
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 17:1, 2015, 357–368

On the Hausdorff measure of regular
ω-languages in Cantor space∗

Ludwig Staiger

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, Germany

received 14th Apr. 2014, revised 1st Apr. 2015, 5th May 2015, accepted 5th May 2015.

This paper deals with the calculation of the Hausdorff measure of regular ω-languages, that is, subsets of the Cantor
space definable by finite automata. Using methods for decomposing regular ω-languages into disjoint unions of parts
of simple structure we derive two sufficient conditions under which ω-languages with a closure definable by a finite
automaton have the same Hausdorff measure as this closure.

The first of these condition is related to the homogeneity of the local behaviour of the Hausdorff dimension of the
underlying set, and the other with a certain topological density of the set in its closure.
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Regular ω-languages are not only famous because they are definable by finite automata but also because
they are the ones definable in Büchi’s [Büc62] restricted monadic second order arithmetic (cf. the survey
[Tho90] or [PP04]).

Hausdorff dimension and Hausdorff measure for regular ω-languages have been proved to be com-
putable (cf. [Ban89, MW88, Edg08] or [MS94, Sta98a]). The computation of the Hausdorff measure
of a regular ω-language uses several properties which do not hold for larger classes of ω-languages (cf.
[Sta93, MS94, Sta98b]). These properties show that subsets of the Cantor space definable by finite au-
tomata really deserve the name “regular”.

For instance, Theorem 21 of [MS94] shows a strong connection of Hausdorff dimension and topological
density for regular ω-languages closed in Cantor space, and the measure-category-theorem of [Sta98b]
shows that this connection can be extended to arbitrary regular ω-languages.

Our investigations relate the Hausdorff measure of a subset of the Cantor space to the Hausdorff mea-
sure of its closure. The result in Section 4.1 shows that under a certain homogeneity condition the measure
of a regular ω-language coincides with the measure of its closure. The proof uses the decomposition the-
orem of [Sta98a] which is based on McNaughton’s theorem [McN66] and extends in some sense earlier
decompositions of [Arn83], [SW74] and [Wag79](i). In our paper the decomposition is directed to a
partition of the set of final sets (the table) T of a Muller automaton A accepting a given ω-language

∗The results of this paper were presented at the Dagstuhl-Seminar “Topological and Game-Theoretic Aspects of Infinite Com-
putations”, Schloß Dagstuhl, 29.06. - 04.07.2008. A preliminary version appeared in [Sta14].
(i) See also a more recent algebraic decomposition in [PP04, Chapter II, Theorem 9.3].
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F = Lω(A) into the ones contributing to the Hausdorff measure and the ones not contributing. Crucial
for this partition is the fact that only those final sets in T maximal w.r.t. set inclusion can contribute to the
Hausdorff measure of the accepted ω-language.

Another result (in Section 4.2) is a sufficient condition under which infinite intersections of regular
ω-languages topologically large relative to its closure have the same Hausdorff measure as their closure.
Here, for the case of finite measure, we rely on the measure-category theorem derived in [Sta98b, The-
orem 4] (see also [VV06, Section 4.4]). The extension to sets of infinite measure requires the closer
inspection of regular ω-languages closed in Cantor space as given in Section 3.3.

The paper is organised as follows. After introducing some notation in Section 2 several properties
of Hausdorff measure and dimension are listed. Then the third section deals with decompositions of
regular ω-languages derived from the accepting automata. This concerns the general decomposition as
in [Sta98a], a new decomposition according to non-null Hausdorff measure and the decomposition of
closed sets mentioned above. Then in Section 4 we derive the results on the coincidence of the Hausdorff
measures of ω-languages of a certain shape and their closures.

1 Notation
In this section we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .} we denote the
set of natural numbers. Its elements will be usually denoted by letters i, . . . , n. Let X be an alphabet of
cardinality |X| = r ≥ 2. Then X∗ is the set of finite words on X , including the empty word e, and Xω is
the set of infinite strings (ω-words) over X . Subsets of X∗ will be referred to as languages and subsets of
Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation product extends
in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω . For a language W let W ∗ :=

⋃
i∈NW

i, and
Wω := {w1 · · ·wi · · · : wi ∈ W \ {e}} be the set of infinite strings formed by concatenating non-empty
words in W . Furthermore, |w| is the length of the word w ∈ X∗ and pref(B) is the set of all finite
prefixes of strings in B ⊆ X∗ ∪Xω . We shall abbreviate w ∈ pref({η}) (η ∈ X∗ ∪Xω) by w v η.

