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We introduce a new graph parameter that measures fractional covering of a graph by cuts. Besides being interesting
in its own right, it is useful for study of homomorphisms and tension-continuous mappings. We study the relations
with chromatic number, bipartite density, and other graph parameters.

We find the value of our parameter for a family of graphs based on hypercubes. These graphs play for our parameter
the role that cliques play for the chromatic number and Kneser graphs for the fractional chromatic number. The fact
that the defined parameter attains on these graphs the correct value suggests that our definition is a natural one. In
the proof we use the eigenvalue bound for maximum cut and a recent result of Engström, Färnqvist, Jonsson, and
Thapper [An approximability-related parameter on graphs – properties and applications, DMTCS vol. 17:1, 2015,
33–66].

We also provide a polynomial time approximation algorithm based on semidefinite programming and in particular
on vector chromatic number (defined by Karger, Motwani and Sudan [Approximate graph coloring by semidefinite
programming, J. ACM 45 (1998), no. 2, 246–265]).
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1 Introduction
All graphs we consider are undirected and loopless; to avoid trivialities we do not consider edgeless
graphs. For a set W ⊆ V (G) we let δ(W ) denote the set of edges leaving W and we call any set of form
δ(W ) a cut. Other terminology we shall be using is standard, and can be found in, e.g., [7].

Let us call a (cut) n/k-cover of G an n-tuple (X1, . . . , Xn) of cuts in G such that every edge of G is
covered by at least k of them. We define two closely related parameters of G. We let

x(G) = inf
{n
k
| exists n/k-cover of G

}
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and call x(G) the fractional cut-covering number of G. Its rescaling

χq(G) =
2

2− x(G)

will be called the cubical chromatic number of G. This terminology is motivated by analogy with the
fractional and circular chromatic number, see the discussion following Equation (1) below. The rescaling
function 2/(2 − x) serves the purpose of aligning the value with other variants of chromatic number,
namely of attaining the right value for complete graphs. However, the rescaling function is far from
arbitrary, as the values for other graphs are also modified in a proper way, see Theorem 5.2.

If k = 1, i.e., if we want to cover every edge at least once, then we need at least dlog2 χ(G)e of
them [6]. Here we consider a fractional version. In this context we may find it surprising that x(G) < 2
for every G (Corollary 2.3).

From another perspective, x(G) is the fractional chromatic number of a certain hypergraph: it hasE(G)
as points and odd cycles of G as hyperedges. This suggests that x(G) is a solution of a linear program,
see Equations (2) and (3) below.

The parameter x(G) has found surprising use in theoretical computer science. Färnqvist, Jonsson,
and Thapper [14] study the approximability of MAXCUT and its generalizations (so-called MAX-H-
COLORING) using a suitably defined metric space. The function used to define the metric is in [9]
recognized as a natural generalization of fractional covering by cuts. See the concluding remarks for
further discussion.

As another point of view we note that x(G) is a certain type of chromatic number, but instead of
complete graphs (or Kneser graphs or circulants) which are used to define chromatic number (or fractional
or circular chromatic number) it uses another graph scale. Let Qn/k denote a graph with {0, 1}n as the
set of vertices, where xy forms an edge iff d(x, y) ≥ k (here d(x, y) is the Hamming distance of x and y).

Observation 1.1 A graph has n/k-cover if and only if it is homomorphic to Qn/k.

Proof: If (X1, . . . , Xn) is a cut n/k-cover of a graph G then we can define homomorphism f : V (G)→
V (Qn/k) as follows: for each iwe writeXi as δ(Wi); we put f(v) = 1 if v ∈Wi and f(v) = 0 otherwise.
Now f = (f1, . . . , fn) is a homomorphism. If, on the other hand, we are given a homomorphism f :
V (G)→ V (Qn/k) then we can putWi = {v ∈ V (G) : fi(v) = 1} and observe that (δ(W1), . . . , δ(Wn))
is a cut n/k-cover. 2

The above observation implies that an alternative definition of x(G) is

x(G) = inf
{n
k
| G hom−−−→ Qn/k

}
. (1)

This is analogous to the definition of fractional chromatic number by means of homomorphisms to
Kneser graphs (or of circular chromatic number by circulants). An immediate corollary is that x(G)

is a homomorphism invariant, that is if G hom−−−→ H then x(G) ≤ x(H). This will be strengthened in
Lemma 1.2. This observation suggests a possible use of the cubical chromatic number to study the struc-
ture of graph homomorphisms—we can prove nonexistence of a homomorphism G

hom−−−→ H by showing
that x(G) > x(H).
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For a graph H let H
≥k denote the graph with vertices V (H) and edges uv for any u, v ∈ V (H)

with distance in H at least k. Further let Qn denote the n-dimensional cube. Then Qn/k = Q
≥k
n .

