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An r-coloring of a knot diagram is an assignment of integers modulo r to the arcs of the diagram such that at each
crossing, twice the the number assigned to the over-arc equals the sum of the numbers assigned to the under-arcs,
modulo r. The number of r-colorings is a knot invariant i.e., for each knot, it does not depend on the diagram we are
using for counting them. In this article we calculate the number of r-colorings for the so-called Turk’s Head Knots,
for each modulus r. Furthermore, it is also known that whenever a knot admits an r-coloring using more than one
color then all other diagrams of the same knot admit such r-colorings (called non-trivial r-colorings). This leads to
the question of what is the minimum number of colors it takes to assemble such an r-coloring for the knot at issue. In
this article we also estimate and sometimes calculate exactly what is the minimum numbers of colors for each of the
Turk’s Head Knots, for each relevant modulus r.
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1 Introduction
Given an integer r > 1 and a knot diagram,DK , of a given knotK, a (Fox) r-coloring ofDK (Fox (1961))
is an assignment of integers mod r (i.e., numbers from Zr = {0, 1, 2, . . . , r − 1} mod r) to the arcs of
the diagram such that, at each crossing of DK , the equality “twice the color on the over-arc equals the
sum of the colors on the under-arcs” holds (mod r). The Fox r-colorings can be alternatively envisaged
as follows. Assign a variable to each arc of DK and at each crossing read off the equation 2y−x− z = 0
where y is the variable assigned to the over-arc and x and z are the variables assigned to the under-arcs
(Figure 1).

A system of linear homogeneous equations is thus associated to each knot diagram. The solutions of
this system of equations mod r constitute the r-colorings of DK . There are always the trivial colorings
i.e., the colorings where each arc is assigned the same color. Upon performing a Reidemeister move on
DK endowed with an r-coloring, we can consistently assign colors to the arcs on the transformed portion
of diagram in a unique way so that we obtain an r-coloring on the new diagram. Furthermore, if we undo
this Reidemeister move, we can reassign colors so that we obtain the original r-coloring on DK . There is
thus a bijection between the r-colorings of two knot diagrams related by a finite number of Reidemeister
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Fig. 1: In the context of knot colorings, arcs of a diagram stand for variables. At each crossing the equation ”twice
the over-arc equals the sum of the under-arcs” is read off.

moves (Lopes (2003)). Hence, the number of r-colorings is a knot invariant. Furthermore, this consistent
assignment or reassignment of colors upon the performance of Reidemeister moves on colored diagrams
takes trivial r-colorings to trivial r-colorings and non-trivial r-colorings to non-trivial r-colorings (non-
trivial r-colorings being those that use at least two colors). In this way, the existence or not of non-trivial
r-colorings is also a knot invariant.

Assume, then, a knot admits non-trivial r-colorings. What is the minimum number of colors needed to
set up a non-trivial coloring over all diagrams of this knot?

Definition 1.1 Let r be an integer greater than 1. Let K be a knot, DK one of its diagrams. Assume
K admits non-trivial r-colorings and let nDK ,r stand for the least number of colors it takes to set up a
non-trivial r-coloring of DK . We call

min {nDK ,r
∣∣ DK is a diagram of K}

the minimum number of colors of K mod r, and denote it mincolr(K).

This is tautologically a knot invariant. Since to each knot there correspond infinitely many diagrams, the
calculation of minimum number of colors by direct application of the definition is impossible. Nonetheless
in this article we are able to make reasonable estimates and sometimes even calculate exactly the minimum
number of colors of the knots at issue.

We remarked before that r-colorings of a knot K can be regarded as the solutions of a system of
linear homogeneous equations over Zr read off the diagram of K under study. Upon performance of
Reidemeister moves on this diagram, the matrix of the coefficients of the linear homogeneous system
of equations undergoes elementary transformations as described in Lickorish (1997) on page 50. In this
way, the equivalence class of the matrix of the coefficients modulo elementary transformations is a knot
invariant. Furthermore, due to the fact that any row vector (respect., column vector) is a linear combination
of the other row vectors (respect., column vectors), it turns out that the absolute value of any first minor of
this matrix yields the same value and is thus also a knot invariant. This first minor is called the determinant
of the knot K, and is denoted detK. See also Lopes and Matias (2012) and Kauffman and Lopes (2009).

The topic of minimum number of colors was set forth in Harary and Kauffman (1999) where the
Kauffman-Harary conjecture was presented. Given a prime p, this conjecture states that a non-trivial
p-coloring on a reduced diagram of an alternating knot of prime determinant p, assigns different colors to
different arcs. This conjecture has now been proven in Mattman and Solis (2009).
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There are other articles on minimum number of colors addressing the actual minimum for a given r-
coloring. Satoh (Satoh (2009)) shows that any non-trivial 5-coloring can be realized with 4 colors; Oshiro
(Oshiro (2010)) shows that any 7-coloring can be realized with 4 colors. On the other hand, Saito (Saito
(2010)) gives a condition for the minimum number of colors in a non-trivial p-coloring to be greater than
4, for prime p > 7. In Lopes and Matias (2012) it is conjectured that the minimum number of colors
modulo r of a given knot K depends on the least common prime factor to r and detK. To support it, it
is proved that this is true when this common prime factor is 2, 3, 5, and 7 with the minima 2, 3, 4, and 4,
respectively.

In Kauffman and Lopes (2008), the torus knots of type (2, n), the T (2, n)’s, were investigated. A
formula for the number of r-colorings was established for each n, thereby allowing one to realize for
which pairs (r, n) there are non-trivial r-colorings of T (2, n). For these cases, and relying on the features
of modular arithmetic, estimates and sometimes actual minima were presented for the minimum number
of colors. Furthermore, a sequence of transformations on the standard diagrams of the T (2, n)’s were
defined that helped on further decreasing the number of colors in infinitely many cases.