As usual, we consider Xω as a topological space (Cantor space). The closure (smallest closed set
containing F ) of a subset F ⊆ Xω, C(F ), is described as C(F ) := {ξ : pref({ξ}) ⊆ pref(F )}. The
open sets in Cantor space are the ω-languages of the form W ·Xω .

We assume the reader to be familiar with the basic facts of the theory of regular languages and finite
automata. We postpone the definition of regularity for ω-languages to Section 3. For more details on
ω-languages and regular ω-languages see the book [PP04] or the survey papers [Sta97, Tho90].

2 Hausdorff Dimension and Hausdorff Measure
First, we shall describe briefly the basic formulae needed for the definition of Hausdorff dimension and
Hausdorff measure. For more background and motivation see Section 1 of [MS94].

We recall the definition of the Hausdorff measure and Hausdorff dimension (see [Edg08, Fal90]) of a
subset ofXω . In the setting of languages and ω-languages this can be read as follows (see [Sta93, Sta98a]).
For F ⊆ Xω , r = |X| ≥ 2 and 0 ≤ α ≤ 1 the equation

Lα(F ) := lim
l→∞

inf
{∑
w∈W

r−α·|w| : F ⊆W ·Xω ∧ ∀w(w ∈W → |w| ≥ l)
}

(1)
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defines the α-dimensional metric outer measure on Xω .
The measure Lα satisfies the following properties (see [Edg08, Fal90, MS94]).

Proposition 1 Let F ⊆ Xω , V ⊆ X∗ and α ∈ [0, 1].

1. If Lα(F ) <∞ then Lα+ε(F ) = 0 for all ε > 0.

2. If F ⊆
{
ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ V

}
and

∑
v∈V r

−α·|v| <∞ then Lα(F ) = 0.

3. It holds the scaling property Lα(w · F ) = r−α·|w| · Lα(F ).

4. If V is prefix-free then Lα(F ∩ V ·Xω) =
∑
w∈V Lα(F ∩ w ·Xω).

Then the Hausdorff dimension of F is defined as

dimF := sup{α : α = 0 ∨ Lα(F ) =∞} = inf{α : Lα(F ) = 0} .

It should be mentioned that dim is countably stable and invariant under scaling, that is, for Fi ⊆ Xω we
have

dim
⋃
i∈N Fi = sup{dimFi : i ∈ N} and dimw · F0 = dimF0 . (2)

In particular, every at most countable subset E ⊆ Xω has Hausdorff dimension dimE = 0, and the
measure L0 is the counting measure, that is, L0(E) = |E| if E is finite and L0(E) =∞, otherwise.

Hausdorff dimension and measure need not be distributed uniformly on a set. In order to describe a
certain homogeneity we use the following concept (cf. [MS94, Section 4]). We say that an ω-language F
has locally positive α-dimensional measure provided Lα(F ∩ w ·Xω) > 0 for all w ∈ pref(F ). Then
the following technical result is true.

Proposition 2 Let F ⊆ Xω have dimF = α, Lα(F ) <∞ and locally positive α-dimensional measure.
If F ′ ⊆ F and Lα(F ′) = Lα(F ) then pref(F ′) = pref(F ) and, consequently, C(F ′) = C(F ).

Proof: First observe that F ′ ⊆ F implies Lα(F ′ ∩ w · Xω) ≤ Lα(F ∩ w · Xω) for all w ∈ X∗.
Then the general identity (see Proposition 1.4) Lα(E) =

∑
w∈Xn Lα(E ∩ w · Xω) and the hypothesis

Lα(F ′) = Lα(F ) <∞ imply Lα(F ′ ∩ w ·Xω) = Lα(F ∩ w ·Xω).
Obviously, pref(F ′) ⊆ pref(F ). Let now w ∈ pref(F ). Then Lα(F ∩ w ·Xω) > 0 which in view

of Lα(F ′ ∩ w ·Xω) = Lα(F ∩ w ·Xω) implies w ∈ pref(F ′). 2

We add a further relation of the Hausdorff dimension and the measure Lα for ω-languages of a special
shape.

