
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 17:1, 2015, 309–316

Output sensitive algorithms for covering many points∗

Hossein Ghasemalizadeh† Mohammadreza Razzazi‡

SSRD Lab, Computer Engineering and Information technology dep., Amirkabir Univ. of technology, Tehran, Iran

received 10th Nov. 2012, revised 10th Oct. 2014, accepted 27th Mar. 2015.

In this paper we devise some output sensitive algorithms for a problem where a set of points and a positive integer,m,
are given and the goal is to cover a maximal number of these points withm disks. We introduce a parameter, ρ, as the
maximum number of points that one disk can cover and we analyse the algorithms based on this parameter. At first,
we solve the problem form = 1 inO(nρ) time, which improves the previousO(n2) time algorithm for this problem.
Then we solve the problem form = 2 inO(nρ+ρ3 log ρ) time, which improves the previousO(n3 logn) algorithm
for this problem. Our algorithms outperform the previous algorithms because ρ is much smaller than n in many cases.
Finally, we extend the algorithm for any value of m and solve the problem in O(mnρ + (mρ)2m−1 logmρ) time.
The previous algorithm for this problem runs in O(n2m−1 logn) time and our algorithm usually runs faster than the
previous algorithm because mρ is smaller than n in many cases. We obtain output sensitive algorithms by confining
the areas that we should search for the result. The techniques used in this paper may be applicable in other covering
problems to obtain faster algorithms.

Keywords: covering with disks, output sensitive algorithm, computational geometry

1 Introduction
In the classic covering problem, a set of points are given, and the goal is to determine the minimum num-
ber of unit radius disks required to cover all of the points. This problem is NP-Hard [1] . In the maximum
covering problem, the number of unit radius disks to be used is given as m, and the goal is to cover the
most points possible. We call this problem MostPoints(P,m). This problem is NP-Hard if we con-
sider m as a generalized input because the classic covering problem can be solved by iteratively solving
MostPoints(P,m) to reach the minimum value of m such that m unit disks cover all points.
MostPoints(P, 1) was first introduced by Drezner [2], and he solved it inO(n2 log n) time. To solve the
problem, he replaced every point with a disk centered at that point and obtained the maximum depth in the
arrangement of disks. Later, Chazelle and Lee [3] solved MostPoints(P, 1) in O(n2) time. Aronov and
Har-Peled [5] showed that MostPoints(P, 1) is a 3-SUM hard problem, which means that, the problem
belongs to a class of problems for which no sub-quadratic algorithms are known [4]. However, some
approximation algorithms have been given. In [5], Aronov and Har-peled gave a (1 − ε)-approximation

∗This research was in part supported by a grant from IPM (No. CS1391-4-16)
†Email: ghasemalizadeh@aut.ac.ir
‡Corresponding author email: razzazi@aut.ac.ir

1365–8050 c© 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm17:1ind.html

310 Hossein Ghasemalizadeh, Mohammadreza Razzazi

algorithm for the number of covered points and it runs in O(nε−2 log n) time. Figueiredo and Fonesca
[6] solved a different version of the MostPoints(P, 1) problem: Given a set of n points with positive
real weights in d-dimensional space, they consider an approximation to the problem of placing a unit ball,
such that the sum of the weights of the points enclosed by the ball is maximized. Given an approximation
parameter ε < 1, they presented anO(n

εd−1) expected time algorithm that determines a ball of radius 1+ε
enclosing a weight at least as large as the weight of the optimal unit ball.
As stated before, MostPoints(P,m) for m > 1, is NP-Hard . Trivial greedy algorithm is a (1 − 1

e)-
approximation algorithm for it [7]. The greedy algorithm first finds a disk that covers a maximal number
of points inO(n2) time. To pick up the second disk, it removes the points located in the first disk and finds
the disk that covers a maximal number of points. It repeats this process until m disks are picked up. This
yields a (1− 1

e)-approximation algorithm that runs inO(mn2) time. The first (1−ε)-approximation algo-
rithm for this problem was given in [8] that runs inO(n log n+nε−6m+6 log(1ε)) time. We present a poly-
nomial time approximation schema for this problem in [9], which runs inO((1+ε)mn+ε−1n4

√
2ε−1+2)

time.