For each n ∈ Z+, the Turk’s head knot on 3 strands, denoted THK(3, n), is the closure of the braid(
σ2σ

−1
1

)n ∈ B3. Figure 2 illustrates THK(3, 2) along with σ1, σ2, and their inverses.

σ−1
1

σ2

σ−1
2

THK(3, 2)

σ1

Fig. 2: On the left, THK(3, 2) as the closure of
(
σ2σ

−1
1

)2 ∈ B3. On the right, from top to bottom: σ1, σ−1
1 , σ2,

σ−1
2 .

See Birman (1974) for further information on braids. The knot diagrams of THK(3, n) obtained by
the braid closure of

(
σ2σ

−1
1

)n ∈ B3, will be called standard diagrams of THK(3, n), in the sequel.

The present article is a study of the Turk’s Head knots on three strands in the spirit of Kauffman and
Lopes (2008). The fact that the THK(3, n)’s are more complex than the T (2, n)’s turned this article into
a harder project when compared to Kauffman and Lopes (2008). We remark in particular that the inte-
gration of a system of linear homogeneous equations over the modular integers falls outside the standard
techniques of Linear Algebra, since in general the modular integers do not constitute a field. Nonetheless
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we are able to present a formula (see Theorem 1.1) for the number of r-colorings for the knot THK(3, n),
for any positive integers n and r > 1. This corresponds to the integration of each system of linear homo-
geneous equations from an infinite family of such systems, over a generic ring of modular integers.

Here are the main results in this article. We remark that given two positive integers a, b, we let gcd(a, b)
stand for their greatest common divisor. We further let a | b stand for a divides b and a - b stand for a
does not divide b.

Theorem 1.1 Given positive integers n and r > 1, the number of r-colorings of THK(3, n), denoted
#colrTHK(3, n), is

#colrTHK(3, n) =

r ·
(
gcd(un−1, r)

)2

if n is odd

r · gcd(5un−1, r) · gcd(un−1, r) if n is even
,

where un is the solution of the linear recurrence problem with “initial values”

−un + 3un−2 − un−4 = 0, u−3 = −1, u−2 = −1, u−1 = 0, u0 = 1.

We remark that the solution of this problem is:

un =
1√
5

[(
1 +
√
5

2

)n+2

−

(
−1 +

√
5

2

)n
−

(
1−
√
5

2

)n+2

+

(
−1−

√
5

2

)n]
.

Corollary 1.1

0 6= detTHK(3, n) =

{
(un−1)

2 if n is odd
5(un−1)

2 if n is even
.

In particular, the determinant of a knot classifies the knots in the THK(3, n) family. Furthermore, for
any k ∈ Z+, 5 | detTHK(3, 2k) and 5 - detTHK(3, 2k + 1).

Corollary 1.2 There are non-trivial r-colorings of THK(3, n) if, and only if,

• gcd(un−1, r) > 1 or

• n is even and 5 | r

Theorem 1.2 Let n and r be positive integers.

1.
2 | r and 3 | n if, and only if, mincolrTHK(3, n) = 2.

2. (
2 - r or 3 - n

)
and 3 | r and 4 | n if, and only if, mincolrTHK(3, n) = 3.
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3. (
2 - r or 3 - n

)
and

(
3 - r or 4 - n

)
and

[(
5 | r and 2 | n

)
or
(
7 | r and 8 | n

)]
if, and only if, mincolrTHK(3, n) = 4.

4. If (
2 - r or 3 - n

)
and

(
3 - r or 4 - n

)
and

(
5 - r or 2 - n

)
and

(
7 - r or 8 - n

)
and

(
11 | r and 5 | n

)
then mincolrTHK(3, n) = 5.

It is easy to see that each statement in Theorem 1.2 gives rise to infinitely many knots for which the
minimum number of colors modulo infinitely many r’s is exactly determined. For example, according to
the statement 4., for any positive integers m and l, we have:

mincol
11 · 13lTHK(3, 5 · 17m) = 5.

We introduce the mapping ψ which associates to each modulus r, the least positive integer n such that
r | un−1.

Definition 1.2 For any integer r > 1 set

ψ(r) := min{ q ∈ Z+
∣∣ r | uq−1 }.

When r is a prime other than 5, ψ(r) is the least number of σ2σ−11 that should be juxtaposed in order
to obtain a non trivial r-coloring, namely in THK(3, ψ(r)). The first few values of the ψ function are
displayed in Table 2, right after the References to this article.

Theorem 1.3 Let p be a prime greater than 11.

1. Assume ψ(p) is odd.

(a) If 5
p−1
2 ≡ −1, then mincolpTHK(3, ψ(p)) ≤ p+1

2 ( mod p).

(b) If 5
p−1
2 ≡ 1, then mincolpTHK(3, ψ(p)) ≤ p−1

2 ( mod p).

2. Assume ψ(p) is even.

(a) If 4 | ψ(p), then mincolpTHK(3, ψ(p)) ≤ ψ(p)− 1.

(b) If 4 - ψ(p), then mincolpTHK(3, ψ(p)) ≤ ψ(p)− 5.

Definition 1.3 For any positive integers n and r, such that gcd(un−1, r) > 1, set

〈un−1, r〉ψ

to be the least common prime factor (greater than 5) of r and un−1, which minimizes ψ.
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Corollary 1.3 Let r and n be positive integers such that gcd(un−1, r) > 1. Set

p := 〈un−1, r〉ψ.