Proposition 3 Let α = dimWω . Then Lα(Wω) ≤ 1, and if, moreover, Lα(Wω) > 0 then Wω has
locally positive α-dimensional measure.

Proof: The first part is Proposition 6.6 of [Sta93]. Let w ∈ pref(Wω). Then there is a v ∈ X∗ such that
wv ∈W ∗, and, consequently wv ·Wω ⊆Wω∩w ·Xω . Now Proposition 1.3 yields 0 < Lα(wv ·Wω) ≤
Lα(Wω ∩ w ·Xω). 2
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3 Decomposition of Regular ω-languages
As usual we call a languageW ⊆ X∗ regular if there is a finite (deterministic) automatonA = (X;S; s0; δ),
where S is the finite set of states, s0 ∈ S is the initial state and δ : S×X → S is the transition function(ii),
such that W = {w : δ(s0;w) ∈ S′} for some fixed set S′ ⊆ S.

An ω-language F ⊆ Xω is called regular provided there are a finite (deterministic) automaton A =
(X;S; s0; δ) and a table T ⊆ {S′ : S′ ⊆ S} such that for ξ ∈ Xω it holds ξ ∈ F if and only if
Inf(A; ξ) ∈ T where Inf(A; ξ) is the set of all states s ∈ S through which the automatonA runs infinitely
often when reading the input ξ. Observe that S′ = Inf(A; ξ) holds for a subset S′ ⊆ S if and only if

1. there is a word u ∈ X∗ such that δ(s0;u) ∈ S′, and

2. for all s, s′ ∈ S′ there are non-empty words w, v ∈ X∗ such that δ(s, w) = s′ and δ(s′, v) = s.

Such sets were referred to as essential sets [Wag79] or loops [Sta97, Section 5.1].
Thus, to ease our notation, unless stated otherwise in the sequel we will assume all automata to be

initially connected, that is, S = {δ(s0;w) : w ∈ X∗} and the tables T to be contained in the set of loops
{Inf(A; ξ) : ξ ∈ Xω}.

The ω-language F = {ξ : Inf(A; ξ) ∈ T } is the disjoint union of all sets FS′ = {ξ : Inf(A; ξ) = S′}
where S′ ∈ T .

We are going to split F into smaller mutually disjoint parts. Let A = (X;S; s0; δ) be fixed. We refer
to a word v ∈ X∗ as (s;S′)-loop completing if and only if

1. v is not the empty word,

2. δ(s, v) = s and {δ(s, v′) : v′ v v} = S′, and

3. {δ(s, v′) : v′ v v′′} ⊂ S′ for all proper prefixes v′′ @ v with δ(s, v′′) = s.

and we call a word w ∈ X∗ (s;S′)-loop entering provided

1. δ(s0;w) = s and

2. if w = w′ · x for some x ∈ X then δ(s0;w′) /∈ S′.

3.1 The general case
Denote by V(s;S′) the set of all (s;S′)-loop completing words and by W(s;S′) the set of all (s;S′)-loop
entering words. Both languages are regular and constructible from the finite automatonA = (X;S; s0; δ).
Moreover, V(s;S′) is prefix-free, whereasW(s;S′) need not be so. Nevertheless, every ξ ∈ FS′ has a unique
representation ξ = w · v1 · · · vi · · · where w ∈W(s;S′) and vi ∈ V(s;S′). Here the state s ∈ S′ is uniquely
determined as the state succeeding the last state ŝ /∈ S′ in the sequence (δ(s0;u))u@ξ. Thus we obtain the
following (see [Sta98a, Lemma 3]).

Lemma 4 (Decomposition Lemma) Let A = (X;S; s0; δ) be a finite automaton, T ⊆ {Inf(A; ξ) : ξ ∈
Xω} be a table and let F = {ξ : Inf(A; ξ) ∈ T }. Then

F =
⋃

S′∈T

⋃
s∈S′

⋃
w∈W(s;S′)

w · V ω(s;S′) , (3)

and the sets w · V ω(s;S′) are pairwise disjoint.