The trivial method to optimally solve MostPoints(P,m) is to consider all subsets of size m of n2

possible disks and find the subset that covers the most number of points. This method takes O(n2m) time.
In [8], de Berg et al. gave an improved algorithm for this problem. They first solved the problem for
m = 2 in O(n3 log n) time. To solve the problem for m > 2, they fixed every subset of m − 2 disks,
and they found the best two disks after removing the points contained in the m − 2 disks. This takes
O(n2m−1 log n) time. We call this algorithm, MostPointsBCH .
In Section 2, we present an output sensitive algorithm for the MostPoints(P, 1) problem, which runs in
O(nρ) time, where ρ is the maximum number of points that one disk can cover. In Section 3 we devise
an algorithm for the MostPoints(P, 2) problem, which runs in O(nρ + ρ3 log ρ) time. In Section 4 we
extend the algorithm for MostPoints(P,m) and in Section 5 we conclude the paper.

2 Output sensitive algorithm for MostPoints(P,1)
Consider ρ as the maximum number of points that one disk can cover in the point set P of n points. In this
section, we devise an algorithm for MostPoints(P, 1) that solves the problem in O(nρ) time. Chazzle
and Lee [3] provide the best known algorithm for this problem, which solves the problem in O(n2) time,
and we refer to it as the MostPointsCL algorithm. Now we explain our algorithm.
Consider the bounding box of P and extend to the left two units and then down two units. Draw a 4 × 4
cell-sized grid on this bounding box and call it Go. Shift Go two units upward and call the new grid Gu.
Shift Go two units to the right and call the new grid Gr. Shift Gu two units to the right and call the new
grid Gur. One can see that for any unit disk d there is a grid G ∈ {Go, Gu, Gr, Gur} such that d is fully
contained in a single cell of G as shown in Figure 1.

Now, for each non-empty grid cell C of every grid, compute the optimal disk on the set of points lying
inside C using the MostPointsCL algorithm. C contains at most cρ points for a constant value c ≤ 9,
as shown in Figure 2, and the time spent for cell C is O(|C|2), where |C| denotes the number of points in
C. The total number of points over all cells C is 4n, since each point is contained in exactly one cell per
grid. Assume that we have l cells in the grids. To obtain the running time of the algorithm, we sum the

Output sensitive algorithms for covering many points 311

Fig. 1: Every unit disk is fully contained in a single cell of a grid G ∈ {Go, Gu, Gr, Gur}.

Fig. 2: Every 4× 4 square can be covered by at most 9 unit disks.

running time of the algorithm on all cells of the grids. The total running time of the algorithm is:

l∑
i=1

|Ci|2 ≤
l∑

i=1

|Ci| × 9ρ ≤ 9ρ× 4n = O(ρn)

We call this algorithm MostPointsShiftedGrids(P), which solves the MostPoints(P, 1) problem in
O(nρ) time.

3 Output sensitive algorithm for MostPoints(P,2)
In this section, we describe our algorithm for MostPoints(P, 2). Define g1 as one of the disks that
covers a maximal number of points from the point set P . Define g2 as one of the disks that covers a

312 Hossein Ghasemalizadeh, Mohammadreza Razzazi

Fig. 3: This figure shows the greedy solution and the optimal solution for MostPoints(P, 2) in a sample point set.
In this example, the greedy algorithm returns g1 and g2 which cover 15 points together, whereas the disks in the
optimal solution, the two disks specified with dashed lines, cover 18 points together.

maximal number of points after removing the points located in g1. g1 and g2 can be obtained using the
MostPointsShiftedGrids algorithm of Section 2. g1 and g2 are the result of the greedy algorithm for
MostPoints(P, 2). An example is given in Figure 3. In this example, the optimal solution covers 18
points, whereas the greedy algorithm covers 15 points. As illustrated in this example, the two disks of the
optimal solution have common points with g1. Intuitively, either the disks of the optimal solution have
common points with g1 or the greedy algorithm obtains the optimal solution. Lemma 1 proves this claim.
By the best two disks, we mean the optimal solution for MostPoints(P, 2). Let D be a set of disks.
The function Cover(D) denotes the set of points covered by the disks in D and |Cover(D)| refers to the
number of these points.

