueXoUX1,v€By—Yo

= > n(w)

ueXoUX1,v€By
| Xo| (M — 2[t/2]) + | X1|(Ak — 2[t/2]) if s =0,
| Xo|(Ak — 2[t/2]) + | X1|(Ak — 2[t/2]) — 2| X]] if s >0, ar(ets)/21-1 ¢ X1,
|X()|()\k — 2”/21) + |X1‘()\k — 2|_t/2J) — 2|X{| +2—-p if s > O,CL"(k_._s)/g]_l S X{
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By @—(6) and | Xo| + | X1 | + | X2| = | X[, we have

9(S) = MX|Y[+ [X2[[Yo]) + > p(uv)
ueXoUX1,v€Y)
FA(X|(r = M) + | X2|(k = [Yol) + Y1l (k + 7 — [X]))
+ > p(uv) — KA([X] + [Y3])
u€XoUX1,v€EBy—Yo
= A X[+ Ml(r—[X]) +m,

where
—2(| Xol[t/2] + | Xa[[2/2]) if s =0,
m=< —2(|Xo|[t/2] +|X1|[t/2]) — 2| X]] if s > 0,ar(kts)/21-1 & X1,
—2(|Xo|[t/2] + | Xu|[t/2]) = 20X{| + 2= p if 5 > 0, af(tpa)m—1 € X7,

If af(kts)21-1 € X1, then | X{| < |A]| —1 = [s/2] — 1. Hence —2|X{| > —2([s/2] — 1) > —s.
If af(kqs)/21-1 € X1, then [ X]| < [A]| = [s/2]. In addition, p = 1 for odd s and p = 2 for even s.
Therefore, —2|X{| +2 — p > —2[s/2] + 2 — p = —s. Together with the fact max{|Xo|, | X1|} < k/2,
we have

m > —2(k/2[t)2] + k/2|t/2]) — s = —(kt + s) = —\r?.

Thus for | X| > r, we have
9(8) > A(r|X| = M|(IX] =) = M = A(IX| = r)(r — [Y1]) > 0.

So it remains to consider the case | X| < r. Recall thatt = k — 2 and s = 1 for (A\,r) = (1,k — 1).
Thus [t/2] = [t/2] = (A —1)/2. In addition, | X|| = O for af(4s)/21—1 ¢ X1, and p = 1 as well as
| X1| = 1 (which implies |X1| > 1) for af(x4s)/21-1 € X;. Hence for af(i45)/21-1 & X1,

m = =2(|Xo| + [X1[)(Ar = 1)/2 = =Ar(|Xo| + [ X1]),
and for A (k+s)/2]-1 € X{,

—2(|Xo| + [X1)(Ar —1)/2 -1
= 7>\T‘(|X0|+|X1D+|X0|+|X1|*1
> (| Xo| + [ X)),

3
I

On the other hand, for A > 2 or r < k — 2, we have [¢/2] + 1 < Ar/2 by Lemma[3.9} this implies

> =2(]Xo|[t/2] + [X3[([t/2] + 1) + (| X1 | = |X1])[¢/2])
> =2(]Xo| + |X1])(Ar/2)
= —Xr(|Xo| +|X1])-

m

Therefore, for | X| < r, we have
g(S) = A(r| X[ + [Y1|(r — [X])) = Ar(|Xo| + [ X1]) = A(r|X2| + [V1[(r — |X])) > 0.

This settles (iii).
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Let Z = 9 U0_y {Qi0,Qi1, .-+ Qip,—1}. Clearly, & is the required packing. Let

@ — P ifs =0,
T 2u{Q} ifs>1.

It is easy to check that ¢ is the covering as required. O
Now, we are ready for the main result of this section.

Theorem 3.11 If \ and n are positive integers and k is a positive even integer with 4 < k < n, then
P(AK 3 Ck, Sk) = |An?/k| and c(AK,, n; C, Sk) = [An?/k].