Then,

1. Assume ψ(p) is odd.

(a) If 5
p−1
2 ≡ −1, then mincolrTHK(3, n) ≤ p+1

2 ( mod p).

(b) If 5
p−1
2 ≡ 1, then mincolrTHK(3, n) ≤ p−1

2 ( mod p).

2. Assume ψ(p) is even.

(a) If 4 | ψ(p), then mincolrTHK(3, n) ≤ ψ(p)− 1.

(b) If 4 - ψ(p), then mincolrTHK(3, n) ≤ ψ(p)− 5.

We establish below (Corollary 2.4) that, for prime p 6= 5, if ψ(p) is odd then it is bounded above by
(p+ 1)/2, whereas if ψ(p) is even, it is bounded above by p+ 1. Then, for the odd p case, Theorem 1.3
provides good estimates, roughly half the number of colors available (p). On the other hand, for the even
ψ(p) case, the estimates are coarser. The worst case is ψ(p) = p+1 where the results provide an estimate
which equals the number of colors available (which is p).

We then ran a program in Mathematica to have an idea of how many times this ψ(p) = p+ 1 situation
occurs over all primes p. Our program did this for the first 100, 000 primes in steps of 10, 000. The results
are displayed in Table 1. This seems to indicate that around 40% of the primes, p, lead to ψ(p) = p+ 1.

Np 10, 000 20, 000 30, 000 40, 000 50, 000 60, 000 70, 000 80, 000 90, 000 100, 000

Nψ(p) 3, 969 7910 11, 853 15, 760 19, 738 23, 661 27, 589 31, 499 35, 404 39, 343

Nψ(p)/N
p 0.3969 0.3955 0.3951 0.394 0.39476 0.39435 0.394129 0.393738 0.393378 0.39343

Tab. 1: Np is the number of consecutive primes; Nψ(p) is the number of primes p for which ψ(p) = p+ 1.

We ran another program to realize what is the percentage of distinct colors used over the total number
of colors for the colorings we used in this situation. These colorings were induced by introducing either
colors 0, 1, 0 or colors 1, 2, 0 on the top of the standard diagram of the THK(3, ψ(p)) for each of these
p’s such that ψ(p) = p+1 and p > 7. For the first 100, 000 such cases there was a minimum of 69.2308%
and a maximum of 75.0004% of colors used.

In Section 2 we prove Theorems 1.1, 1.2, and 1.3, along with their corollaries.



Minimum Number of Colors for THK(3, n) 7

2 Proofs
In this Section we provide the proofs of the results stated in the Introduction.

2.1 Proof of Theorem 1.1
In this Subsection we prove Theorem 1.1, which yields a formula for the number of r-colorings of

THK(3, n), along with its corollaries. For that, we start by studying the propagation of colors a, b, c of
an r-coloring, down

(
σ2σ

−1
1

)n
(in Figure 3 the case n = 1 is displayed). We recall that this means that at

each crossing, the equation “twice the color on the over-arc equals the sum of colors on the under-arcs” is
satisfied modulo r. At each crossing, we use this rule to write the color of the lower under-arc in terms of
the color of over-arc and of the color of the upper under-arc.

z1y1x1

a b c

Fig. 3: Propagation of colors down σ2σ
−1
1 .

In Figure 3 we illustrate the propagation of colors a, b, c down (σ2σ
−1
1 )1, which, algebraically, trans-

lates into the system of equations 1.
x1 = 2a− c
y1 = a

z1 = 2c− b
⇐⇒

x1y1
z1

 =

2 0 −1
1 0 0
0 −1 2

ab
c

 . (1)

In the sequel, we will use the following notation.

C =

2 0 −1
1 0 0
0 −1 2

 .
We thus start by setting x0 = a, y0 = b, z0 = c at the top of the braid, from left to right; we call this

the color input. The colors xn, yn, zn (from left to right) after
(
σ2σ

−1
1

)n
are:xnyn

zn

 = Cn

ab
c

 .
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In this way, each r-coloring of THK(3, n) will correspond to a solution of the system of linear equa-
tions, over the modulus r: ab

c

 = Cn

ab
c

 .
and vice-versa.

In the sequel we simplify the matrix Cn.

Proposition 2.1 Consider THK(3, n) given by the braid closure of (σ2σ−11 )n. Let n be a non-negative
integer. If the top strands of (σ2σ−11 )n are endowed with colors a, b and c (from left to right) then the
following hold:

(i) xn − yn + zn = a− b+ c

(ii) xn = 4xn−1 − 4xn−2 + xn−3;
yn = 4yn−1 − 4yn−2 + yn−3;
zn = 4zn−1 − 4zn−2 + zn−3.

(iii) xn = 3xn−1 − xn−2 − x0 + y0 − z0;
yn = 3yn−1 − yn−2 − x0 + y0 − z0;
zn = 3zn−1 − zn−2 − x0 + y0 − z0.

Proof: To prove (i) we note that:

[
1 −1 1

]
C =

[
1 −1 1

] 2 0 −1
1 0 0
0 −1 2

 =
[
1 −1 1

]
.

In this way, we obtain:

[
xn − yn + zn

]
=
[
1 −1 1

] xnyn
zn

 =
[
1 −1 1

]
Cn

ab
c

 =
[
a− b+ c

]
.

In order to prove (ii) we note that, the characteristic polynomial of C is

det(C − I3x) = −x3 + 4x2 − 4x+ 1.

