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We consider the rank reduction problem for matroids: Given a matroid M and an integer k, find a minimum size
subset of elements of M whose removal reduces the rank of M by at least k. When M is a graphical matroid this
problem is the minimum k-cut problem, which admits a 2-approximation algorithm. In this paper we show that the
rank reduction problem for transversal matroids is essentially at least as hard to approximate as the densest k-subgraph
problem. We also prove that, while the problem is easily solvable in polynomial time for partition matroids, it is NP-
hard when considering the intersection of two partition matroids. Our proof shows, in particular, that the maximum
vertex cover problem is NP-hard on bipartite graphs, which answers an open problem of B. Simeone.
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1 Introduction
Consider the well-known minimum k-cut problem: Given a graphG and an integer k, find a minimum size
subset of edges whose removal increases the number of connected components by at least k. This problem
is NP-hard, assuming k is part of the input, and several 2-approximation algorithms have been developed
for it over the years [14, 17, 18, 20]. Notice that the minimum k-cut problem has a simple formulation
in terms of matroids: Given a graph G and an integer k, find a minimum size subset of elements of the
graphical matroid of G whose removal reduces its rank by at least k.

This observation motivates the study of the rank reduction problem in other classes of matroids. For
example, is the rank reduction problem computationally hard and, if so, does it admit approximation
algorithms with good approximation guarantees (as is the case for graphical matroids)? Moreover, as we
will see, many fundamental problems can be formulated in this rank reduction framework.

In this paper, our focus is on the case of transversal matroids. First, we show that the rank reduction
problem in transversal matroids is roughly at least as hard to approximate as the densest k-subgraph
problem: Given a graph G and an integer k, find a subset of k vertices inducing a subgraph with a
maximum number of edges. (Note that in our reduction the parameter k is not necessarily the same one as
in the rank reduction problem.) The densest k-subgraph problem can be approximated to within a factor
of O(n

1
4 +ε) due to a recent breakthrough result of [4]. Moreover, it is widely believed [5, 1, 10, 11] that

its hardness is also close to this upper bound – indeed, Bhaskara et al. [5] present nΩ(1) lower bounds
for lift and project methods based upon the Sherali-Adams and the Lassere hierarchies. We will show in
particular that an O(mε)-approximation algorithm for the rank reduction problem on transversal matroids
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(where m denotes the number of elements) implies an O(n4ε)-approximation algorithm for the densest
k-subgraph (where n is the number of vertices).

Secondly, we prove that while the rank reduction problem is easily solvable in polynomial time for
partition matroids (a special class of transversal matroids), it is NP-hard when considering the intersection
of two partition matroids. Our proof shows in particular that the maximum vertex cover problem—also
known as the partial vertex cover problem—is NP-hard on bipartite graphs. Here, one is given a graph
and a positive integer k, and the goal is to find a set of k vertices hitting as many edges as possible. The
problem is obviously NP-hard on arbitrary graphs since it contains the vertex cover problem as a special
case. Whether it remained NP-hard on bipartite graphs was an open problem of B. Simeone (see [15]).
We note that we learned after finishing this paper that Apollonio and Simeone [2] independently obtained
a proof of this result.

2 Preliminaries
In this section we give the necessary definitions and notations. All graphs and matroids in this paper are
finite, and “graph” will always mean an undirected simple graph. We use the shorthands |G| and ||G|| for
the number of vertices and edges of a graph G, respectively. We denote by µ(G) the maximum size of a
matching in G, which we call the matching number of G.

A matroid M is a pair (E, I) where I is a family of subsets, called the independent sets, of the ground
set E satisfying the following three axioms:

• the empty set ∅ is independent;

• every subset of an independent is again independent, and

• if X and Y are two independent sets with |X| > |Y | then there exists x ∈ X \Y such that Y ∪{x}
is independent.

The inclusion-wise maximal independent sets are the bases of the matroid M ; as follows from the third
axiom the bases all have the same cardinality. The rank function of M is the function r : 2E → N that
assigns to each subset X of elements of E the maximum size r(X) of an independent set contained in X ,
called the rank of X . In particular, r(E) is the cardinality of a basis of M , which is called the rank of M .

The rank reduction problem for matroids is defined as follows: Given a positive integer k and a matroid
on a set A of elements with rank function r, the goal is to find a minimum size subset X ⊆ A such that
r(A \X) 6 r(A)− k.

For example consider the case of graphical matroids: Given a graph G = (V,E), the graphical matroid
of G is obtained by taking E as ground set, and letting a subset F of edges be independent if and only if
the corresponding subgraph is acyclic. Here the rank reduction problem is the minimum k-cut problem.