(ii) We use the same symbol δ to denote the usual extension of the function δ to S ×X∗.
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As an immediate consequence of the Decomposition Lemma we obtain that every regular ω-language has
the form

⋃n
i=1Wi · V ωi where Wi, Vi are regular languages (see [Büc62, PP04, Sta97] or [Tho90]). The

converse is also true, that is, if W ⊆ X∗ and F,E ⊆ Xω are regular then also Wω,W · E and E ∪ F
are regular ω-languages. Note, however, that the representation of Eq. (3) is much finer, since it splits
a regular ω-language F =

⋃n
i=1Wi · V ωi into mutually disjoint parts w · V ωi , w ∈ Wi, i ∈ {1, . . . , n},

where, additionally, the languages Vi are prefix-free.

3.2 Decomposition according to Hausdorff measure
Next we are going to construct, depending on the automaton A = (X;S; s0; δ), a subset F ′ of the set F
in Eq. (3) on which the Hausdorff measure Lα is concentrated. To this end we need some properties of
the measure Lα for regular ω-languages.

Since regular ω-languages are Borel sets in Cantor space (cf. [Sta97, Tho90]), Lα is not only an outer
measure but a measure on the class of regular ω-languages. Thus we have the following (cf. [Fal86]).

Proposition 5 If (Fi)i∈N is a family of mutually disjoint regular ω-languages then Lα
(⋃

i∈N Fi
)

=∑
i∈N Lα(Fi).

Moreover, the following are shown in [Sta93] and [MS94].

Proposition 6 ([Sta93, Theorem 4.7]) If F ⊆ Xω is a non-empty regular ω-language and α = dimF
then Lα(F ) > 0.

Proposition 7 ([Sta93, Theorem 4.6],[MS94, Theorem 6]) Let V ⊆ X∗ be regular and prefix-free. Then
Lα(V ω) = Lα(C(V ω)).

From Eq. (3), Proposition 5 and Proposition 1.3 we obtain a formula for the Hausdorff measure Lα(F )
of F :

Lα(F ) =
∑

S′∈T

∑
s∈S′

(
∑

w∈W(s;S′)
r−α·|w|) · Lα(V ω(s;S′)) . (4)

The following lemma shows that several of the sets w · V ω(s;S′) do not contribute to the measure Lα(F ) of
F .

Proposition 8 Let A = (X;S; s0; δ) be a finite automaton and V(s;S′) 6= ∅. Then S′′ ⊂ S′ implies
V ω(s;S′′) ⊆ C(V

ω
(s;S′)).

Moreover, we have Lα(V ω(s;S′′)) = 0 for α = dimV ω(s;S′) .

Proof: To prove the first assertion it suffices to show pref(V ω(s;S′′)) ⊆ pref(V ω(s;S′)).
Let As := (X;S; s; δ). Then ζ ∈ V ω(s;S′) if and only if Inf(As; ζ) = S′ and {δ(s, u) : u @ ξ} ⊆ S′.

Consequently, for v ∈ V ∗(s;S′′) and ξ ∈ V ω(s;S′) we have Inf(As; v · ξ) = S′ whence V ∗(s;S′′) · V
ω
(s;S′) =

V ω(s;S′) and thus pref(V ω(s;S′′)) ⊆ pref(V ω(s;S′)).
As V ω(s;S′′) and V ω(s;S′) are disjoint subsets of C(V ω(s;S′)) the second assertion follows from the first one

and Proposition 7. 2

Proposition 8 shows that for an ω-language F accepted by an automaton A = (X;S; s0; δ) and a table
T ⊆ {Inf(A; ξ) : ξ ∈ Xω} the measure Lα(F ) for α = dimF is concentrated only on subsets w ·V ω(s,S′)
for which S′ is maximal w.r.t. set inclusion in T .

If α = dimF and we choose among the maximal sets S′ ∈ T those for which Lα(w · V ω(s;S′)) > 0 we
eliminate all sets w · V ω(s;S′) with Lα(w · V ω(s;S′)) = 0 in Eq. (3) and obtain the following.
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Theorem 9 Let A = (X;S; s0; δ) be a finite automaton, T ⊆ {Inf(A; ξ) : ξ ∈ Xω} be a table,
F = {ξ : Inf(A; ξ) ∈ T } and α = dimF .

If S := {S′ : S′ ∈ T ∧ ∃s(s ∈ S′ ∧ Lα(V ω(s,S′)) > 0)} the ω-language F ′ = {ξ : Inf(A; ξ) ∈ S}
satisfies F ′ ⊆ F and Lα(F ) = Lα(F ′).