This corresponds to the definition of circular chromatic number, where the target graph is C
≥k
n . This

observation inspires the term cubical chromatic number. However, as we will see below (in Corollary 2.3),
a rescaling of x(G) is in order to make it behave like a version of chromatic number, thus the definition
of χq(G).

The original motivation for defining x(G) was the study [30, 27] of cut-continuous mappings (defined
in [6]). Given graphs G, H we call a mapping f : E(G) → E(H) cut-continuous, if for every cut
U ⊆ E(H), the preimage f−1(U) is a cut in G. The following lemma is straightforward, but useful.

Lemma 1.2 Let G, H be graphs. Then if there is a cut-continuous mapping from G to H (in particular,
if there is a homomorphism G

hom−−−→ H), then x(G) ≤ x(H) and (equivalently) χq(G) ≤ χq(H).

Proof: It suffices to show that whenever H has an n/k-cover, G has it as well. So let f be some cut-
continuous mapping from G to H , let X1, . . . , Xn be an n/k-cover and consider X ′i—a preimage of the
cut Xi under f . By definition, X ′i is also a cut. If e is an edge of G, f(e) is an edge of H , hence it is
covered by at least k of the cutsXi. Thus e is covered by at least k of the cutsX ′i . For the homomorphism
part, one may observe that the mapping induced on edges by a homomorphism is cut-continuous [6], or
just use the alternative definition in Equation (1). 2

As each graph Qn/k is a Cayley graph on Zn2 , it follows [30] that for every graph G the existence of
a homomorphism from G to Qn/k is equivalent to the existence of a cut-continuous mapping from G to
Qn/k. Consequently, we may as well use cut-continuous mapping to Qn/k in Equation (1). This also
provides an indirect proof of Lemma 1.2.

It is a standard exercise to show that x(G) is the solution of the following linear program (C denotes
the family of all cuts in G)

minimize
∑
X∈C

w(X) subject to: for every edge e,
∑

X,e∈X∈C
w(X) ≥ 1. (2)

We conclude that we can replace inf by min in the definition of x(G)—the infimum is always attained.
We can also consider the dual program

maximize
∑

e∈E(G)

y(e) subject to: for every cut X ,
∑
e,e∈X

y(e) ≤ 1. (3)

This program is useful for computation of x(G) for some G. (Färnqvist, Jonsson, and Thapper [14]
used a modification of this program. There is an optimal solution y∗ of the above program, that respects
symmetries of G: if there is an automorphism of G that maps edge e to edge f , then y∗(e) = y∗(f). This
decreases the size of the linear program for graphs with nontrivial automorphism group.) Moreover, in the
final section we use this dual program to discuss yet another definition of x(G) in terms of the bipartite
subgraph polytope.

There is another possibility to dualize the notion of fractional cut covering, namely fractional cycle
covering. Bermond, Jackson and Jaeger [2] proved that every bridgeless graph has a cycle 7/4-cover (i.e.,
a collection of 7 cycles, that cover every edge at least 4 times), and Fan [11] proved that it has a 10/6-cover.
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An equivalent formulation of the Berge-Fulkerson conjecture claims that every cubic bridgeless graph has
a 6/4-cover. On the other hand, Edmonds’ characterization [8] of the matching polytope implies that
every cubic bridgeless graph has a cycle 3k/2k-cover (for some k). It is open, whether for some fixed k
every cubic bridgeless graph has a cycle 3k/2k-cover.

2 Basic properties
In this section we discuss how the cubical chromatic number relates to other graph parameters and prove
analogs of some basic results about chromatic number.

We let MAXCUT(G) denote the number of edges in the largest cut in G and write

b(G) = MAXCUT(G)/|E(G)|

for the bipartite density of G.

Lemma 2.1 For any graph G it holds x(G) ≥ 1/b(G). If G is edge-transitive, then equality holds.

Proof: Suppose x(G) = n/k and let X1, . . . , Xn be an n/k-cover. Then
∑n
i=1 |Xi| ≤ n · b(G)|E(G)|,

on the other hand this sum is at least k · |E(G)|, as every edge is counted at least k times. This proves
the first part of the lemma. To prove the second part, let X = {X1, . . . , Xn} be all cuts of the maximal
size (i.e., |Xi| = b(G)|E(G)|). From the edge-transitivity follows that every edge is covered by the same
number (say k) of elements of X . Now k · |E(G)| =

∑n
i=1 |Xi| = n · b(G)|E(G)|, which finishes the

proof. 2

Corollary 2.2 Let Pt denote the Petersen graph.

x(K2n) = x(K2n−1) = 2− 1/n χq(K2n) = χq(K2n−1) = 2n

x(C2k+1) = 1 + 1/(2k) χq(C2k+1) = 2 + 2/(2k − 1)

x(Pt) = 5/4 χq(Pt) = 8/3

In the following result, go(G) denotes the odd girth, that is, the length of a shortest odd cycle in G.