As stated, here we study transversal matroids. A bipartite graph G with bipartition (A,B) induces a
matroid M as follows: The matroid M has A as ground set, and X ⊆ A is independent in M if and
only if there exists a matching of G covering X . The fact that this is indeed a matroid is well-known; see
for instance [19]. Any matroid M that can be obtained this way is called a transversal matroid, and the
bipartite graph G is said to be a model for M . Observe that, letting r denote the rank function of M , the
rank r(X) of X ⊆ A is equal to µ(G[X ∪B]). Also note that being a transversal matroid is a hereditary
property, in the sense that for each set X ⊆ A, taking the restriction I ∩X of all independent sets I yields
a transversal matroid on ground set X .
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A special case of transversal matroids are partition matroids. Here we are given a collectionE1, . . . , Ep
of disjoint sets and integers d1, . . . , dp such that 0 6 di 6 |Ei| for each i ∈ {1, . . . , k}. One can define
a corresponding matroid with ground set E := E1 ∪ · · · ∪ Ek by letting X ⊆ E be independent if and
only if |Ei ∩X| 6 di for each i ∈ {1, . . . , k}. Such a matroid is called a partition matroid, with model
((E1, d1), . . . , (Ep, dp)). This corresponds to a transversal matroid on a bipartite graphG with bipartition
(E,B), where B has di vertices that are adjacent to all vertices in Ei, and none other, for each set Ei.
Notice that partition matroids are also hereditary.

Throughout, since we restrict ourselves to specific families of matroids, we assume that the matroid is
given concisely and not given explicitly as a set system in input. Specifically, a corresponding model of
the matroid is provided: a bipartite graph for a transversal matroid, a graph for a graphical matroid, etc.

More generally, the rank reduction problem can be considered on the intersection of matroids. Given
two matroids M1 = (E, I1) and M2 = (E, I2) with common ground set E, the intersection M1 ∩M2

of M1 and M2 is the pair (E, I) where I is the family of sets X ⊆ E that are independent in both M1

and M2, which are said to be the independent sets of M1 ∩M2. While the independence system (E, I)
is not necessarily a matroid anymore, it enjoys several of the nice properties of matroids (see [19]). In
particular, letting as before the rank r(X) of X ⊆ E be the maximum size of an independent set of
M1 ∩M2 contained in X , the rank r(E) of M1 ∩M2 can be computed in polynomial time given access
to the rank functions r1 and r2 of M1 and M2, respectively, by a classical result of Edmonds (see [19]).
We examine the rank reduction problem for the intersection of two partition matroids in Section 4.

3 Transversal Matroids
We start our investigation of the rank reduction problem with an easy observation, namely that the problem
can be solved in polynomial time if the input matroid is a partition matroid.

Theorem 3.1 The rank reduction problem can be solved in polynomial time on partition matroids.

Proof: Let M be a given partition matroid with model ((E1, d1), . . . , (Ep, dp)) and rank function r.
Let E := E1 ∪ · · · ∪ Ep denote the ground set of M . Observe that r(E) =

∑p
i=1 di. Let k be the

given parameter for the rank reduction problem on M . We may assume that 1 6 k 6 r(E). Let
ci := |Ei| − di for each i ∈ {1, . . . , p}. Given X ⊆ E, the rank r(E \X) of the set E \X is equal to∑p
i=1 min(|Ei \X|, di).
Let X ⊆ E be such that r(E \X) 6 r(E) − k. Moreover, assume X is inclusion-wise minimal with

this property. Then, for each i ∈ {1, . . . , p}, either |Ei ∩ X| > ci + 1 or Ei ∩ X = ∅. Moreover,
letting J be the subset of indices i ∈ {1, . . . , p} such that Ei ∩X 6= ∅, we have that

∑
i∈J di > k and

|X| = k +
∑
i∈J ci.

Conversely, suppose J ′ ⊆ {1, . . . , p} is such that
∑
i∈J′ di > k. Then choosing arbitrarily ci elements

of Ei, for each i ∈ J ′, plus k additional elements from
⋃
i∈J′ Ei gives a set X ′ with |X ′| = k+

∑
i∈J′ ci

such that r(E \X ′) 6 r(E)− k.
Therefore, computing an optimal solution to the rank reduction problem reduces to the problem of

finding a subset J ⊆ {1, . . . , p} such that
∑
i∈J di > k and

∑
i∈J ci is minimum. Thus we obtain a

knapsack problem. Moreover, as ci and di are at most |Ei|, they are of polynomial size when encoded in
unary. Thus the knapsack problem can be solved easily in polynomial time using dynamic programming.
2



146 Gwenaël Joret, Adrian Vetta

While the rank reduction problem admits a simple polynomial-time algorithm on partition matroids,
the problem turns out to be more difficult on the broader class of transversal matroids. In fact, up to some
degree, the problem can be viewed as a generalization of the densest k-subgraph problem. In the latter
problem, one is given a graph G and a positive integer k, and the aim is to find a subgraph H of G with
|H| = k and ||H|| maximum. Towards this goal, we consider a closely related problem, the minimum
t-edge subgraph problem: Given a graph G and a positive integer t, the goal is to find a subgraph H of G
with ||H|| = t and |H| minimum.