Via the Cayley-Hamilton Theorem,

(−C3 + 4C2 − 4C + I3)

xnyn
zn

 = 0,

which amounts to

−

xn+3

yn+3

zn+3

+ 4

xn+2

yn+2

zn+2

− 4

xn+1

yn+1

zn+1

+

xnyn
zn

 = 0.
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Thus yielding the indicated recurrence relations for xn, yn, zn.
To prove (iii) we start by using:xnyn

zn

 = 4

xn−1yn−1
zn−1

− 4

xn−2yn−2
zn−2

+

xn−3yn−3
zn−3

 =

= 3

xn−1yn−1
zn−1

−
xn−2yn−2
zn−2

+


2 0 −1
1 0 0
0 −1 2

2

− 3

2 0 −1
1 0 0
0 −1 2

+ I3


xn−3yn−3
zn−3

 =

= 3

xn−1yn−1
zn−1

−
xn−2yn−2
zn−2

+

−1 1 −1
−1 1 −1
−1 1 −1

xn−3yn−3
zn−3

 =

= 3

xn−1yn−1
zn−1

−
xn−2yn−2
zn−2

+

−x0 + y0 − z0
−x0 + y0 − z0
−x0 + y0 − z0

 ,
where in the last equality (i) was used. This concludes the proof of Proposition 2.1.

2

Noting thatC is invertible, the preceding recurrence relations allows us to define xn, yn, zn for negative
values with the relation,

xn−3 = 4xn−2 − 4xn−1 + xn, (2)

and analogously for yn and zn. We may, thus, define, for any n ∈ Z,xnyn
zn

 = Cn

ab
c

 =

2 0 −1
1 0 0
0 −1 2

n ab
c

 .
We remark that the coefficients of a, b, c in the leftmost color (as well as in the middle and in the

rightmost colors), satisfy a recurrence relation similar to the one xn does.

Definition 2.1 Set:
xn = ana+ bnb+ cnc,
yn = a′na+ b′nb+ c′nc,
zn = a′′na+ b′′nb+ c′′nc.

We have: xnyn
zn

 = Cn

ab
c

 =

an bn cn
a′n b′n c′n
a′′n b′′n c′′n

ab
c

 .
Corollary 2.1 Keeping the conditions of the proposition above:

(i) an = 4an−1 − 4an−2 + an−3;
bn = 4bn−1 − 4bn−2 + bn−3;
cn = 4cn−1 − 4cn−2 + cn−3.
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(ii) an = 3an−1 − an−2 − 1;
bn = 3bn−1 − bn−2 + 1;
cn = 3cn−1 − cn−2 − 1.

Proof: We will prove the proposition for the sequence an, since the other proofs are analogous. Consider
the matrix Cn. Then, one realizes an is the leftmost color after

(
σ2σ

−1
1

)n
, when x0 = 1, y0 = 0, z0 = 0

i.e., xn = an when x0 = 1, y0 = 0, z0 = 0. Applying Proposition 2.1, we obtain the desired relations. 2

More generally, the entries of Cn satisfy a recurrence relation similar to the one xn, yn, and zn do, as
cnij , the entry ij of Cn, can be interpreted as the colors of the i − th strand with the top colors equal to
zero except for the j − th strand that takes 1 as initial color.

Before proceeding to the next result, let us look at the first few powers of C:

C =

2 0 −1
1 0 0
0 −1 2

 , C2 =

 4 1 −4
2 0 −1
−1 −2 4

 , C3 =

 9 4 −12
4 1 −4
−4 −4 9

 .
Corollary 2.2 The powers of the matrix C satisfy:

Cn =

 an bn −bn+1

an−1 bn−1 −bn
−bn −an−1 an

 , n ∈ Z.

Proof: We already saw that the entries of the matrices Cn satisfy a specific recurrence relation, which
is similar to the ones an, and bn do. So, it is enough to verify that the first 3 powers of C satisfy the
expression above, and to use induction to establish the result. We leave the details to the reader. 2

We recall we want to establish a formula which yields the number of r-colorings of THK(3, n). In
order to do that, we solve the following system of linear equations over Zr:

Cn

x0y0
z0

 =

x0y0
z0

 , (3)

which, upon rewriting and applying Corollary 2.2 yields the following system of linear homogeneous
equations over Zr: an − 1 bn −bn+1

an−1 bn−1 − 1 −bn
−bn −an−1 an − 1

x0y0
z0

 =

00
0

 . (4)

The coefficient matrix in (4) can be further simplified as we will now show.

Corollary 2.3 For any positive integer n:

an − an−1 − bn = 1,

bn − bn−1 − an−1 = −1.
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Proof: This follows from Corollary 2.2. We remark that an, an−1 and−bn are the bottom colors, from left
to right, respectively, of the braid (σ2σ

−1
1 )n when x0 = 1, y0 = 0 and z0 = 0. Therefore, by Proposition

2.1, we have:

an − an−1 + (−bn) = 1− 0 + 0 = 1.

Also, bn, bn−1 and −an−1 are the bottom colors, from left to right, respectively, of the strings of the
braid (σ2σ

−1
1 )m when x0 = 0, y0 = 1 and z0 = 0. Again by Proposition 2.1:

bn − bn−1 + (−an−1) = 0− 1 + 0 = −1.

2

Now, by Corollary 2.3 we may conclude that:

[
1 −1 1

]  an bn −bn+1

an−1 bn−1 −bn
−bn −an−1 an

− [1 −1 1
]
=
[
0 0 0

]
.

In this way, by adding the first line to and subtracting the second line from the third line in the square
matrix in (4), we obtain:1 0 0

0 1 0
1 −1 1

an − 1 bn −bn+1

an−1 bn−1 − 1 −bn
−bn −an−1 an − 1

 =

an − 1 bn −bn+1

an−1 bn−1 − 1 −bn
0 0 0

 .
We now define the sequences un and vn which will relate to an and bn.