Proof: Obviously,

2 2
p(/\Kn,n;Clek) < \\/\ZJ < ’7)\2—‘ < C()\Kn,n;ckvsk)a

Let n = gk + r where ¢ and 7 are integers with 0 < r < k. For ¢ = 1, the result follows from
Lemmas@ @, and If ¢ > 2,then AK, n = MKy yr U AK gy (—1)k U AK(g—1)k,n- Note
that AK. . +r has a (C, Si)-packing & with | 2| = |A(k + r)?/k| and a (C}, Si)-covering € with
|€] = [A(k + r)?/k]. Trivially, A\K ¢ (q—1)x and AK (4_1)k,,, have Si-decompositions Z and 2’ with
|2| = Mk+7)(q—1) and | 2’| = A(g—1)n, respectively. Since A(k+7)2/k+A(k+7)(g—1)+A(g—1)n =
Mgk + 1)k = M2k, 2 U2 U 2" is a (Ck, Sk)-packing of AK,, ,, with cardinality | \n?/k| and
¢ U2U 7" is a(Cy, Sk)-covering of A\K,, ,, with cardinality [An?/k]. This completes the proof. O

Clearly, if \K,, ,, admits a (C}, Sy )-decomposition, then 4 < k < n and k is even and An? is divisible
by k. When k divides An?, a (Cy, Sk)-packing & with | 22| = |An?/k| is a (Ck, S )-decomposition.
Therefore, with the aid of Theorem [3.11] we have the following.

Corollary 3.12 For positive integers A, k and n, the balanced complete bipartite multigraph \K,, ,, is
(Cy, Sk,)-decomposable if and only if 4 < k < n, k is even, and \n? is divisible by k.

4 Packing and covering with 4-cycles and 4-stars

In this section a complete solution to the maximum packing and minimum covering problem of AK, ,,
with C4 and Sy is given. Before that, we need more notations. For multigraphs G and H, G & H denotes
the disjoint union of G and H, G ® H denotes the union of G and H with a common vertex. For a set #
and a positive integer ¢, tZ denotes the multiset in which each element in % appears ¢ times. In addition,
M, denotes the graph induced by ¢ nonadjacent edges. We begin with the discussion for the possible
minimum leaves and paddings of MK, ,, with Cy and Sy.

Note that |[E(AK, )] = M2 If A =0 (mod4) orn = 0 (mod 2), then |[E(AK, )| = 0
(mod 4). By Corollary both of the possible minimum leave and the possible minimum padding
are the empty graph. If A\ = 1 (mod 4) and n = 1 (mod 2), then |E(AK, )] = 1 (mod 4).
This implies that the possible minimum leave is only P», and the possible minimum paddings are Ss,
Py, P Py, Mg, 2P, W Py, 2Py ® Py, and 3P,. If A = 2 (mod 4) andn =1 (mod 2), then
|[E(AKp.»)| = 2 (mod 4). This implies that the possible minimum leaves are Ps, Ma, and 2P, so
are the possible minimum paddings. If A =3 (mod 4) andn =1 (mod 2), then |[E(AK,, )| = 3
(mod 4). This implies that the possible minimum leaves are Sz, Py, Ps W Py, M3, 2P W Py, 2Py ® Ps,
and 3P, and the possible minimum padding is only Ps.
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Lemma 4.1 K5 5 has no (Cy, S4)-covering with padding 3 P;.

Proof: It suffices to show that K5 5 + 3{aobo} is not (C4, S4)-decomposable. Suppose, to the contrary
of the conclusion, that there exists a (Cy, S4)-decomposition 2 of K5 5 + 3{aobo}. Since there are at
most two star with center ag (or bg) and each edge joining ag and by lies in exactly one subgraph in
9, there are exactly three possibilities for the edges joining ay and by to lie in the decomposition: in
four 4-cycles, in three 4-cycles and a 4-star, or in two 4-cycles and two 4-stars. Let (G; be the graph
obtained from K5 5 + 3{aobo} by deleting the edges of four 4-cycles, and let G2 be the graph obtained
from K35 5 + 3{aobo } by deleting the edges of three 4-cycles or deleting the edges of two 4-cycles. Note
that deg, © = 3 for 2 ¢ {ao,bo}, which implies that there is no 4-star in G;. Since degg, x < 3 for
x € {ag, by}, there is no 4-star with center at ag or by in G5. This leads to a contradiction and completes
the proof. O

We summarize the results discussed above in Table [Tl

Tab. 1: The possible minimum leaves and paddings of AK, ,, with C4 and Sy

A (mod 4) A=0or A=1land A=2and A=3and
n  (mod 2) n=0 n=1 n=1 n=1
S3, Py, P3 & Pa,
Leave (Z) P2 P37M272P2 M3,2PQH‘JP2,
2Py ® Py, 3P
S3, Py, P3 & Pa,
Padding 0 %5”’2 : ép ;,ji% Py, M5, 2P, P,

(3P, for A # 1)

Lemma4.2 Lerr € {1,2,3,5}.