Corollary 2.3 For any graph G,

2 +
2

go(G)− 2
≤ χq(G) ≤ 2

⌈
χ(G)

2

⌉
.

Equivalently, 1 + 1
go(G)−1 ≤ x(G) ≤ 2− 1

dχ(G)/2e .
In particular, x(G) ∈ [1, 2) and χq(G) ≥ 2.

Proof: Let l = go(G), i.e., Cl is the shortest odd cycle that is a subgraph of G. Put n = χ(G). Then there
are homomorphisms Cl → G→ Kn, so it remains to use Lemma 1.2 and Corollary 2.2. 2

By combining Lemma 1.2 and Corollary 2.2 we get that there is no cut-continuous mapping from
Kn+2 to Kn. As there is obviously a cut-continuous mapping (indeed, even a homomorphism) in the
other direction, we conclude that the even cliquesK2n form a strictly ascending chain in the poset defined
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by cut-continuous mappings. This application was the original point in defining x(G). The result is not
as straightforward as it appears (for example, there is a cut-continuous mapping K4 → K3).

Next, we will study how good are the bounds of Corollary 2.3. While they obviously are tight for G
equal to a complete graph, resp. odd cycle, they can be arbitrarily far off, as documented by Corollary 2.5
and Theorem 2.6. Before we get to that we need to look at χf (G)—the fractional chromatic number ofG.

This may be defined by χf (G) = inf{n/k | G hom−−−→ K(n, k)} , where K(n, k) is the Kneser graph.

Lemma 2.4 Let k, n be integers such that 0 < 2k ≤ n. Then

1. b(K(n, k)) ≥ 2k/n.

2. x(K(n, k)) ≤ n/(2k).

Consequently, for any graph G we have x(G) ≤ 1
2χf (G).

(Note that the bound is only useful if k > n/4. Also note that the bound in part 1. is not optimal in
general; the exact value of b(K(n, k)) is open [3].)

Proof: For the first part we let U = {S ⊆ [n] | 1 ∈ S} and observe that δ(U) contains
(
n−1
k−1
)(
n−k
k

)
edges.

As Kneser graphs are edge-transitive, the second part follows by Lemma 2.1. The rest follows by
Lemma 1.2 and the definition of fractional chromatic number. 2

Corollary 2.5 For every ε > 0 and every integer b there is a graph G such that

χq(G) < 2 + ε and χ(G) > b .

Proof: Let G = K(n, k), for n = 2k + t, k = t2 and t large enough. Then by Corollary 2.4 we have
x(G) ≤ n/2k = 1 + t/(2t2), thus (for t large enough) χq(G) ≤ 2 + ε. On the other hand, it is known
[25] that χ(G) = n − 2k + 2 = t + 2. Cf. also Corollary 5.4 below, where a stronger result is proved
using semidefinite approximation. 2

By Corollary 2.3, we can view Corollary 2.5 as a strengthening of the well-known fact [10] that there
are graphs with no short odd cycle and with a large chromatic number. It also shows that the converse
of Lemma 1.2 is far from being true: just take G from the Corollary 2.5 and let H = Kb/2 (for b large).
Then χq(G) is close to 2 and χq(H) is at least b/2, still by an application of Proposition 6.7 of [6] there
is no cut-continuous mapping from G to H .

It is interesting to find how various graph properties affect χq(G). From the values in Corollary 2.2 we
might think that χq(G) is always larger than the fractional chromatic number χf (G). However, this is
very far from the truth, as shown in Corollary 5.4 below. We saw already that small χ(G) makes χq(G)
small (Corollary 2.3), while large χ(G) does not force χq to be large (Corollary 2.5). Also small go(G)
makes χq(G) large (Corollary 2.3 again). Complementing Corollary 2.5 we show that large go(G) does
not make χq(G) small (but cf. Question 2.7).

Theorem 2.6 For any integers k, l there is a graph G such that χq(G) > k and G contains no circuit of
length at most l.
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Proof: We modify the famous Erdős’ proof of existence of high-girth graphs of high chromatic number.
Let p = nα−1 (where α ∈ (0, 1/l)) and consider the random graph G(n, p). The expected number of

circuits of length at most l is O((pn)l) = o(n), therefore by Markov inequality with probability 1− o(1)
the graph G(n, p) contains at most n circuits of length at most l.

Using Lemma 3.1, and in particular its Claim 1, where we put δ = n−α/3 we get that a.a.s. b(G(n, p)) ≤
1
2 (1 +O(n−α/3)) and |E(G(n, p))| > n1+α/3.

We take a graph G′ satisfying all these three requirements. Then we delete one edge from each of the
at most n short circuits and let G be the resulting graph.