We start by drawing a connection between the rank reduction problem on transversal matroids and
the minimum t-edge subgraph problem. Then we will extend the connection to the densest k-subgraph
problem.

Lemma 3.2 For each constant ε with 0 < ε < 1/2, every O(mε)-approximation algorithm for the rank
reduction problem on transversal matroids with m elements can be turned into an O(n2ε)-approximation
algorithm for the minimum t-edge subgraph problem on graphs with n vertices.

Proof: Let G = (V,E) be an instance of the minimum t-edge subgraph problem. Let n := |V |. Let
V1, V2, . . . , Vn be n disjoint copies of V . Let E′ be a disjoint copy of E. Let H be the bipartite graph
with bipartition (A,B) where A = V1 ∪ V2 ∪ · · · ∪ Vn ∪ E′ and B = E, and where u ∈ A is adjacent to
v ∈ B if either u corresponds to a vertex of G that is incident to the edge corresponding to v in G, or if u
and v correspond to the same edge of G.

Let r denote the rank function of the transversal matroid induced by H on A; thus for X ⊆ A, r(X)
is the maximum size of a matching in H[X ∪ B]. Obviously, r(A) = |E|, since every v ∈ B can be
matched to its copy in A. Let m := |A| denote the number of elements of the transversal matroid. Now
consider the rank reduction problem on this matroid with k = t. Recall that a feasible solution is a subset
X ⊆ A such that r(A \X) 6 r(A)− t = |E| − t.

As is well known, we have that r(A \ X) 6 r(A) − t for X ⊆ A if and only if there exists Y ⊆ B
such that |NH(Y ) \ X| 6 |Y | − t, where NH(Y ) denotes the set of vertices of H that have a neighbor
in Y .(i) Such a set Y is said to be a witness for X . The set Y defines in turn a corresponding subgraph
GY of G consisting of all the edges of G included in Y , and the vertices of G incident to those edges.
By definition of H , the set NH(Y ) consists of the n copies of each vertex of GY , along with the copies
in E′ of each edge of GY . Observe that any set X ′ obtained by taking the n copies in A of each vertex
of GY and t arbitrarily chosen edges of GY in A is such that |NH(Y ) \X ′| = |Y | − t. Moreover, since
|NH(Y ) \X| 6 |Y | − t and X ′ ⊆ NH(Y ), it follows that |X ′| 6 |X|, that is, X ′ is a solution of size no
greater than X and having the same witness Y . Such a pair (X ′, Y ) is called a canonical pair.

Now, if a canonical pair (X,Y ) is such that |Y | > t, then NH(Y ) \X consists of exactly |Y | − t > 0
edges of GY (or more precisely, their copies in E′). For each u ∈ NH(Y ) \X with corresponding copy

(i) This is a consequence of Hall’s Marriage Theorem, as we now explain for completeness. Add t − 1 new vertices to the set A,
yielding a set A′, and make each of them adjacent to every vertex in B. Let H′ be the bipartite graph obtained from H in this
manner. Let X ⊆ A. Then every matching M in H \X with |M | 6 |B|− (t−1) can be extended to a matching M ′ of H′ \X
with |M ′| = |M |+ t− 1. Conversely, every matching M ′ in H′ \X with |M ′| > t− 1 yields a matching M of H \X with
|M | > |M ′| − (t − 1) by discarding the at most t − 1 edges of M ′ incident to the vertices in A′ \ A. Hence, H \ X has a
matching of size |B| − (t − 1)—or equivalently, r(A \ X) > r(A) − (t − 1)—if and only if B can be completely matched
in H′ \ X . By Hall’s theorem, the latter happens if and only if |NH′−X(Y )| > |Y | for every Y ⊆ B, which is equivalent to
|NH(Y ) \X| > |Y | − (t− 1) for every Y ⊆ B. Therefore, r(A \X) 6 r(A)− t if and only if there exists Y ⊆ B such that
|NH(Y ) \X| 6 |Y | − t.



Reducing the rank of a matroid 147

v in B, we have that X \ {u} is again a solution to the rank reduction problem, with witness Y \ {v}, and
of size smaller than X .