Lemma 1 Let g1 be one of the disks that covers a maximal number of points in the point set P and g2 be
one of the disks that covers a maximal number of points after removing the points located in g1. Let o1
and o2 be the two disks that together cover a maximal number of points among any combination of two
disks. Either both o1 and o2 have common points with g1, or g1 and g2 cover a maximal number of points.

Proof: Suppose that at least one of o1 and o2, say o2, does not have any common point with g1. Then,
we have |Cover({g1, g2})| ≥ |Cover({g1, o2})|, because g2 covers a maximal number of points of the
points not covered by g1. We also have |Cover({g1, o2})| ≥ |Cover({o1, o2})| because g1 covers at least
the same number of points as o1 (since it is a disk that covers the maximum number of points) and g1 does
not have any point in common with o2. Thus |Cover({g1, g2})| ≥ |Cover({o1, o2})|, which implies that
the total number of the points covered by g1 and g2 is maximal. 2

Based on Lemma 1, we should look for the best two disks in the disks that have common points with
g1. All such disks are contained within a circle having the same center as g1 and a radius of 3. We call
this region Ng1 as shown on the left side of Figure 4. Lemma 2 bounds the number of points in Ng1.

Lemma 2 Let ρ be the maximum number of points that can be covered by a disk. The number of points
in Ng1 is O(ρ).

Proof: We can cover Ng1 with at most 16 unit disks. We can divide Ng1 into four quarters and each
quarter can be covered with four disks as shown on the right side of Figure 4. To cover each quarter,
consider four points with equal distance, located on the perimeter of each quarter. Every two points out of
these four points determines one disk center inside the quarter. This gives us the centers of three disks out

Output sensitive algorithms for covering many points 313

Fig. 4: The disks which have common points with g1 are located in a disk with the same center as g1 and a radius of
3, which is shown on the right side of this figure. We call this region Ng1. We can cover the Ng1 region with at most
16 unit disks as depicted in the left side of this figure.

of these four disks. The fourth disk cuts through the center of the quarter and the intersections of the first
disk and last disk with the edges of the quarter. Every one of these disks covers no more than ρ points. So
the number of points in Ng1 is at most 16ρ points, which is O(ρ) points. 2

Using Lemma 1 and Lemma 2, the best two disks can be g1 and g2, or the two disks around g1 that
cover a maximal number of points. To find the best two disks in P , first we find g1 and g2 in O(nρ)
time. Then, we determine the points in Ng1, and we run MostPointsBCH [8] on the points located
in Ng1. This algorithm obtains the best two disks in Ng1, in O(ρ3 log ρ) time. Finally, we compare the
best two disks in Ng1 with g1 and g2 and consider the one that covers more points as the optimal solution
for MostPoints(P, 2). Since ρ can be much smaller than n in practice, our algorithm which runs in
O(nρ+ ρ3 log ρ) time, is an improvement over the algorithm of [8] that runs in O(n3 log n) time.

4 The algorithm for MostPoints(P,m)
The algorithm of Section 3 can be extended to cover the maximum number of points with m disks.
From now on, by the best j disks, we mean a set of j disks that cover the maximum number of points.
The proposed algorithm is an iterative algorithm and uses the following fact, which will be proven in
Lemma 3: the best j disks are among the disks that have some common points with the best j − 1 disks;
otherwise, the best j − 1 disks plus one disk that covers a maximal number of points after removing the
points located in the best j − 1 disks, are the best j disks. The algorithm starts from j = 2 and repeats
this process until the bestm disks are found. We call this algorithmMostPointsIterative(P,m), which
returns a set of m disks that cover the maximum number of points in the point set P . In this algorithm we
use MostPointsBCH(Q, j) to refer to the algorithm of [8], which returns a set of j disks that cover a
maximal number of points in the point set Q. We also use MostPointsShiftedGrids(P) to refer to the
algorithm of Section 2 for covering the maximum number of points with one disk in the point set P . Let