Clearly G contains no short cycles. To show χq(G) is large it is enough to show that x(G) can be
arbitrary close to 2, or (using Lemma 2.1) to show that b(G) can be arbitrary close to 1/2.

As |E(G′)| = Ω(n1+α), and as we delete at most n edges of G′ to get G, we have |E(G)| ≥
|E(G′)|(1−o(1)). Obviously, MAXCUT inG cannot be larger than inG′, thus b(G) ≤ b(G′)(1+o(1)) =
1
2 (1 + o(1)), which finishes the proof. 2

In the previous result it was crucial that the graphs had large degrees. For graphs of small degree the
situation differs:

Question 2.7 Let G be a cubic graph with no cycle of length ≤ c. How large can χq(G) (resp. x(G))
be?

For c = 3, it follows from Brooks’ theorem that x(G) ≤ x(K3) = 3/2 (χq(G) ≤ 4). For c = 17, it
is known [5] that G has a cut-continuous mapping to C5, hence x(G) ≤ x(C5) = 5/4 (χq(G) ≤ 8/3).
Kardoš, Král’ and Volec [22] prove that if the girth of a cubic graph G is large enough, then x(G) ≤
1.127752 (χq(G) ≤ 2.2929258651). On the other hand, there is ε > 0 such that cubic graphs G of
arbitrary high girth exist with b(G) < 1 − ε (an unpublished result of McKay, see also [30]), hence with
x(G) > 1 + ε and so χq(G) > 2 + 2ε.

We conclude this section by a simple lemma that shows that χq and x enjoy some of the properties
of other chromatic numbers. (Here G1 2G2 denotes the Cartesian product of graphs, G1 × G2 the
categorical one (also called tensor product); for more information about graph products we refer to Imrich
and Klavžar [19].)

Lemma 2.8 1. x(G) = max{x(G′) | G′ is a component of G}

2. x(G) = max{x(G′) | G′ is a 2-connected block of G} for a connected graph G.

3. x(G1 2G2) = max{x(G1), x(G2)}

4. x(G1 ×G2) ≤ min{x(G1), x(G2)}
The same formulas are true for χq in place of x.

Proof: We will prove that if G′, G′′ are graphs that share at most one vertex, then x(G′ ∪ G′′) =
max{x(G′), x(G′′)}. Clearly, this proves 1 and 2. Let x(G′) = n/k, and x(G′′) = m/l (by discussion
after Equation (2) the infimum is attained) and suppose X ′1, . . . , X ′n is an n/k-cover of G′, while X ′′1 , . . . ,
X ′′m is an m/l-cover of G′′. Consider the collection of mn cuts {X ′i ∪X ′′j } (these are cuts, indeed, as G′

and G′′ share at most one vertex). An edge of G′ is covered at least mk times, an edge of G′′ at least nl
times. Hence x(G) ≤ mn

min{mk,nl} = max{nk ,
m
l } = max{x(G′), x(G′′)}. On the other hand, both G′

and G′′ are subgraphs of G, hence by Lemma 1.2 the other inequality follows.
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Part 3 follows from Lemma 1.2, as between G1 2G2 and G1 ∪G2 exists a cut-continuous mapping in
both directions.

Part 4 follows from Lemma 1.2 as there are homomorphisms (and therefore TT mappings)G1×G2 →
Gi (for i = 1, 2).

As χq = 2/(2− x) (which is an increasing function for the values that x can attain), the results for χq
follow immediately. 2

3 Cubical chromatic number of random graphs
In this section we consider the value of cubical chromatic number of random graphs. After a short tech-
nical lemma (that is also used in the proof of Theorem 2.6) we bound χq of a random graph G(n, 1/2)
using a simple self-contained proof. We complement this by a result that provides the correct order of
magnitude using results from Section 5.

Lemma 3.1 Let p, δ be functions of n such that p, δ ∈ [0, 1] and δ2p ≥ 7 log n/n. Then b(G(n, p)) ≤
1
2 (1 +O(1/n) +O(δ)) a.a.s. In particular, we have

b(G(n, p)) ≤ 1

2
+O

(√
log n

pn

)
a.a.s.

Proof: We will prove that almost all graphs have “many edges but no huge cut”.

Claim 1. |E(G(n, p))| > (1− δ)p
(
n
2

)
a.a.s.

To prove this we use Chernoff inequality (as stated in Corollary 2.3 of [20]) for random variable X =

|E(G(n, p))|. It claims Pr[|X − Ex| ≥ δEX] ≤ 2e−
δ2

3 EX for δ ≤ 3/2 and as EX = p
(
n
2

)
, Claim 1

follows.

Claim 2. MAXCUT(G(n, p)) < (1 + δ)pn
2

4 a.a.s.
For a set A ⊆ V (G(n, p)) we let XA be the random variable that counts the edges leaving A, and put

a = |A| ≤ n/2. By Chernoff inequality for XA we easily get

Pr[XA ≥ (1 + δ)pn2/4] ≤ 2e−
δ2

3 pa(n−a) ≤ 2e−
δ2pan

6 .