To summarize the above discussion, given an arbitrary setX ′ ⊆ A such that r(A\X ′) 6 r(A)− t, one
can in polynomial time compute a canonical pair (X,Y ) with |Y | = ||GY || = t and |X| = n|GY |+ t 6
|X ′|.

Conversely, for every subgraph G′ ⊆ G with ||G′|| = t, there is a natural corresponding canonical pair
(X,Y ), where Y contains the copies in B of the t edges of G′, and where X = NH(Y ). Letting x∗ and
j∗ denote the size of an optimal solution for the rank reduction and minimum t-edge subgraph problems,
respectively, it follows that x∗ = nj∗ + t.

Now suppose that the rank reduction problem admits a cmε-approximation algorithm, where 0 < ε <
1/2 and c > 0 are absolute constants. Letting (X,Y ) be a canonical pair with |Y | = t obtained using this
algorithm, we have

n|GY |+ t = |X| 6 cmεx∗ = c(n2 + |E|)ε(nj∗ + t) 6 c(2n2)ε(nj∗ + t)

and hence

|GY | 6
c(2n2)ε(nj∗ + t)− t

n
6 2cn2ε

(
j∗ +

t

n

)
6 2cn2ε (j∗ + j∗) = 4cn2εj∗.

(In the last inequality we used the fact that (j∗)2 > t, and thus t
n 6 (j∗)2

n 6 j∗n
n = j∗.) Therefore, GY

is a t-edge subgraph whose order is within a 4cn2ε-factor of optimal. 2

As pointed out to us by an anonymous referee, the following lemma is implicit in the recent work
of Chlamtac, Dinitz, and Krauthgamer [8] (in [8], the minimum t-edge subgraph problem is called the
smallest m-edge subgraph problem). We include a proof nevertheless, for completeness.

Lemma 3.3 For each constant ε with 0 < ε < 1/2, every O(nε)-approximation algorithm for the min-
imum t-edge subgraph problem can be turned into an O(n2ε)-approximation algorithm for the densest
k-subgraph problem.

Proof: Suppose that the minimum t-edge subgraph problem admits a c′nε-approximation algorithm,
which we denote A, where 0 < ε < 1 and c′ > 1 are absolute constants. Let G be an instance of the
densest k-subgraph problem. As before, we let n and m denote the number of vertices and edges of G,
respectively. We may assume n > k > 2. Since c′ > 1 and nε > 1, there exists c with c′ 6 c 6 2c′ such
that cnε is an integer. We will consider the approximation factor of A to be cnε in what follows, to avoid
cumbersome floors and ceilings in the calculations.

Run algorithm A on G with t = 1, 2, . . . ,m. Let Hi be the ith subgraph returned by the algorithm.
Clearly, we may suppose that |Hi| 6 |Hi+1| for each i ∈ {1, . . . ,m− 1}.

Let z∗ denote the number of edges in an optimal solution to the densest k-subgraph problem on G. If
|Hm| 6 kcnε then let t′ := m, otherwise let t′ be the index in {1, . . . ,m − 1} such that |Ht′ | 6 kcnε

and |Ht′+1| > kcnε. Since algorithm A is a cnε-approximation algorithm, and since either t′ = m or
|Ht′+1| > kcnε, it follows that every subgraph of G with exactly k vertices has at most t′ edges, that is,
z∗ 6 t′.
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Let q := d|Ht′ |/bk/2ce. Observe that 2 6 q 6 3cnε. Let V1, V2, . . . , Vq be a partition of the vertex set
of Ht into q subsets with |V1| = |V2| = · · · = |Vq−1| = bk/2c and |Vq| = |Ht′ |− (q−1)bk/2c 6 bk/2c.
Let (Vi, Vj) be a pair with i 6= j such that ||Ht′ [Vi ∪ Vj ]|| is maximized. By the pigeonhole principle,

||Ht′ [Vi ∪ Vj ]|| >
||Ht′ ||(

q
2

) =
t′(
q
2

) >
t′

(3cnε)2
>

z∗

9c2n2ε
.

If |Vi ∪ Vj | = k, then let H := Ht′ [Vi ∪ Vj ]. If, on the other hand, |Vi ∪ Vj | < k, then let H :=
Ht′ [Vi ∪ Vj ∪X] where X is an arbitrary subset of V (Ht′) \ (Vi ∪ Vj) of size k− |Vi ∪ Vj |. Thus in both
cases |H| = k and ||H|| > z∗/9c2n2ε. Hence, H is a solution to the densest k-subgraph problem on G
whose number of edges is within a 9c2n2ε-factor of the optimum. 2

Combining Lemma 3.2 and 3.3 gives:

Theorem 3.4 For each constant ε with 0 < ε < 1/4, every O(mε)-approximation algorithm for the rank
reduction problem on transversal matroids with m elements can be turned into an O(n4ε)-approximation
algorithm for the densest k-subgraph problem on graphs with n vertices.