Moreover, the ω-language F ′ has a decomposition

F ′ =
⋃

S′∈S

⋃
s∈S′

⋃
w∈W(s;S′)

w · V ω(s;S′) , (5)

where Lα(w · V ω(s;S′)) > 0 for all sets w · V ω(s;S′) .

3.3 The case of closed ω-languages
In [SW74, Wag79] it was observed that the tables T of finite automataA = (X;S; s0; δ) accepting regular
ω-languages closed in Cantor topology have the following simple structure.

Lemma 10 Let A = (X;S; s0; δ) be an initially connected finite automaton and let T ⊆ {Inf(A; ξ) :
ξ ∈ Xω} be a table such that the ω-language F = {ξ : Inf(A; ξ) ∈ T } is closed. Then T satisfies the
following properties.

1. If S′ ∈ T , S′′ ∈ {Inf(A; ξ) : ξ ∈ Xω} and S′ ∩ S′′ 6= ∅ then S′ ∪ S′′ ∈ T .

2. If S′ ∈ T , S′′ ∈ {Inf(A; ξ) : ξ ∈ Xω} and δ(s′′, v) ∈ S′ for some s′′ ∈ S′′ and v ∈ X∗ then
S′′ ∈ T .

Informally speaking, Condition 1 of Lemma 10 shows that the table T is fully determined by the automa-
ton A and its strongly connected components (SCCs), that is, subsets S′ ∈ T satisfying the condition
∀s∀s′(s, s′ ∈ S′ → ∃w∃v(w 6= e 6= v ∧ δ(s, w) = s′ ∧ δ(s′, v) = s)). In connection with Proposition 8
one observes that strongly connected components are maximal sets in {Inf(A; ξ) : ξ ∈ Xω}.

Condition 2 implies that we can partition the set of states into an accepting part S+ := {s : ∃S′∃v(S′ ∈
T ∧ v ∈ X∗ ∧ δ(s, v) ∈ S′)} and a rejecting part S− := S \ S+ such that F = {ξ : Inf(A; ξ) ⊆ S+}.

As we shall see in the following theorem among the strongly connected components S′ ⊆ S+ the
terminal ones play a special rôle. A similar observation was made in [MS94, Section 3] in connection
with the calculation of the Hausdorff measure of closed regular ω-languages. Here we call a strongly
connected component S′ ∈ T terminal in T provided δ(s, v) ∈ S′ or δ(s, v) ∈ S− for s ∈ S′ and
arbitrary v ∈ X∗.
Theorem 11 Let A = (X;S; s0; δ) be an initially connected finite automaton and let T ⊆ {Inf(A; ξ) :
ξ ∈ Xω} be a table such that the ω-language F = {ξ : Inf(A; ξ) ∈ T } is closed. Let T̂ ⊆ T be the set
of all strongly connected components terminal in T and F ′ = {ξ : Inf(A; ξ) ∈ T̂ }.

Then F ′ ⊆
⋃
S′∈T̂

⋃
s∈S′W(s;S′) · C(V ω(s;S′)) ⊆ F = C(F ′).

Moreover, if s = δ(s0, w) ∈ S′, for some S′ ∈ T̂ , then w ·Xω ∩ F = w · C(V ω(s;S′)).

Proof: Obviously, F ′ ⊆ F . First we show that F ⊆ C(F ′). Let ξ ∈ F . Then S′′ = Inf(A; ξ) ∈ T .
Choose some s′′ ∈ S′′. Since the automaton is finite, there are a terminal strongly connected component
S′ ∈ T̂ , a state s′ ∈ S′ and a v ∈ X∗ such that δ(s′′, v) = s′. Consider the set pref(ξ; s′′) := {u : u @
ξ ∧ δ(s0, u) = s′′}. Then pref(pref(ξ; s′′)) = pref(ξ).
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Let w ∈ X∗ \ {e} satisfy δ(s′, w) = s′ and {δ(s′, w′) : w′ v w} = S′. Then Inf(A;uvwω) = S′ for
every u ∈ pref(ξ; s′′), that is, pref(ξ) ⊆ pref(F ′).