It remains to estimate the total probability of a large cut:

Pr[(∃A)XA ≥ (1 + δ)pn2/4] ≤
n/2∑
a=1

(
n

a

)
2e−

δ2pan
6 ≤ 2

(
(1 + e−

δ2pn
6 )n − 1

)
.

For δ2p ≥ 7 log n/n the last expression tends to zero, which finishes the proof of Claim 2. The rest of the
proof of the lemma is a simple calculation. 2

Theorem 3.2
Ω
(√

n/ log n
)
≤ χq(G(n, 1/2)) ≤ O (n/log n) a.a.s.
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Proof: The lower bound follows by Lemma 3.1, the upper one by an application of Corollary 2.3 and the
well-known fact that χ(G(n, 1/2)) = O(n/ log n). 2

The above theorem is included because the proof is short and self-contained. In the next theorem
we give asymptotically tight estimate of χq(G(n, p)). In that, however, we rely on known estimates of
ϑ(G(n, p)) and the relation between ϑ and χq that we derive in Section 5 below.

Theorem 3.3 χq(G(n, p)) = Θ(
√
pn) a.a.s.

Proof: The result follows directly using Theorem 5.1 and Theorem 5.2 below. 2

4 Measuring the scale
In this section we will discuss the ‘invariance property’ of cubical chromatic number. In analogy with
χ(Kn) = n, χc(C

≥k
n ) = n/k, χf (K(n, k)) = n/k, and ‘dimension of product of n complete graphs

is n’ we would like to prove that x(Qn/k) = n/k. The following lemma shows that the situation is not so
simple for x.

Lemma 4.1 Let 1 ≤ k ≤ n be integers. Then we have x(Qn/k) ≤ n
k . If k is odd, then x(Qn/k) ≤ n+1

k+1 .

Proof: For the first part, it suffices to consider the identical homomorphism Qn/k
hom−−−→ Qn/k. For the

second part, mapping V (Qn/k)→ V (Qn+1
k+1

) given by (x1, . . . , xn) 7→ (x1, . . . , xn, x1+· · ·+xn mod 2)

is a homomorphism whenever k is odd. 2

Another complication is that by Corollary 2.3 we have x(G) < 2 for any graph G. However, with this
exception, the bounds in Lemma 4.1 are optimal:

Theorem 4.2 Let k, n be integers such that k ≤ n ≤ 2k. Then

1. if k is even and n < 2k then x(Qn/k) = n
k ; and

2. if k is odd then x(Qn/k) = n+1
k+1 .

Corollary 4.3 There is no homomorphism Qn/k → Qn′/k′ if 1 ≤ n′/k′ < n/k ≤ 2, and k is even.
There is no homomorphism Qtn/tk → Qn,k if t > 1 is an integer, tk is odd and 1 < n/k < 2.

Proof: The first part follows directly from Theorem 4.2 and Lemma 1.2 (note that (n′ + 1)/(k′ + 1) ≤
n′/k′, so we do not care about parity of k′). For the second part, observe first, that Qn/k is a subgraph
of Qtn/tk for a positive integer t. It is known [15] that Qtn/tk is a core, thus it does not have a homomor-
phism to its proper subgraph. 2

This theorem was announced as a conjecture in the author’s thesis [30], together with a part of a possible
proof. The proof was finished by Engström, Färnqvist, Jonsson, and Thapper [9, Proposition 5.11], who
did prove the inequality in Lemma 4.5.

We’ll use the following result (see Lemma 13.7.4 and 13.1.2 of [16]).

Lemma 4.4 Let G be an r-regular graph with n vertices, let λmin be the smallest eigenvalue of G. Then
b(G) ≤ 1

2 (1− λmin

r ).
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The following lemma was proved (using a clever induction) by Engström, Färnqvist, Jonsson, and
Thapper [9, Proposition 5.11], resolving thus a question from the author’s thesis [30].

Lemma 4.5 Let k, n be integers such that k ≤ n < 2k and k is even, let x be an integer such that
1 ≤ x ≤ n. Then ∑

odd t

(
x

t

)(
n− x
k − t

)
≤
(
n− 1

k − 1

)
.