As discussed in the introduction, the best approximation algorithm for the densest k-subgraph problem
currently known has an approximation ratio of O(n1/4+δ) for any fixed δ > 0 [4] and it is conjectured
that the inapproximability of the problem is of a similar magnitude. It would be nice to obtain strong
inapproximability bounds for the rank reduction problem that do not rely on this conjecture. One approach
may be to analyze hypergraphs as the rank reduction problem in transversal matroids incorporates the
hypergraph version of the minimum t-edge subgraph problem. That is, we wish to select as few vertices
as possible that induce at least t hyperedges. Perhaps surprisingly, little is known about this problem. As
far as we are aware, the only specific hardness result is NP-hardess due Vinterbo [21] who studied the
problem in the context of making medical databases anonymous.

We conclude this section with a remark about the approximability of the minimum t-edge subgraph
problem itself. Given the existence of a O(n1/4+δ)-approximation algorithm for the densest k-subgraph
problem, in view of Lemma 3.3 it is perhaps natural to wonder whether one could achieve a O(n1/8+δ)-
approximation for the former problem. While this is still open as far as we know, Chlamtac et al. [8]
recently made progress in that direction by describing an algorithm for the minimum t-edge subgraph
problem with an approximation ratio of O(n3−2

√
2+δ) = O(n0.1716+δ) for fixed δ > 0.

4 The Maximum Vertex Cover Problem in Bipartite Graphs
As we have seen, the rank reduction problem admits a fairly simple polynomial-time algorithm on par-
tition matroids but becomes much harder on transversal matroids, in the sense that approximation algo-
rithms offering good guarantees seem unlikely to exist. Another interesting generalization of the case of
partition matroids is to consider the intersection of two partition matroids.

As is well-known, the set of matchings of a bipartite graph G = (V,E) with bipartition (A,B) can
be modeled as the family of common independent sets of two partition matroids M1 and M2 defined on
E: Take M1 to be the partition matroid with model ((E(u1), 1), . . . , (E(ua), 1)) and M2 the partition
matroid with model ((E(v1), 1), . . . , (E(vb), 1)), where A = {u1, . . . , ua}, B = {v1, . . . , vb}, and
for w ∈ V the set E(w) denotes the set of edges incident to w. Hence, in this specific case the rank
reduction problem on M1 ∩M2 amounts to finding a subset F of edges of G of minimum size such that
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µ(G− F ) 6 µ(G)− k. In this section we show that this problem is NP-hard. More accurately, we show
that a problem polynomially equivalent to it, the maximum vertex cover problem on bipartite graphs, is
NP-hard; see Theorem 4.1. This solves an open problem of B. Simeone (see [15]).

The maximum vertex cover problem (also known as the partial vertex cover problem) is defined as
follows: Given a graph G = (V,E) and a positive integer k 6 |G|, find a subset X of vertices of G with
|X| = k such that the number of edges covered by X is maximized. (An edge e of G is covered by X if
e has at least one endpoint in X .)

Now, if G is bipartite, t is a positive integer with t 6 µ(G), and F is a subset of edges of G such that
µ(G− F ) 6 µ(G)− t =: k, then by Kőnig’s theorem G− F has a vertex cover X of size k, and hence
X covers at least |E| − |F | edges of G. (We remark that X could cover some edges of F too, and that
X can be computed in polynomial time given F .). Conversely, for every set X ⊆ V with |X| = k, the
set F of edges of G not covered by X is such that µ(G − F ) 6 k. Therefore, for bipartite graphs, the
maximum vertex cover problem is polynomially equivalent to that of finding a minimum-size set of edges
decreasing the matching number by a prescribed amount.

It should be noted that two recent works [9, 6] with an overlapping set of authors claim that the NP-
hardness of the maximum vertex cover problem on bipartite graphs can be derived directly from the reduc-
tion of Corneil and Perl [7] showing that the densest k-subgraph problem is NP-hard on bipartite graphs.
However, the argument relating the latter reduction to the maximum vertex cover problem, described ex-
plicitly in [9, Lemma 4], is flawed.(ii) We also mention that the proof of Theorem 1 in [6], showing that a
related problem called the maximum quasi-independent set problem is NP-hard on bipartite graphs, relies
on the assumption that the maximum vertex cover problem is NP-hard on bipartite graphs. Thus our result
also fills a gap in that proof.