Next observe that in view of Lemma 4 we have F ′ =
⋃
S′∈T̂

⋃
s∈S′W(s;S′) ·V ω(s;S′). Then the inclusion

relations follow from F ′ ⊆ F and the fact that F is closed.
For the proof of second assertion it suffices to show w · V ω(s;S′) ⊆ F ∩ w · Xω ⊆ w · C(V ω(s;S′)). If

ξ ∈ w · V ω(s;S′) then Inf(A; ξ) = S′ whence ξ ∈ F ∩ w ·Xω .
Let ξ ∈ F ∩ w · Xω . Since s = δ(s0, w) ∈ S′ and S′ is a terminal strongly connected component,

Inf(A; ξ) ⊆ S+ implies {δ(s0, w · u) : w · u @ ξ} ⊆ S′. As S′ is a strongly connected component, for
every u,w · u @ ξ, there is a u′ such that δ(s0, w · u · u′) = δ(s0, w) = s and {δ(s0, w · u′′) : u′′ v
u · u′} = S′. This shows pref(ξ) ⊆ pref(w · V ω(s;S′)), that is, ξ ∈ C(w · V ω(s;S′)) = w · C(V ω(s;S′)). 2

4 Results on Hausdorff Measure
4.1 Sets of locally positive measure
Theorem 12 If F ⊆ Xω is a regular ω-language, α = dimF , F has locally positive α-dimensional
measure then Lα(C(F )) = Lα(F ).

If, moreover, α = dimF = dim C(F ) then C(F ) has locally positive α-dimensional measure.

Proof: It suffices to show that Lα(C(F )) > Lα(F ) implies Lα(F ) =∞.
From Theorem 9 we know that F contains a regular ω-language F ′ =

⋃n
i=1Wi · V ωi with Lα(F ) =

Lα(F ′) where the setsWi, Vi are regular, the Vi are prefix-free with Lα(V ωi ) > 0, and the setsw·V ωi , w ∈
Wi, i ∈ {1, . . . , n}, are mutually disjoint.

Assume∞ ≥ Lα(C(F )) > Lα(F ). Since F has locally positive α-dimensional measure, by Proposi-
tion 2 pref(F ′) = pref(F ) whence C(F ′) = C(F ).

If pref(ξ) ⊆ pref(Wi · V ωi ) then there is a w ∈Wi such that pref(ξ) \pref(w) ⊆ w ·pref(V ωi ) or
pref(ξ) ⊆ pref(Wi). This shows

C(F ′) =
n⋃
i=1

Wi · C(V ωi ) ∪
n⋃
i=1

{ξ : pref(ξ) ⊆ pref(Wi)} .

Since Lα(w ·C(V ωi )) = Lα(w ·V ωi ) the assumption Lα(C(F )) > Lα(F ) implies that Lα({ξ : pref(ξ) ⊆
pref(Wi)}) > 0 for some i ∈ {1, . . . , n}which in view of Proposition 1.2 yields

∑
w∈pref(Wi)

r−α·|w| =
∞.

Since Wi is regular, there is a k ∈ N such that for every v ∈ pref(Wi) there is a w ∈ Wi with
v v w and |w| − |v| ≤ k. Thus

∑
v∈pref(Wi)

r−α·|v| = ∞ implies
∑
w∈Wi

r−α·|w| = ∞ and we obtain
Lα(F ) ≥ Lα(Wi · V ωi ) = (

∑
w∈Wi

r−α·|w|) · Lα(V ωi ) =∞.
The additional assertion follows from 0 < Lα(F ∩ w ·Xω) ≤ Lα(C(F ) ∩ w ·Xω) for w ∈ pref(F ).

2

The following example shows that the additional assertion need not be true for dimF < dim C(F ).
Example 1 Let X = {0, 1}, F1 = {0, 1}∗ · 0ω and F2 := 0ω ∪ 1 · {0, 1}∗ · 0ω . Then C(F1) = {0, 1}ω
and C(F2) = 0ω ∪1 · {0, 1}ω . Then 0 = dimFi < dim C(Fi) = 1 for i = 1, 2, C(F1) has locally positive
1-dimensional measure whereas, since L1(F2 ∩ 0 · {0, 1}∗) = 0, C(F2) has not. 2



364 Ludwig Staiger

As an immediate consequence we obtain the following.

Corollary 13 If F ⊆ Xω is a regular ω-language, α := dimF , F has locally positive α-dimensional
measure and Lα(C(F ) \ F ) > 0 then Lα(F ) =∞.