Proof: (of Theorem 4.2) Since Lemma 4.1 provides the upper bound, we only need to establish the lower
bound. Suppose first that k is even. We shall use a spanning subgraph of Qn/k = Q≥kn , that contains only
edges of length precisely k; we shall use Q=k

n to denote this subgraph.
By Lemma 1.2 and 2.1 we have that x(Qn/k) ≥ x(Q=k

n ) = 1/b(Q=k
n ). By Lemma 4.4 it is enough to

determine the smallest eigenvalue λmin of Q=k
n . As Q=k

n is
(
n
k

)
-regular, we have

1

b(Q=k
n )
≥ 2

1− λmin/
(
n
k

) .
It is standard (see, e.g., Problem 11.8 in [26] or the theory of Association Schemes in Chapter 30 of

[31]) that the eigenvalues of Q=k
n are

k∑
t=0

(−1)t
(
x

t

)(
n− x
k − t

)
,

By using Vandermonde’s identity and Lemma 4.5, we get that the above sum is at least
(
n
k

)
(1 − 2k/n),

which is equal to the sum for x = 1. Thus the smallest eigenvalue λmin equals
(
n
k

)
(1 − 2k/n), and we

obtain x(Qn/k) ≥ n/k as desired.
For odd values of k we cannot use the same method, as then Q=k

n is bipartite, hence b(Q=k
n ) = 1.

However, observe that Qn+1
k+1

hom−−−→ Qn/k, hence by Lemma 1.2 and the result for (even) k + 1 we have

x(Qn/k) ≥ x(Qn+1
k+1

) ≥ n+ 1

k + 1
.

2

Corollary 4.6 The set {x(G) | G is a graph} equals Q∩[1, 2]. Consequently, the set {χq(G) | G is a graph}
equals Q ∩ [2,∞).

5 Semidefinite approximation
In this section we show how to approximate χq in polynomial time up to a factor of π/2. Key to this
approximation is the vector coloring, introduced by [23] based on the Lovász’ ϑ function. The concept
of vertex coloring is extended by using high-dimensional unit vectors as colors, and requiring adjacent
vertices to be assigned distant vectors. Precisely: given a graph G and real t < 0 consider a mapping
f : V (G)→ Rn (where n = |V (G)|), so that
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• ‖f(v)‖2 = 1 for every vertex v and

• 〈f(u), f(v)〉 ≤ t for every edge uv.

We let t(G) denote the minimum t such that function f with the above properties exists. The vector
chromatic number of G is defined as χv(G) = 1− 1

t(G) .
As these conditions for t(G) can be formulated as a semidefinite program, the minimum indeed exists;

more importantly, t(G) can be approximated with an absolute error ε in time polynomial in n and log 1
ε .

Indeed, Karger, Motwani and Sudan [23, Lemma 3.2] prove that if a graph G has χv(G) = k then it is
possible to find a vector (k + ε)-coloring in time polynomial in n and log 1/ε — in particular, one finds
approximation to χv up to an absolute error ε.

It is easy to see that χv(G) ≤ χ(G) – given a proper k-coloring, we may map all vertices of one color
to one vertex of a simplex with k vertices. This will lead to t = − 1

k−1 , and so indeed χv(G) ≤ k.
However, the fraction χ(G)/χv(G) can be arbitrarily large [12], in fact as large as n/polylog(n) (where
n = |V (G)|); this contrasts sharply with Theorem 5.2.

For further properties of χv see [23] and [4]. In the latter the following is shown.

Theorem 5.1 ([4]) c1
√
np ≤ χv(Gn,p) ≤ c2

√
np with probability 1− o(1).

Now we proceed to show to connection between χq and χv .

Theorem 5.2 For every graph G we have

χv(G) ≤ χq(G) ≤ π

2
χv(G) .

Proof: We prove the lower bound first. Recall that χq(G) = 2
2−x(G) and x(G) = n/k, for some n, k

where there is a k-cover of G by n cuts. (The fact that the infimum in the definition of x(G) is attained
follows from the linear-programming reformulation, see Equation (2).) Equivalently, there is a mapping
g : V (G) → {±1}n (the i-th coordinate encodes the i-th cut so that for every edge uv the vectors g(u)
and g(v) differ in ≥ k coordinates. Put f(v) = g(v)/

√
n. Obviously, each f(v) is a unit vector, while for

every edge uv we have

〈f(u), f(v)〉 = 1− 2dH(g(u), g(v))

n
≤ 1− 2k

n
= 1− 2

x(G)
.

Therefore, for this f we get t ≤ 1− 2/x(G). Consequently,

χv(G) ≤ 1− 1

t
≤ 1− x(G)

x(G)− 2
=

2

2− x(G)
= χq(G) .

For the upper bound we use probabilistic approach, motivated by the algorithm for approximating
MAXCUT by Goemans and Williamson [17]. Consider a mapping f as above, the scalar products are at
most t with χv(G) = 1− 1/t. For a large N , we choose N uniformly random hyperplanes in Rn through
the origin. With probability 1 none of them contains any of the points f(v) for v ∈ V (G), therefore each
hyperplane defines a cut. We shell prove that with probability 1 − o(1) this cut covering gives us the
desired bound.

To this end, consider an edge uv ∈ E(G), let α be the angle between the unit vectors f(u) and f(v).
The following elementary observation (used also in [17]) is crucial for the calculation:
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A random hyperplane through origin separates f(u) and f(v) with probability α
π .