Theorem 4.1 The maximum vertex cover problem is NP-hard on bipartite graphs.

Before proving Theorem 4.1, we need to introduce a technical lemma.

Lemma 4.2 Let ` be an integer with ` > 6. Then the integer program

minimize x+ 2y + 3z

s. t. x+ y + z − s =
(
`

2

)
− `

x 6

(
s

2

)
x, y, z, s ∈ N

has a unique optimal solution given by x =
(
`
2

)
, y = 0, z = 0, s = `.

(ii) As mentioned in [9, Lemma 3], the maximum vertex cover problem in bipartite graphs is polynomially equivalent to the densest
k-subgraph problem in complements of bipartite graphs. Thus one may equivalently consider the complexity of the latter problem.
In the proof of Lemma 4 in [9], the authors point out that the reduction of [7] implies that the problem of finding a densest k-
subgraph in the complement of a bipartite graph with bipartition (A,B) with k = q +

(q
2

)
and with the extra requirement that

it contains exactly q vertices from A and
(q
2

)
vertices from B is NP-hard. From this they wrongly conclude that the densest

k-subgraph problem, without this extra constraint, is also NP-hard on complements of a bipartite graphs. (In fact, the instances
obtained via the reduction in [7] satisfy |B| > k, and thus a densest k-subgraph is trivially obtained by taking k vertices in the
clique B.)
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Proof: The proof is a straightforward case analysis. Consider an optimal solution x, y, z, s to the in-
teger program and, arguing by contradiction, assume it differs from the solution described above. Let
f(x, y, z) := x+ 2y + 3z.

Case 1: s 6 2. We have x 6 s and thus

y + z =

(
`

2

)
− `+ s− x >

(
`

2

)
− `.

It follows that f(x, y, z) > 2(y + z) > 2
(
`
2

)
− 2`. But 2

(
`
2

)
− 2` >

(
`
2

)
since ` > 6, contradicting the

optimality of the solution.
Case 2: 3 6 s < `.

y + z =

(
`

2

)
− `+ s− x >

(
`

2

)
− `+ s−

(
s

2

)
=

((
`

2

)
−
(
s

2

))
− (`− s) > 2.

Here, the last inequality follows from the fact that
(
s+1

2

)
−
(
s
2

)
> 3.

Now, increment s by 1, x by 3, and decrement y and z in such a way that they remain non-negative
integers and that the sum y+z decreases by exactly 2. The modified solution is still feasible and f(x, y, z)
decreases by at least 1, a contradiction.

Case 3: s = `. Then y + z > 1, since otherwise we would have the solution described in the lemma
statement. It follows that x 6

(
`
2

)
− 1. Thus we can increment x by 1 and decrement by 1 a positive

variable among y, z. This strictly decreases f(x, y, z), a contradiction.
Case 4: s > `. Then x + y + z =

(
`
2

)
+ s − l >

(
`
2

)
. But x 6

(
`
2

)
<
(
s
2

)
, otherwise the solution

cannot be minimum. Therefore y + z > 1. Thus we improve the solution by incrementing x by 1 and
decrementing by 1 a positive variable among y, z. 2

Now we may turn to the proof of Theorem 4.1.

Proof of Theorem 4.1.: The reduction is from the NP-complete problem Clique: Given a graph H and
an integer `, decide whether H contains a clique on ` vertices or not. We may assume ` > 6 (otherwise,
we simply check the existence of an `-clique by brute force). We may also suppose that H has minimum
degree at least 2. Indeed, a vertex with degree at most 1 cannot be part of an `-clique, and thus those
vertices can iteratively be removed from the graph. Finally, we assume that ||H|| > |H| +

(
`
2

)
. This last

assumption can also be made without loss of generality. Indeed, if ||H|| is too small then one can simply
consider the disjoint union of H with a large enough 3-regular graph; since ` > 6 no vertex from this new
3-regular component can be part of an `-clique.

We build an instance (G, k) of the maximum vertex cover problem as follows. First, create two adjacent
vertices av and bv for every vertex v ∈ V (H), and similarly two adjacent vertices ae and be for every
edge e ∈ E(H). Next, for every edge uv ∈ E(H), add the edges auvbu, buvau and auvbv , buvav . Finally,
let

k := |H|+ ||H|| −
(
`

2

)
+ `.

Observe that G is bipartite with bipartition(
{ax : x ∈ V (H) ∪ E(H)}, {bx : x ∈ V (H) ∪ E(H)}

)
.