In case Lα(F ) =∞ the measure of the difference Lα(C(F ) \ F ) may be finite or infinite.

Example 2 Let X = {0, 1} and F1 := 0∗ · 1ω and F2 := 0∗ · 1∗ · 0ω . Both sets are countable, thus
dimF1 = dimF2 = 0. We have C(F1) = 0ω∪0∗ ·1ω and C(F2) = 0∗ ·1ω∪0∗ ·1∗ ·0ω , and, consequently,
L0(C(F1) \ F1) = L0(0

ω) = 1 and L0(C(F2) \ F2) = L0(0
∗ · 1ω) =∞. 2

In Theorem 12 the hypothesis that F has locally positive α-dimensional measure is essential. We give an
example.

Example 3 Let X = {0, 1} and F := F1 ∪ F2 where F1 = (0 · {0, 1})ω is a closed set and F2 =
(1 · {0, 1})∗ · (10)ω .

Then Lα(F ∩ 1 · {0, 1}ω) = 0 for α > 0, since F2 is countable. Moreover, C(F ) = (0 · {0, 1})ω ∪
(1 · {0, 1})ω and one easily calculates dimF = dim C(F ) = 1

2 , L1/2(F ) =
1√
2
> 0 and L1/2(C(F )) =

2 · L1/2(F ) =
√
2. 2

From Proposition 3 and Theorem 12 we obtain the following relationship for the Hausdorff measure of
regular ω-power languages.

Corollary 14 Let W ⊆ X∗. If Wω is a regular ω-language and α = dimWω then

Lα(C(Wω)) = Lα(Wω) .

Corollary 14 and, consequently, Theorem 12 are not valid for non-regular ω-languages. In [Sta05,
Section 3.3] examples of prefix-free non-regular languages W fulfilling various relationships between
Lα(Wω) and Lα(C(Wω)) are given.

As a further application of Theorem 12 we derive a result which is in some sense a converse to Propo-
sition 2. It shows that for special closed regular ω-languages F we can find a subset of the form of Eq. (5)
having the same measure and the same closure as F . Here we use the approach of Theorem 11.

Proposition 15 LetA = (X;S; s0; δ) be an initially connected finite automaton and let T ⊆ {Inf(A; ξ) :
ξ ∈ Xω} be a table such that the ω-language F ′ = {ξ : Inf(A; ξ) ∈ T } is closed. Let T̂ ⊆ T be the set
of all strongly connected components terminal in T and F = {ξ : Inf(A; ξ) ∈ T̂ }.

If dimF ′ = α and F ′ has locally positive α-dimensional measure then F ′ = C(F ) and Lα(F ′) =
Lα(F ).

Proof: The first assertion was already proved in Theorem 11. Then, in view of Theorem 12, it suffices
to show that F has locally positive α-dimensional measure, that is, Lα(F ∩ w · Xω) > 0 for all w ∈
pref(F ′) = pref(F ).

Let v ∈ pref(F ) and consider the identity F =
⋃
S′∈T̂

⋃
s∈S′W(s;S′) · V ω(s;S′) derived in the proof of

Theorem 11.
Then there are an S′ ∈ T̂ and an s ∈ S′ such that v ∈ pref(W(s;S′)) or v ∈ W(s;S′) · pref(V ∗(s;S′)).

In both cases v · u ∈W(s;S′) · V ∗(s;S′) for some u ∈ X∗, in particular s = δ(s0, v · u).
By Theorem 11 we have F ′∩v ·u·Xω = v ·u·C(V ω(s;S′)) and, since v ·u·V ω(s;S′) ⊆ F , with Proposition 8

we obtain 0 < Lα(F ′ ∩ v · u ·Xω) = Lα(v · u · V ω(s;S′)) ≤ Lα(F ∩ v ·Xω). Thus Theorem 12 proves
the assertion. 2
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4.2 The measure of sets residual in its closure
This last part shows that an ω-language having a regular closure and which is topologically large in its
closure has the same measure as its closure.

Before we proceed to the presentation of the results we have to introduce some necessary prerequisites
concerning the topology of the Cantor space.