(a) There exists a (Cy, Sa)-packing of r K5 5 with leave L where
L=5F ifr=1orr =25,
L e {Ps, M>,2P,} ifr=2
LE{Sg,P4,P3H‘JP27M3,2P2H’JPQ,QPQ@PQ,?)PQ} lf’l’:3

(b) There exists a (Cy, Sy)-covering of r K5 5 with padding R where

R € {83, Py, P3W Py, M3,2P> ¥ Py, 2P, ® Py} ifr =1,
RE{P37M2’2P2} l'fT=2,
R:PQ l:fT:g;

R€{Sg,P4,P3H’JPQ,Mg,QPQH’JPQ,QPQ@PQ,?)PQ} ifr=>.

Proof: The proof is divided into four parts according to the value of .
Casel.r =1.

Let A1 = {a17a27a37a4} and Bl = {bl,b27b37b4}, and let H = K575[A1 U Bl] Trivially, H is
isomorphic to K4 4. By Corollary there exists a (Cy, Sy)-decomposition & of K4 4. Let & =
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2 U {(ao; b1, b2, b, by), (bo; a1, az, as,aq)}. Clearly, & is a (Cy, S4)-packing of Kj 5 with leave P :
{aobo}.

Now we give the required coverings of K5 5. Note that & U {(ao;bo,b1,b2,b3)} is a (Cy, S4)-
covering of K 5 with padding S5 : {(ao; b1,b2,b3)}, and & U {(ao, b1, a1,b0)} is a (Cy, S4)-covering
of K55 with padding P : {agbra1bp}. Without loss of generality, we assume that &7 contains a 4-star
(a4; bl, bg, bg, b4) Thus 9—{(0,0; bl, bg, bg, b4), (a4; bl, bQ, bg7 b4)}U{(CLQ, bg, ag, b4), (ao; bo, bl, b27 bg),
(a4;b0,b1,b2,b4)} 18 a (Cy, Sy)-covering of K5 5 with padding Ps & Py : {bpasbs, apbs}. In addition,
{(as, b3, aq,bs), (ag; bo, ba, b3, bs), (a1;bo, b1, b3, ba), (az; b1, b2, b, bs), (bo; ag, az,as, as), (b1; ag, a1,
as, a4), (bg; ai,az,as, a4)} is a (04, S4)—COVCI‘iIlg of K575 with paddmg M3 : {aobo, albl, agbg}, P —
{(a4; bl, bQ, b3, b4)} U {(ao, bo, ayg, b4), ((14; bo, bl, bQ, bg)} is a (04, S4)—COVCI'iI‘1g of K575 with padding
ZPQLﬂPQ : 2{b0a4}u{a0b4}, and @—{(ao; bl, bg, b3, b4), (CL4; bl, bg, b3, b4)}U{(CLO, bo, aq, b4), (Clo; b(), bl,
bQ, bg), (a4; bo, bl, bg, bg)} isa (C’47 S4)-COV€I'iI1g of K575 with paddmg 2P2 O) PQ : 2{1)00,4} U {boao}.
Case2.r = 2.

First, we use & to construct the required packings of 2K 5. Exchanging by with b; in &2, we obtain a
packing &’ of K 5 with leave agby. Let &1 = P U 2'. One can see that & is a packing of 2K 5 with
leave P5 : {bpaob; }. Next, rename the vertices ag, a1, bg, b1 in & to aq, ag, b1, by, respectively, we obtain
a packing 2" of K 5 with leave a1b;. Let P = 2 U 2", Itis easy to see that P is a packing of
2K 5 with leave My : {aobo, a1b1 }. Finally, 277 is clearly a packing of 2K 5 with leave 2P : 2{agbp }.

Now we use packings to construct the required coverings of 2K5 5. Note that 221 U{(ao; bo, b1, b2, b3) }
is a (Cy, S4)-covering of 2K 5 with padding Ps : {baaobs}, and P2 U {(ag, by, a1,b1)} is a (C4, Sq)-
covering of 2K 5 with padding M5 : {agb1, a1bo}. Moreover, 222 — {(ag; b1, bz, b3, ba), (a4; b1, b2, b3,
b4)}U{(a0, bo, a4, b4), (ao; bo, b1, bg, bg), (CL4; bo, bl, bg, bg)} isa (04, S4)-COV61‘i1’1g Of2K575 with padding
2P2 . 2{b0a4}.

Case 3. r = 3.