Definition 2.2 Let un and vn be sequences defined recursively as follows:

u−3 = −1, u−2 = −1, u−1 = 0, u0 = 1, and if n ≥ 1 un = 3un−2 − un−4,

and,

v−3 = 7, v−2 = 2, v−1 = 3, v0 = 1, and if n ≥ 1 vn = 3vn−2 − vn−4.

Proposition 2.2 For n ∈ N we have:

an = unvn, bn = un−2un−1,

an − 1 = un−1vn+1, bn − 1 = unun−3.

Proof: First we need to verify the cases n = 0, 1, 2, 3, 4. We leave this task to the reader. We will prove
by induction that an = unvn and (an − 1) = un−1vn+1. For n ≥ 0 we assume the validity of the
hypothesis for n, n + 1, n + 2, n + 3 and n + 4 and conclude that it is also valid for n + 5. Proposition
2.1 will be used throughout the following calculations.
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un+5vn+5 = (3un+3 − un+1)(3vn+3 − vn+1) =

= 9un+3vn+3 − 3(3un+1 − un−1)vn+1 − 3un+1vn+3 + un+1vn+1 =

= 9an+3 − 9an+1 + 3(an − 1)− 3(an+2 − 1) + an+1 =

= 9an+3 − 15an+2 + 4an+1 + 3(4an+2 − 4n+1 + an) =

= −4an+3 + an+2 + 4(4an+3 − 4an+2 + an+1) =

= 4an+4 − 4an+3 + an+2 = an+5.

un+4vn+6 = (3un+2 − un)(3vn+4 − vn+2) =

= 9un+2vn+4 − 3un(3vn+2 − vn)− 3un+2vn+2 + unvn+2 =

= 9(an+3 − 1)− 9(an+1 − 1) + 3an − 3an+2 + (an+1 − 1) =

= 9an+3 − 15an+2 + 4an+1 − 1 + 3(4an+2 − 4an+1 + an) =

= −4an+3 + an+2 − 1 + 4(4an+3 − 4an+2 + an+1) =

= 4an+4 − 4an+3 + an+2 − 1 = an+5 − 1.

This ends the first part of the proof. Now, let us prove by induction that bn = un−2un−1 and (bn−1) =
unun−3. We assume again for n ≥ 0 the validity of the hypothesis for n, n+ 1, n+ 2, n+ 3 and n+ 4,
concluding that it is valid for n+ 5.

un+3un+4 = un+3(3un+2 − un) = 3bn+4 − (bn+3 − 1) =

= 3bn+4 − bn+3 + 1 = bn+5.

un+5un+2 = (3un+3 − un+1)un+2 = 3bn+4 − bn+3 =

= (3bn+4 − bn+3 + 1)− 1 = bn+5 − 1.

This ends the proof.
2

The linear homogeneous system of equations over Zr is now equivalent to:

un−1

vn+1 un−2 −un
vn−1 un−4 −un−2
0 0 0

x0y0
z0

 =

00
0

 . (5)

By performing elementary operations on the lines of the matrix we obtain an even simpler coefficient
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matrix:vk+1 uk−2 −uk
vk−1 uk−4 −uk−2
0 0 0

 −→
vk+1 − 2vk−1 uk−2 − 2uk−4 −uk + 2uk−2

vk−1 uk−4 −uk−2
0 0 0

 −→

−→

 vk+1 − 2vk−1 uk−2 − 2uk−4 −uk + 2uk−2
−vk+1 + 3vk−1 −uk−2 + 3uk−4 uk − 3uk−2

0 0 0

 =

=

vk−1 − vk−3 uk−4 − uk−6 −uk−2 + uk−4
vk−3 uk−6 −uk−4
0 0 0

 −→
vk−1 uk−4 −uk−2
vk−3 uk−6 −uk−4
0 0 0

 .
Therefore, for n odd, the coefficient matrix in (5) simplifies to:

un−1

v2 u−1 −u1
v0 u−3 −u−1
0 0 0

 = un−1

1 0 −1
1 −1 0
0 0 0

 −→ un−1

1 0 −1
0 −1 1
0 0 0

 , (6)

whereas, for n even, it simplifies to:

un−1

v3 u0 −u2
v1 u−2 −u0
0 0 0

 = un−1

3 1 −4
2 −1 −1
0 0 0

 −→ un−1

1 2 −3
0 −5 5
0 0 0

 . (7)

We can now establish the formulas for the number of the colorings in terms of r and un−1 in Theorem
1.1. We state that part here again as Proposition 2.3 below for the reader’s convenience. We recall we let
gcd(a, b) stand for the greatest common divisor of the positive integers a and b.

Proposition 2.3 Given positive integers n and r > 1,

#colrTHK(3, n) =

r ·
(
gcd(un−1, r)

)2

if n is odd

r · gcd(5un−1, r) · gcd(un−1, r) if n is even
.

Proof: Let us suppose that n is odd. The color input a, b, c in
(
σ2σ

−1
1

)n
induces an r-coloring in

THK(3, n) if and only if:

un−1

1 0 −1
0 −1 1
0 0 0

ab
c

 =r

00
0

 .
We now count the solutions of this linear homogeneous system of equations over Zr (see Kauffman

and Lopes (2008), Claims 2.1 and 2.2). The third equation does not impose any restrictions on a, b, or c.



14 Pedro Lopes, João Matias

The second equation, un−1(−b+ c) =r 0, yields b− c = k r
gcd(un−1,r)

for k = 0, 1, ..., gcd(un−1, r)− 1.
Note that for each positive integer a,

ax =r 0 ⇔ gcd(a, r)x =r 0.