For an edge e = uv let Xe be the random variable that counts how many of the N hyperplanes separate
the end-vertices of e. Obviously, Xe follows a binomial distribution Bin(N, p) with p = α

π . We have
cosα = 〈f(u), f(v)〉 ≤ t, so p ≥ arccos t

π . By the Chernoff inequality we have Pr[Xe < pN − s] <
e−

s2

2Np . Putting s = dN2/3e we obtain

Pr[Xe < pN − dN2/3e] < e−
N1/3

2p = o(1)

(the o(1) is with respect to N growing to infinity). Thus, with probability 1 −
(
n
2

)
o(1) = 1 − o(1) we

have Xe ≥ pN −dN2/3e for every edge e. So for every large enough N there is a cut covering achieving
this and from the definition of x(G), we get that

x(G) ≤ N

pN − dN2/3e
=

1

p
(1 + o(1)) .

As we may choose arbitrarily large N , we get from here that x(G) ≤ 1
p = π

arccos t . Now from the
definition we obtain

χq(G)

χv(G)
=

2
2−x(G)

1− 1
t

≤
2

2− π
arccos t

1− 1
t

=
t arccos t

(arccos t− π/2)(t− 1)

Putting t = cosα and β = α− π/2 (so that t = − sinβ), the last expression equals

sinβ

β

β + π
2

sinβ + 1
≤ 1 · π

2

(we used the elementary estimate 2
πβ ≤ sinβ ≤ β valid for β ∈ [0, π/2]). 2

We note that the above proof also yields bound χq(G) ≤ 1/
(
1 − π

2 arccos 1
1−χv(G)

)
, which is, for small

values of χv(G), slightly better than the above theorem.

Corollary 5.3 There is a polynomial-time algorithm that approximates χq(G) with approximation factor
almost π

2 . More precisely: to get an approximation factor at most π
2 (1 + ε) we need an algorithm

polynomial in |V (G)| and log 1/ε.

Corollary 5.4 For every graph G we have

χq(G) ≤ π

2
χf (G) .

Moreover, there is a sequence of graphs for which χq(G) is bounded, while χf (G) is unbounded.

Proof: For the first part it is enough to use Theorem 5.2, the bound χv(G) ≤ ϑ(G) (Theorem 8.2
of [23]) and the well-known bound ϑ(G) ≤ χf (G). We use Theorem 1.2 of Feige, Langberg, and
Schechtman [12]: There are infinitely many graphs G that are vector 3-colorable and satisfy α(G) ≤
n0.843 (where n is the number of vertices of G). Each such graph G satisfies χq(G) ≤ 3π/2 < 5, and
χf (G) ≥ n/n0.843 = n0.157. 2
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Let us note here an exciting development related to the above mentioned result of Feige, Langberg,
and Schechtman [12]. If we are given a 3-colorable graph G, it is still computationally hard to find a 3-
coloring of it. This lead Karger, Motwani, and Sudan [23] to their definition of vector chromatic number.
As χv(G) ≤ χ(G) ≤ 3, and vector coloring is computationally tractable, we can find a vector 3-coloring
of G and then use various rounding techniques to find a coloring of G. The best result in this direction is
O(n0.19996) colors due to Kawarabayashi and Thorup [24]. As a limit to this approach Feige, Langberg,
and Schechtman [12] observe that just using the fact that χv(G) ≤ 3 does not prevent a graph from having
chromatic number as large as Ω(n0.157), thus to efficiently color 3-colorable graph with less colors (if at
all possible), a different technique is needed.

6 Concluding Remarks
Bipartite subgraph polytope For a bipartite subgraph B ⊆ G, let cB be the characteristic vector
of E(B). Bipartite subgraph polytope PB(G) is the convex hull of points cB , for all bipartite graphs
B ⊆ G. The study of this polytope was motivated by the MAXCUT problem: looking for a weighted
maximum cut of G simply means solving a linear program over PB(G). Thus, for graphs where PB(G)
has simple description, we can have a polynomial-time algorithm for MAXCUT; this in particular happens
for weakly bipartite graphs (which include planar graphs), see [18]. We apply PB to yield yet another
definition of x.

Theorem 6.1 x(G) = max{
∑
e∈E(G) ye | y · c ≤ 1 defines a facet of PB(G)}

Proof: By LP duality x(G) is a solution to the program (3). This means, that we are maximizing over
such y, that for each cut X satisfy y · cX ≤ 1. As the convex hull of vectors cX is PB , we are maximizing
the sum of coordinates of an element of the dual polytope P ∗B . This maximum is attained for some vertex
of P ∗B , that is for y such that y · c ≤ 1 defines a facet of PB . 2

‘Natural’ facets of PB(G) are defined by
∑
e∈E(H) ye ≤ MAXCUT(H) for some H ⊆ G. (This

inequality is satisfied for every graph H , but it doesn’t always define a face of maximal dimension.) This
proves the following observation (we add a direct proof, too).