First, we use packings of K55 and 2K5 5 to construct the required packings of 3K5 5. Exchanging
bo with by in &2, we obtain a packing #Z of K55 with leave aobs. Hence &1 U # is a packing of
3K5 5 with leave S3 : {(ao;bo, b1,b2)}. Next, rename the vertices ag, az, b, b2 in & to as, ag, be, by,
respectively, we obtain a packing Z’ of K5 5 with leave agbe. Thus &5 U %' is a packing of 3K5 5 with
leave Mj : {agbo, a1b1, azbsy}. Note that 221 U 92" is a packing of 3K 5 with leave Py : {bpagbiay)}.
In addition, 21 U %' is a packing of 3K 5 with leave P; & Py : {boagb1} U {asbe}, 22 U %' is a
packing of 3K5 5 with leave 2P, W Py : 2{agbo} U {a2b2}, 222 U Z is a packing of 3K 5 with leave
2P, ® Py : 2{aobo} U {apba}, and 37 is clearly a packing of 3K 5 with leave 3P, : 3{aobo}.

Finally, since 3(5—4)% = 3 < 4, there exists a (C4, Sq)-covering of 3K 5 with leave P, by Lemma
Cased.r =5.

By Corollary[3.12] (Cy, Sy) | 4K5,5. Since 5K5 5 = K5 5 U 4K 5, it suffices to show that there exists
a (C4, Sy)-covering of 5K 5 with padding 3P,. Note that 5K5 5 = 2K5 5 U 3K5 5. Since 2K5 5 has a
(C4, Sq)-covering with padding 2P; : 2{bpa4} and 3K5 5 has a (C4, Sy)-covering with padding P (say
{boas}), we have the required covering. O

Lemma 4.3 Let r be a positive integer and let m be a positive odd integer with m > 5. If K, , has a
(C4, Sa)-packing (resp. (C4, Sy)-covering) with leave L (resp. padding R), then r K, 12 m+2 also has a
(Cy, S4)-packing (resp. (Cy, Sy)-covering) with leave L (resp. padding R).

Proof: Let m = 2t + 1 where ¢ is a positive integer with ¢ > 2. Let A; = {ag,a1,...,a2} and
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B, = {bo, bi,..., bgt}. Letting G = Km+2’m+2 [Al @] Bl] and G, = Km+27m+2 — E(Gl) Clearly, Gy
is isomorphic to Km’m. Note that {(a2t+17 bai, agt42, b2i+1)7 (agi, b2t+1, agi+1, b2t+2) 1 =0,1,...,t—
2} U {(a2t+1; bat—2,bar_1, bay, b2t+1)7 (G2t+2; bat—2, bar—1, bas, b2t+2)7 (52t+1; agt—2,A2t—1, A2t, a2t+2)7
(b2t+2; A2¢—2,A2¢t—1, A2, a2t+1)} is a (04, 54)-decompositi0n of GQ. Since TK77L+2,m+2 = T‘Gl @] T’GQ,
7K +2 m+2 has the required packings and coverings. O

Now, we are ready for the main result of this section.

Theorem 4.4 Let \ and n be positive integers withn > 4.
(A) A\K,, 1, has a maximum (Cy, S4)-packing with leave L if and only if

L=90 ifAn? =0 (mod 4),
L=p ifan?=1 (mod 4),
L € {Ps5, My, 2P} ifn?=2 (mod 4),
LE{Sg,P4,P3H‘JP27M3,2P2H’JP272P2®P2,3P2} lf)\TL2E (mod4)
(B) MK, ., has a minimum (Cy, S4)-covering with padding R if and only if
R=10 ifAn?=0 (mod 4),
RG{S3,P4,P3L+JP2,M3,2P2&JP2,2P2®P2} lf)\’leE (mod4)and)\:1,
RE{SS,P4,P3H’JPQ,M?”QPQH‘JPQ,QPQ@PQ,BPQ} lf)\TLZEl (m0d4)and)\25,
R e {Pg,MQ,?PQ} lf)\n2 = (mod 4),
R=P, ifIn?=3 (mod 4).

Proof: The necessity follows from the arguments above Table E} It suffices to show that AK,, , has
required packings and coverings. The result for \n? = 0 (mod 4) follows from Corollary imme-
diately. So it remains to consider the case An? = r (mod 4) for r € {1,2,3}. Note that A\n? = r
(mod 4) if and only if A = r (mod 4) andn = 1 (mod 2). When A € {1,2,3,5}, the result for
n = 5 follows from Lemma[.2] and the result for n > 5 can be obtained by using Lemma.3|recursively.
Now consider A = (mod 4) and A > 5. Note that \K,, ,, = 7K, , U(A—7) K}, . Since (A —7) K,
is (C4, S4)-decomposable by Corollary [3.12] we have the result. .
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