Moreover, from the first equation, a = c + k r
gcd(un−1,r)

. So, both b and a have (un−1, r) possibilities,
compatible with each of the r possibilities for c. We conclude that the indicated system of equations has
r gcd(un−1, r)

2 solutions over Zr.
Let us now suppose that n is even. The color input a, b, c in

(
σ2σ

−1
1

)n
induces an r-coloring in

THK(3, n) if and only if:

un−1

1 2 −3
0 −5 5
0 0 0

ab
c

 ≡r
00
0

 .
Arguing as above, we conclude that the number of solutions over Zr of the indicated system of equa-

tions is r · gcd(5un−1, r) · gcd(un−1, r), for even n. This concludes the proof. 2

Proposition 2.4 For n ∈ Z,

un =
1√
5

(1 +
√
5

2

)n+2

−

(
−1 +

√
5

2

)n
−

(
1−
√
5

2

)n+2

+

(
−1−

√
5

2

)n . (8)

Proof: The sequence un is the solution of the linear difference equation with the “initial values”:

−un + 3un−2 − un−4 = 0, u−3 = −1, u−2 = −1, u−1 = 0, u0 = 1.

The general method of solving this type of initial value problem can be found in Henrici (1964), for
instance. We leave the details to the reader.

2

This concludes the proof of Theorem 1.1 and of Corollary 1.2.
The formulas for the determinants in Corollary 1.1 follow from the observation of the matrices (6) for

the odd n case and (7) for the even n case; the fact that these determinants are always greater than zero
follows from proving by induction that

un > 0 and un − un−2 > 0 for all n > 2.

2.2 Proof of Theorem 1.2
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2.2.1 Preliminaries
We first establish Propositions 2.5, 2.6, 2.7 for they will be useful in the sequel.

Proposition 2.5 Suppose a knot admits a non-trivial s-coloring and s | r. Then this knot also admits a
non-trivial r-coloring.

Proof: Since s | r, then the set {
0,
r

s
, 2
r

s
, . . . , (s− 1)

r

s

}
mod r

is closed with respect to the a ∗ b := 2b− a mod r operation. Moreover, the mapping

f : Zs −→ Zr

i −→ i
r

s

is injective and preserves the ∗ operation. In this way, if (i1, i2, . . . , iN ) is the sequence of colors mod s
one should assign to the sequence of arcs in a knot diagram of the knot under study to obtain a non-trivial
s-coloring, then the sequence (i1

r
s , i2

r
s , . . . , iN

r
s ) assigned to the same sequence of arcs, represents a

non-trivial r-coloring of the same knot. 2

Proposition 2.6 Consider the positive integers c, k, n, and integer r > 1. Suppose the standard diagram
of THK(3, n) admits a non-trivial r-coloring with c colors. Then the standard diagram of THK(3, kn)
also admits a non-trivial r-coloring with c colors.

Proof: If the standard diagram of THK(3, n) admits a non-trivial r-coloring with c colors, we consider
this coloring in

(
σ2σ

−1
1

)n
i.e., before braid closure. In this way, the sequence of colors on the top arcs

(from left to right) equals the sequence of colors on the bottom arcs (from left to right). We then jux-
tapose k copies of this colored

(
σ2σ

−1
1

)n
. Upon taking its closure we obtain a non-trivial r-coloring of

THK(3, kn). 2

Definition 2.3 A knot is said split if there exist two disjoint open balls in 3-space, say N1 and N2, such
that the knot is deformable into a knot, say K, such that

K ⊂ N1 ∪N2, K ∩N1 6= ∅, K ∩N2 6= ∅.

Otherwise, the knot is said non-split.

Proposition 2.7 For any positive integer n, THK(3, n) is non-split.

Proof: Fix a positive integer n. If THK(3, n) were split, then for any integer r > 1, there would be at
least r2 r-colorings. Each of these r2 r-colorings stands for the r-coloring which results from trivially
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r-coloring each of the two open balls the knot splits into. But, setting r equal to a prime larger than both
un−1 and 5, yields

#colrTHK(3, n) =


r ·
(
gcd(un−1, r)

)2

if n is odd

r ·
(
gcd(5un−1, r)

)
·
(
gcd(un−1, r)

)
if n is even

= r < r2.

Hence, THK(3, n) is non-split. 2

2.2.2 Further analysis of the un sequence and the ψ mapping: towards the
proof of Theorem 1.2

In order to prove the “if” parts in Theorem 1.2, and to prove Theorem 1.3, we analyze further the
sequence un.

Proposition 2.8 For n ∈ Z we have:

u2n = u2n+1 + u2n−1,

u2n+1 =
u2n+2 + u2n

5
.

Proof: We only prove the inductive step:

u2n+3 + u2n+1 = 3u2n+1 − u2n−1 + u2n+1 = 5u2n+1 − u2n+1 − u2n−1 =

= u2n+2 + (u2n − u2n+1 − u2n−1) = u2n+2 + 0.

u2n+4 + u2n+2 = 3u2n+2 − u2n + u2n+2 = 5u2n+2 − u2n+2 − u2n =

= 5(u2n+3 + u2n+1)− u2n+2 − u2n = 5u2n+3 + (5u2n+1 − u2n+2 − u2n) = 5u2n+3 + 0.

2

Proposition 2.9 (i) If m is even, or n is odd, then:

um+n = um+1un − um−1un−2. (9)

(ii) If m is even and n is odd, then:

um+n = umun − um−1un−1.

Proof: To prove (i) let us first suppose m is an arbitrary integer, we have:

um+1 = um+1 × 1− um−1 × 0 = um+1u1 − um−1u−1,
um+3 = um+1 × 3− um−1 × 1 = um+1u3 − um−1u1.
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Also, if m is even, by Proposition 2.8, we have:

um = um+1 × 1− um−1 × (−1) = um+1u0 − um−1u−2,
um+2 = um+3 + um+1 = um+1 × 4− um−1 × 1 = um+1u2 − um−1u0.