As usual, a countable intersection of open sets is referred to as a Gδ-set. Moreover, we call a set F
nowhere dense inE provided C(E \C(F )) = C(E), that is, if C(F ) does not contain a nonempty subset of
the form E ∩w ·Xω , and a subset F is referred to as of first Baire category in E if F is a countable union
of sets nowhere dense in E. If E is closed and F is of first Baire category in E then E \ F is referred to
as residual in E. In particular, Gδ-sets E in Cantor space are residual in C(E).

The following lemma shows a connection between Hausdorff dimension and relative density of regular
ω-language.

Lemma 16 ([Sta98b, Theorem 8]) Let E ⊆ Xω be a regular ω-language which is closed in Cantor
space, α = dimE and let E have finite and locally positive α-dimensional measure.

Then every regular ω-language F ⊆ E is of first Baire category in E if and only if Lα(F ) = 0.

This much preparatory apparatus leads to the following result.

Theorem 17 Let E ⊆ Xω be an ω-language which is a countable intersection of regular ω-languages,
residual in C(E) and let C(E) be regular. If α = dim C(E), Lα(C(E)) < ∞, and C(E) has locally
positive α-dimensional measure then Lα(C(E)) = Lα(E).

Proof: Observe that C(E) is a regular ω-language. Since E is supposed to be residual in C(E), C(E) \E
is of first Baire category in C(E), and, since E is a countable intersection of regular ω-languages, say
E =

⋂
i∈N Fi, the difference C(E) \ E =

⋃
i∈N(C(E) \ Fi) is a countable union of regular ω-languages

C(E)\Fi, each of which is of first Baire category in C(E). Then according to Lemma 16 Lα(C(E)\Fi) =
0, and the assertion follows. 2

Using Proposition 15 we can drop the requirement Lα(C(E)) <∞ in Theorem 17.

Theorem 18 Let E ⊆ Xω be an ω-language which is a countable intersection of regular ω-languages,
residual in C(E) and let C(E) be regular. If α = dim C(E) and C(E) has locally positive α-dimensional
measure then Lα(C(E)) = Lα(E).

Proof: The case Lα(C(E)) <∞ is proved in Theorem 17. Let Lα(C(E)) =∞.
Proposition 15 shows that Lα(E′) = ∞ for the set E′ =

⋃
S′∈T̂

⋃
s∈S′W(s;S′) · V ω(s;S′) derived via

Theorem 11 from a finite automaton accepting C(E). Then, similarly as in the proof of Theorem 12 one
finds a set W(s;S′) such that

∑
w∈W(s;S′)

r−α·|w| =∞ and Lα(V ω(s;S′)) > 0.
Again, using Theorem 11 one has W(s;S′) · C(V ω(s;S′)) ⊆ C(E), and, moreover, w · C(V ω(s;S′)) =

C(E) ∩ w ·Xω for w ∈W(s;S′).
Now, Propositions 3 and 7 show Lα(C(E) ∩ w ·Xω) <∞ and we can apply Theorem 17. This yields

Lα(C(E)∩w ·Xω) = Lα(E ∩w ·Xω) = r−α·|w| ·Lα(V ω(s;S′)). Summing over w ∈W(s;S′) and taking
into account that Lα(V ω(s;S′)) > 0 we obtain Lα(E) ≥

∑
w∈W(s;S′)

r−α·|w| · Lα(V ω(s;S′)) =∞. 2

The Theorems 17 and 18 can be applied also to non-regular ω-languages. We give a simple example.
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Example 4 Let E :=
⋂
w∈X∗ X

∗ ·w ·Xω be the set of all ω-words which contain every word as an infix.
Those ω-words are referred to as disjunctive [JST83] or rich [Sta98b]. E is a Gδ-set in Cantor space,
hence residual in C(E) = Xω .

We have dim C(E) = 1 and obtain L1(C(E)) = L1(E) = 1. 2

The condition that E be residual in C(E) is really essential as the following example shows.

Example 5 Let X = {0, 1} and E = {0, 1}∗ · 0ω =
⋂
n∈N{0, 1}∗ · {0n1, 0}ω which is an intersection of

regular ω-languages {0, 1}∗ · {0n1, 0}ω .
Then C(E) = {0, 1}ω and α = dim C(E) = 1, L1(C(E)∩w · {0, 1}ω) > 0 for all w ∈ {0, 1}∗ but, as

E is countable, dimE = 0 and hence L1(E) = 0. 2
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