314 Hossein Ghasemalizadeh, Mohammadreza Razzazi

D be a set of unit disks. As stated before, Cover(D) refers to the points covered by the disks in D. We
also define Neighbour(D) as the points in the disks with the same centers as the disks in D and a radius
of 3. Let OPTi denote the best i disks. The outline of the algorithm is as follows:

Algorithm 1 MostPointsIterative(P,m)

Require: A set P of n points in the plane, and a positive integer m
g1 =MostPointsShiftedGrids(P)
OPT1 = g1
for i = 2 to m do
rp = P − Cover(OPTi−1)
gi =MostPointsShiftedGrids(rp)
Oi =MostPointsBCH(Neighbor(OPTi−1), i)
if |Cover(OPTi−1 ∪ gi)| > |Cover(Oi)| then
OPTi = OPTi−1 ∪ gi

else
OPTi = Oi

end if
end for
return OPTm

In Lemma 3 we prove the correctness of the above algorithm.

Lemma 3 The MostPointsIterative algorithm obtains m disks that cover the maximum number of points.

Proof: We prove the correctness of the algorithm by induction on the number of iterations. Assume that
at the end of iteration i we have correctly computed OPTi. Consider OPTi+1, which consists of i + 1
disks. These disks may or may not have common points with Cover(OPTi). We consider both cases. In
case 1 we consider that all i+ 1 disks of OPTi+1 have common points with Cover(OPTi), and in case
2 we consider that some of these i disks do not have any common point with Cover(OPTi).

Case1: All i+ 1 disks of OPTi+1 have common points with Cover(OPTi):

All disks that have common points with Cover(OPTi), have all points in Neighbour(OPTi) (refer
to the definition of the Neighbour function) . In line 6, the algorithm obtains the best i + 1 disks in the
points of Neighbour(OPTi) using MostPointsBCH . So, in this case, the algorithm exactly computes
OPTi+1.
Case 2: Some of the disks in OPTi+1 do not have any common point with Cover(OPTi):

Consider that F ∈ OPTi+1 is a disk that does not have any common point with Cover(OPTi) . We
can partition OPTi+1 into {OPTi+1 − F} and F . By the definition of the Cover function, we have the
following equation:

OPTi+1 = {OPTi+1 − F} ∪ {F}
|Cover(OPTi+1)| ≤ |Cover(OPTi+1 − F)|+ |Cover(F)| (1)

Output sensitive algorithms for covering many points 315

{OPTi+1 − F} is a set of i disks. As OPTi is a set of i disks that covers a maximal number of points,
we have:

|Cover(OPTi+1 − F)| ≤ |Cover(OPTi)| (2)

Furthermore, gi+1 is the disk that covers a maximal number of points after removing the points in
Cover(OPTi). Therefore, gi+1 covers a maximal number of points among the disks that have no common
points with OPTi. Thus, we have:

|Cover({F})| ≤ |Cover(gi+1)| (3)

By adding up two sides of inequality (2) and inequality (3) we have:

|Cover({OPTi+1 − F})|+ |Cover({F})| ≤ |Cover(OPTi)|+ |Cover(gi+1)| (4)

From (1) and (4) we have:

|Cover(OPTi+1)| ≤ |Cover(OPTi)|+ |Cover(gi+1)|

Thus in case 2, OPTi and gi+1 cover the maximum number of points.
The algorithm compares the result of case 1 with the result of case 2, and considers the best one as
OPTi+1. So, the algorithm correctly computes OPTi+1. The base case, i = 1, is correct and can be
satisfied using the MostPointsShiftedGrids(P) algorithm of Section 2. 2

Lemma 4 obtains the running time of the MostPointsIterative algorithm.