See Figure 1 for an illustration of the construction.
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Fig. 1: Illustration of the construction of the bipartite graph G. (We note that this graph H cannot be a valid instance
of the problem because ` > 6 and thus H cannot satisfy ||H|| > |H|+

(
`
2

)
; our aim here is only to illustrate how G

is obtained from H on a small example.)

A feasible solution for this instance of the maximum vertex cover problem is a subset X of vertices of
G with |X| = k, which we call a partial vertex cover for short. We let c(X) denote the number of edges
covered by such a set X . Let OPT denote the maximum of c(X) over every partial vertex cover X of G.

A partial vertex cover X of G is nice if

X ∩ {au, bu} ∈
{
{au}, {au, bu}

}
for every u ∈ V (H) and

X ∩ {ae, be} ∈
{
∅, {ae}

}
for every e ∈ E(H).

Claim 4.3 Given a partial vertex cover X of G, one can find a nice partial vertex cover X ′ of G with
c(X ′) > c(X).

Proof: First we define a partial vertex cover X̃ based on X which is close to being nice: Let

X̃ :=
{
au, bu : u ∈ V (H), au, bu ∈ X

}
∪
{
au : u ∈ V (H), |{au, bu} ∩X| = 1

}
∪
{
ae, be : e ∈ E(H), ae, be ∈ X

}
∪
{
ae : e ∈ E(H), |{ae, be} ∩X| = 1

}
.
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By construction |X̃| = |X|. Clearly, an edge axbx with x ∈ V (H) ∪ E(H) is covered by X̃ if and
only if it is covered by X . Also, given a pair (u, e) of vertex u ∈ V (H) and edge e ∈ E(H) such that u is
incident to e in H , the set X̃ covers at least as many edges in {aebu, beau} as X (though not necessarily
the same ones). It follows that c(X̃) > c(X).

A useful property of the set X̃ is that if bx ∈ X̃ for some x ∈ V (H)∪E(H) then necessarily ax ∈ X̃ .
For simplicity we call this property the a-property of X̃ .

We need to introduce an additional definition. An element x ∈ V (H) ∪ E(H) is said to be bad in a
partial vertex cover Y of G if either x ∈ V (H) and ax, bx /∈ Y (x is a bad vertex), or x ∈ E(H) and
ax, bx ∈ Y (x is a bad edge). Observe that Y is nice if and only if Y has the a-property and there is no
bad element.

Suppose e = uv is an edge of H which is bad in X̃ . If u or v is also bad in X̃ , say u, then let

X̃ ′ :=
(
X̃ − {be}

)
∪ {au}.

We have ae ∈ X̃ , thus the edge aebe is still covered by X̃ ′. Since X̃ ′ covers also beau, there is at most
one edge incident to be in G (namely, beav) which is not covered by X̃ ′. On the other hand, X̃ ′ covers the
previously uncovered edge aubu. Hence, X̃ ′ is a partial vertex cover with c(X̃ ′) > c(X̃). Observe that
X̃ ′ still has the a-property, and the edge e is no longer bad in X̃ ′.

If, on the other hand, none of u, v is bad in X̃ , then au, av ∈ X̃ by the a-property. Since ae ∈ X̃ , it
follows that c(X̃−{be}) = c(X̃). There exists an element x ∈ V (H)∪E(H) such that ax /∈ X̃ , because
|X̃| = k = |H|+ ||H|| −

(
`
2

)
+ ` < |H|+ ||H|| (since ` > 6). Let then

X̃ ′ :=
(
X̃ − {be}

)
∪ {ax}.

The set X̃ ′ is a partial vertex cover with the a-property and with c(X̃ ′) > c(X̃). Moreover, the edge e is
no longer bad in X̃ ′.

Now apply iteratively the above modifications on X̃ as long as there exists a bad edge. This results in
a partial vertex cover X̂ with the a-property, without bad edges, and with c(X̂) > c(X̃).

Next we deal with bad vertices in X̂ . Suppose u ∈ V (H) is such a vertex, that is, au, bu /∈ X̂ .
Consider two edges e, f incident to u in H . (Recall that H has minimum degree at least 2.) Since
|X̂| = k = |H|+ ||H|| −

(
`
2

)
+ ` and ||H|| > |H|+

(
`
2

)
by our assumption on H , we have |X̂| > 2|H|.

Together with the a-property of X̂ , it follows that ae′ ∈ X̂ for some edge e′ ∈ E(H) (possibly e′ = e or
e′ = f ). Note that be′ /∈ X̂ , because otherwise e′ would be a bad edge for X̂ . Let

X̂ ′ :=
(
X̂ − {ae′}

)
∪ {au}.