Lemma 6.2 x(G) ≥ 1/(minH⊆G b(H))

Proof: Suppose H ⊆ G. Then there exists a cut-continuous mapping (indeed, a homomorphism) from H
to G, which by Lemma 1.2 and 2.1 implies 1/b(H) ≤ x(G). 2

Let us return to Lemma 2.1 for a while. In general x(G) and 1/b(G) can be as distant as possible: LetG
be a disjoint union of aKn andKN,N . Now x(G) is close to 2 (becauseG is homomorphically equivalent
to Kn, hence x(G) = x(Kn)) and b(G) is close to 1 (provided N is sufficiently large). This motivates
Lemma 6.2, which improves the original bound. A natural question is whether this improvement gives
the correct size of x. It turns out it does not (contrary to a conjecture in the author’s thesis). In [9] it is
shown, that the circular clique K11/4 is a counterexample.

A failed approach The proof of Theorem 4.2 could be attempted by another way: First, observe
that the Kneser graph K(n, r) is a subgraph of Qn/2r. By Lemmas 1.2 and 2.1 we have x(Qn/2r) ≥
x(K(n, r)) ≥ 1

b(K(n,r)) . Thus, if we knew the value of b(K(n, r)) (and it turned out to be 2r/n for the
range of r we are interested in), we would be done.
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In [28] it is claimed that if 2r ≤ n ≤ 3r then, indeed, b(K(n, r)) = 2r/n. This would imply the
conjecture for even k less than 3/2 · n; unfortunately the proof in [28] is incomplete (as already observed
by [3]). Thus, the true value of MAXCUT for Kneser graphs remains open.

Generalizations and future work As already mentioned in the introduction, the metric that is used
in [14, 9] to study approximability of MAX-H-COLORING can be computed from a generalization of
fractional covering by cuts. One only needs to consider more general edge sets in place of cuts, namely
edge sets of graphs that are homomorphic to H . Then the cube Qn/k in Equation (1) is replaced by
appropriately defined power of H . One may also use this motivation to define H-continuous mappings as
follows. We call a subset X ⊆ E(G) an H-cut in G whenever there is a mapping g : V (G)→ V (H) for
which g−1(E(H)) = X . We say a mapping f : E(G1)→ E(G2) is H-continuous whenever a preimage
of each H-cut is an H-cut. This notion deserves further attention. Some preliminary observations are
obtained in [9].

Possible use of recent techniques for approximating MAXCUT In recent years, a lot of attention has
been put to various ways to approximate MAXCUT without using semidefinite programming. In partic-
ular, finding a combinatorial approximation algorithm is of interest; a nice algorithm based on random
walks exists [21]. It seems, however, that this method fails to approximate χq , because it is based on
local properties of the given graph, and χq can be very large even for graphs that are locally trees (see
Theorem 2.6). It would be interesting, though, if such techniques could be used for approximating χq for
graphs of bounded degree.

Number of cuts required By definition, if x(G) = t then there is a cut n/k-cover for some n, k
satisfying t = n

k . It would be nice to know how large n is required. To be precise, define n(G) to be the
smallest n as above. Then we let

f(v) = max{n(G) | G is a graph with v vertices} .

This maximum clearly exists (as there are only finitely many graphs on v vertices).

Question 6.3 How fast doest f(v) grow? Is f(v) ≤ 2v? For what graph(s) is the maximum in the
definition of f(v) attained?

The estimate by 2v seems natural, as there is only 2v−1 different cuts in a graph on v vertices. However,
one may be forced to take some cuts repeatedly.

Complexity In view of the complexity of computing other variants of chromatic number, the following
conjecture is natural. Note, however, that in contrast with chromatic or fractional chromatic number,
cubical chromatic number can be approximated up to a constant factor.

Conjecture 6.4 For any s > 2 determining if an input graph G satisfies χq(G) ≤ s is NP-complete.

Perhaps more importantly: how well can one approximate χq in polynomial time? Can one use the
techniques of [1] to find a PTAS for χq(G) — at least in the case when G is dense? It is tempting to use
the ellipsoid method to solve the linear program (3), where results of [1] can serve as an (approximate)
separation oracle. To do this, however, we need a PTAS for weighted MAX-CUT. While some results in
this direction are known [13], they are not strong enough (the issue is that some weights may be much
larger than the others, which basically makes our instance not dense).
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Cubic graphs For the reader’s convenience we restate here Question 2.7. For known partial results we
refer the reader to Section 2.

Question 6.5 Let G be a cubic graph with no cycle of length ≤ c. How large can x(G) (resp. χq(G))
be?
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[25] László Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25
(1978), no. 3, 319–324.
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