Now, fixed m, we will do induction on n. Let us suppose that the equation (9) is true for a given m and
n = k, k + 2, then:

um+(k+4) = 3um+(k+2) − um+k = um+1(3uk+2 − uk)− um−1(3uk − uk−2) =
= um+1uk+4 − um−1uk+2,

um+(k−2) = 3um+k − um+(k+2) = um+1(3uk − uk+2)− um−1(3uk−2 − uk) =
= um+1uk−2 − um−1uk−4.

So, equation (9) is also verified for n = k− 2, k+4. From here we may conclude that when m is even
equation (9) is true for every n, and when m is odd equation (9) is true for n odd.

To prove (ii) we use (i), and Proposition 2.8:

um+n = um+1un − um−1un−2 = (um − um−1)un − um−1un−2
= umun − um−1(un + un−2) = umun − um−1un−1.

2

We repeat here the definition of the ψ mapping for the reader’s convenience.

Definition 2.4 For any integer r > 1 set

ψ(r) := min{ q ∈ Z+
∣∣ r | uq−1 }.

Proposition 2.10 ψ is well-defined.

Proof: We will prove that, for any integer r > 1, {q ∈ Z+
∣∣ r | uq−1} 6= ∅. Since it is a subset of Z+,

then it has a minimum.
Fix an integer r > 1 and set Un = (un, un+1, un+2, un+3) a sequence in Z4

r formed by consecutive
terms of the u sequence read mod r. Let us consider the first r4 + 1 Ui’s, i = 0, . . . , r4. Since Z4

r has
r4 elements, by the Pigeonhole Principle, there are integers i, j, such that Ui = Uj , 0 ≤ i < j ≤ r4.
Hence, as {un}n∈Z+ can be defined recursively by the previous four terms of the same sequence, we
conclude that {un}n∈Z+ (mod r) is eventually periodic with period p|(j − i). Since un = 3un−2 − un−4
is equivalent to un−4 = 3un−2 − un, it follows that {un}n∈Z+ (mod r) has to be periodic with period p.
Then, uj−i−1 ≡r u−1 ≡r 0 and {q ∈ Z+ | r | uq−1} 3 (j − i) is non-empty, ending the proof. 2

Proposition 2.11 r | um−1 if and only if ψ(r) | m.



18 Pedro Lopes, João Matias

Proof: Upon extending un to the negative integers using the recurrence relation un−4 = 3un−2−un, we
note that un = −u−n−2.

We start by verifying that un = −u−n−2. This is done using the fact that u1 = −u−3 = 1, u0 =
−u−2 = 1 and u−1 = −u−1 = 0. After this, we leave it as an exercise to use induction on n to obtain
the desired conclusion.

Claim 2.1 If uψ(n)−1 | ul−1 then uψ(n)−1 | ul±ψ(n)−1.

Proof: If ψ(n) is even or (l − 1) is odd, by Proposition 2.9 we have:

u±ψ(n)+(l−1) = u(±ψ(n)+1)ul−1 − u±ψ(n)−1ul−3 = u(±ψ(n)+1)ul−1 ∓ uψ(n)−1ul−3.

Otherwise, if ψ(n) is odd and (l − 1) is even, by Proposition 2.9 we have:

u(l−1)±ψ(n) = u(l−1)u±ψ(n) − ul−2u±ψ(n)−1 = u(l−1)u±ψ(n) ∓ ul−2uψ(n)−1.

Either way, if uψ(n)−1 | ul−1, then uψ(n)−1 | ul±ψ(n)−1. This concludes the proof of the Claim. 2

Resuming the proof of Proposition 2.11, Claim 2.1 implies, by setting n = r, m = ψ(r) and using
induction, that uψ(r)−1 | ukψ(r)−1, for any k ∈ Z. Since r | uψ(r)−1, by definition, we have thus proved
that if ψ(r) | m then r | um−1.

Now assume r | um−1 and let R be the remainder of the division of m by ψ(r). Then there exists
q ∈ Z such that r | uqψ(r)+R−1 | u(q−1)ψ(r)+R−1 | · · · | uR−1 invoking the Claim 2.1 in the last
passages. Hence, by definition of ψ(r), we get R = 0, concluding the proof of the Proposition. 2

2.2.3 The proof of Theorem 1.2
The proof of Theorem 1.2 now follows easily thanks to Theorem 2.1 below. We refer the reader to Satoh

(2009) and Oshiro (2010) for statement 3., and to Lopes and Matias (2012) for statement 4. We remark
that, given two positive integers a, b, we let 〈a, b〉 stand for 1 if a and b are relatively prime, otherwise, we
let 〈a, b〉 stand for their least common prime factor.

Theorem 2.1 Let r be an integer greater than 1.
Let L be a non-split link.

1. 〈r, detL〉 = 2 if, and only if, mincolrL = 2,

2. 〈r, detL〉 = 3 if, and only if, mincolrL = 3.

Furthermore, if detL 6= 0 then:

3. 〈r, detL〉 ∈ {5, 7} if, and only if, mincolrL = 4,

4. 〈r, detL〉 > 7, if, and only if, mincolrL ≥ 5.
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Proof: (of Theorem 1.2)

1. Knowing that ψ(2) = 3,

2 | r and 3 | n ⇔ 2 | r and ψ(2) | n ⇔ 2 | r and 2 | un−1 ⇔
2 | r and 2 | detTHK(3, n) ⇔ 〈r, detTHK(3, n)〉 = 2 ⇔
mincolrTHK(3, n) = 2.