Lemma 4 The MostPointsIterative algorithm runs in O(mnρ+ (mρ)2m−1 logmρ) time.

Proof:
The algorithm runs inm iterations. At the start of the iteration i, we have found the best i−1 disks, and

we are trying to find the best i disks. To find the best i disks, we obtain gi in line 5, which takes O(nρ)
time. We also look for the i disks covering the maximum number of points in Neighbour(OPTi−1), in
line 6. Neighbour(OPTi−1) consists of i− 1 disks, and based on Lemma 2, the neighbourhood of each
disk can be covered with at most 16 disks. So the maximum number of points in Neighbour(OPTi−1)
is 16ρ(i − 1), which is O(iρ) points. We search for the i disks that cover the maximum number of
points in O(iρ) points. MostPointsBCH is applied on these points, which takes O((iρ)2i−1 log(iρ))
time. The algorithm runs in m iterations, so the running time is bounded by O(nρ) +

∑m
i=2(O(nρ) +

(iρ)2i−1 log(mρ)), which is O(mnρ+ (mρ)2m−1 log(mρ)). 2

5 Conclusion and future works
In this paper we present two exact output sensitive algorithms for the problem of covering many points. In
the first algorithm, for covering many points with one disk, we use shifted grids to confine the search area
to several 4× 4 squares. Each 4× 4 square contains at most 9ρ points, where ρ is the maximum number
of points that one disk can cover. The overall running time of the algorithm on all squares becomes
O(nρ), which in many cases improves the O(n2) running time of the best previous known algorithm for
this problem. In the second algorithm, for covering many points with m disks, we confine the regions

316 Hossein Ghasemalizadeh, Mohammadreza Razzazi

in which the resultant disks may reside using the greedy algorithm, and we search in these regions only.
This leads to an output sensitive algorithm for this problem which runs in O(mnρ + (mρ)2m−1 logmρ)
time. This algorithm improves theO(n2m−1 log n) running time of the previous algorithm[8], in the cases
where mρ is smaller than n.
Our algorithm can be improved by improving the running time of the algorithm in [8]. If some better
algorithms for covering the most points with two disks are found, the running time of our algorithm
and the algorithm of [8] will improve. Furthermore, by considering ρ as a parameter and using similar
techniques, it may be possible to improve the running time of other covering algorithms.

6 Acknowledgement
We thank the referees for their helpful comments, which improved the paper structure and content. The
authors also would like to thank ’Institute for Research in Fundamental sciences’ (IPM) for their support
of this project.

References
[1] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto Optimal packing and covering in the plane are

NP-complete Information Processing Letters, 3(12):133-137, 1981.

[2] Z. Drezner On a modified one-center model. Management Science, 27(7):848-851, 1981.

[3] B. M. Chazelle and D. T. Lee On a circle placement problem. Computing, 36(1):1-16, 1986.

[4] A. Gajentaan and M. H. Overmars On a class of O(n2) problems in computational geometry. Com-
putational Geometry, 5(3):165-185, 1995.

[5] B. Aronov and S. Har-Peled On approximating the depth and related problems. Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, 886-894, 2005.

[6] C. M. H. de Figueiredo and G. D. da Fonseca Enclosing weighted points with an almost-unit ball
Computational Geometry, 109(21-22):1216-1221, 2009.

[7] D. S. Hochbaum and A. Pathria Analysis of the greedy approach in problems of maximum k-
coverage. Naval Research Logistics, 45(6):615-627, 1998.

[8] M. de Berg, S. Cabello, and S. Har-Peled Covering many or few points with unit disks. Theory of
Computing Systems, 45(3):446-469, 2009.

[9] H. Ghasemalizadeh and M. Razzazi An Improved Approximation Algorithm for the Most Points
Covering Problem. Theory of Computing Systems, 50(3): 545-558, 2012.

	Introduction
	Output sensitive algorithm for MostPoints(P,1)
	Output sensitive algorithm for MostPoints(P,2)
	The algorithm for MostPoints(P,m)
	Conclusion and future works
	Acknowledgement