Since ae′ has degree 3 in G we have c(X̂ − {ae′}) > c(X̂)− 3. Furthermore, be, bf /∈ X̂ as there are no
bad edges in X̂ . Thus, the three edges aubu, beau, bfau of G were not covered by X̂ but are covered by
X̂ ′, so we have c(X̂ ′) > c(X̂). Similarly as before, the partial vertex cover X̂ ′ has the a-property and one
less bad vertex than X̂ . Therefore, iterating this procedure as long as there is a bad vertex, we eventually
obtain a partial vertex cover X ′ with c(X ′) > c(X̂) > c(X) having the a-property and no bad element,
as desired. 2
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Consider a nice partial vertex cover X of G. Let S(X) be the set of vertices u ∈ V (H) such that
au, bu ∈ X , and let s(X) := |S(X)|. An edge e = uv of H satisfies exactly one of the following three
conditions:

1. u, v ∈ S(X);

2. exactly one of u, v belongs to S(X),

3. u, v /∈ S(X).

We say that edge e is of type i (i ∈ {1, 2, 3}) if e satisfies the ith condition above and moreover ae, be /∈ X .
(We will focus on edges e of H such that ae, be /∈ X in what follows, which is why the other ones do not
get assigned a type.) Let Ei(X) be the set of edges of H with type i, and let ei(X) := |Ei(X)|.

Claim 4.4 Let X be a nice partial vertex cover. Then

c(X) = ||G|| − e1(X)− 2e2(X)− 3e3(X).

Proof: As X is nice, av ∈ X for all v ∈ V . Therefore every edge of the form avbv or avbe is covered.
Also, for each edge e = uv ∈ E(H) \ ∪16i63Ei(X) we have that aebe, aebu, aebv are all covered.
Thus the only uncovered edges are incident to vertices ae where e ∈ ∪16i63Ei(X). Suppose e ∈
∪16i63Ei(X) and let us consider which edges among the three edges aebe, aebu, aebv are covered by X .
If e ∈ E1(X), then X covers aebu and aebv but not aebe. If e ∈ E2(X), then X covers exactly one
of aebu, aebv , and avoids aebe. If e ∈ E3(X), then X covers none of the three edges. Hence, the total
number of edges not covered by X is exactly e1(X) + 2e2(X) + 3e3(X). 2

Claim 4.5 Let X be a nice partial vertex cover. Then

c(X) 6 ||G|| −
(
`

2

)
,

with equality if and only if s(X) = `, e1(X) =
(
`
2

)
, e2(X) = e3(X) = 0.

Proof: Let x := e1(X), y := e2(X), z := e3(X) and s := s(X). Then c(X) = ||G||− f(x, y, z), where
f(x, y, z) = x+ 2y + 3z by the previous claim.

Every edge in E1(X) has its two endpoints in S(X); hence,(
s

2

)
> x. (1)

Also,

|H|+ ||H|| − (x+ y + z − s) = |X| = k = |H|+ ||H|| −
((

`

2

)
− `
)
,

and thus

x+ y + z − s =
(
`

2

)
− `. (2)
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Since ` > 6 and x, y, z, s, ` are non-negative integers satisfying (1) and (2), by Lemma 4.2 we have
f(x, y, z) >

(
`
2

)
, or equivalently,

c(X) 6 ||G|| −
(
`

2

)
.

Moreover, equality holds if and only if x =
(
`
2

)
, y = 0, z = 0, s = ` by the same lemma. 2

It follows from Claims 4.3 and 4.5 that

OPT 6 ||G|| −
(
`

2

)
.

If H has an `-clique K ⊆ H , then the subset X ⊆ V (G) defined by

X := {au, bu : u ∈ V (K)} ∪ {au : u ∈ V (H)− V (K)}
∪{ae : e ∈ E(H)− E(K)}

is a partial vertex cover of G with c(X) = ||G|| −
(
`
2

)
, implying OPT = ||G|| −

(
`
2

)
.

Conversely, if OPT = ||G|| −
(
`
2

)
, then there exists a partial vertex cover X of G with c(X) =

||G|| −
(
`
2

)
, and by Claim 4.3 we may assume that X is nice. From Claim 4.5 we then have s(X) = `,

e1(X) =
(
`
2

)
, e2(X) = e3(X) = 0, implying that S(X) induces an `-clique in H .

Therefore, we can decide in polynomial time if H has an `-clique by checking if OPT = ||G|| −
(
`
2

)
.

This concludes the proof. 2

The NP-hardness of the maximum vertex cover problem on bipartite graphs motivates the search for
non-trivial approximation algorithms for this class of graphs. A recent result in this direction is due to
Apollonio and Simeone [3], who gave an LP-based (4/5)-approximation algorithm for bipartite graphs.
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