2. Knowing that 2 - r or 3 - n and ψ(3) = 4,

3 | r and 4 | n ⇔ 3 | r and ψ(3) | n ⇔ 3 | r and 3 | un−1 ⇔
3 | r and 3 | detTHK(3, n) ⇔ 〈r, detTHK(3, n)〉 = 3 ⇔
mincolrTHK(3, n) = 3.

3. The argument for this instance mimics the ones used in the preceding two instances. We leave the
details to the reader.

4. The right-hand side of Figure 5 shows an 11-coloring of THK(3, n) with 5 colors. Hence, Propo-
sition 2.5, Proposition 2.6 along with the preceding instances, imply that if 11 | r and 5 | n (and
neither r nor n comply with the preceding instances) then mincolrTHK(3, n) = 5.

2

2.3 Proof of Theorem 1.3

2.3.1 Preliminaries
After experimenting with r-colorings of the knots THK(3, n)’s for small values of r and n we came

up with the following examples, displayed in Figures 4, 5, and 6. Figures 4, 5, and 6 are to be considered
upon closure of the braids therein. We do not depict the closure of these braids in order not to over-burden
the figures. Inspection of some cases displayed in Figures 4, 5, and 6 shows we have some control on the
colors down the right hand-side of the standard diagrams with respect to the left-hand side. This allows
us to decrease the number of colors needed to produce a non-trivial coloring.

Consider the 11-coloring of THK(3, 5) (right-hand side of Figure 5). The sequence of colors down
the left-hand side i.e., the (xn) sequence for 0 ≤ n ≤ 4, call it L, is

L = (1, 2, 0, 4, 7).

The sequence of colors down the middle i.e., the (yn) sequence for 0 ≤ n ≤ 4, call it M , is

M = (7, 1, 2, 0, 4).

Clearly, M is a circular shift of L, since yi+1 = xi for i = 0, 1, 2, 3, 4, mod 5. This is a consequence of
the arrangement of the arcs in any standard diagram of THK(3, n). Hence, the equality of the sequences
L and M modulo circular shift is true for any such diagram.
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Fig. 4: Illustrative examples of non-trivial colorings of THK(3, n)’s. A 2-coloring of THK(3, 3) with 2 colors and
a 5-coloring of THK(3, 2) with 4 colors.
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Fig. 5: Illustrative examples of non-trivial colorings of THK(3, n)’s (cont’d). A 3-coloring of THK(3, 4) with 3
colors and an 11-coloring of THK(3, 5) with 5 colors.
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Fig. 6: Illustrative examples of non-trivial colorings of THK(3, n)’s (end). A 7-coloring of THK(3, 8) with 7
colors.

Let us consider now the sequence of colors down the right-hand side i.e., (zn) for 0 ≤ n ≤ 4, call it R,
of the 11-coloring of THK(3, 5) (right-hand side of Figure 5):

R = (0, 4, 7, 1, 2).

Then R is a circular shift of L but now this is not a general feature of non-trivial r-colorings on standard
diagrams of THK(3, n)’s (see, for instance, the 5-coloring of THK(3, 2) on the right-hand side of Figure
4, or the 7-coloring of THK(3, 8) in Figure 6).

Bearing in mind that if gcd(r, un−1) > 1, there is a non-trivial r-coloring of THK(3, n) (Corollary
1.2), then, provided r is prime, ψ(r) yields the least number of σ2σ−11 ’s we have to juxtapose in order to
obtain a non-trivial r-coloring for a Turk’s head knot on three strands, namely THK(3, ψ(r)). For prime
r > 5 and odd ψ(r), we construct a non-trivial r-coloring on the standard diagram of THK(3, ψ(r)) such
that the R sequence is a circular shift of the L sequence (Theorem 1.3). There are, on average, two arcs
per σ2σ−11 in a standard diagram of THK(3, n). When R is a circular shift of L, we use only one color
per σ2σ−11 , on average i.e., we use only ψ(r) colors. This constitutes a reduction in half on the number of
colors with respect to the worst case (different arcs, different colors). Moreover, we show that, for prime
r > 5

ψ(r) | (r + 1) or ψ(r) | (r − 1),

so that, if ψ(r) is odd, then ψ(r) ≤ r+1
2 or ψ(r) ≤ r−1

2 (Corollary 2.4, below). This guarantees also that
we are using roughly half of the colors available, when r > 5 is prime and ψ(r) is odd.

On the other hand, for prime r > 5 with ψ(r) even, we show below (Theorem 1.3) that the input color
(0, 1, 0) induces a coloring whose number of colors is less than ψ(r) − 1. Here however, it may happen
that ψ(r) = r + 1, so that the estimate equals the total number of colors available.
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We develop these ideas below.

2.3.2 Further analysis of un
In order to carry out the ideas expressed above, we need a deeper analysis of the sequence un. This is

the goal of the current Subsection.

Proposition 2.12 Let p 6= 5 be an odd prime. Then:{
p | up if and only if 5

p−1
2 ≡ −1 ( mod p)

p | u p−3
2

if and only if 5
p−1
2 ≡ 1 ( mod p).

Proof: As un is a sequence taking on integer values we may conclude that the coefficients of
√
5, after

applying Binomial Theorem to the expression (8), will sum zero. Also, one may see that p -
(
p+2
j

)
if and

only if j = 0, 1, 2, p, p+ 1, p+ 2 and p -
(
p
j

)
if and only if j = 0, p. By Fermat’s Little Theorem we have

5p−1 ≡ 1, which implies 5
p−1
2 ≡ 1 or 5

p−1
2 ≡ −1 ( mod p). Therefore, mod p:

0 ≡ up ≡
1

2p+2

2

p+1
2∑
i=0

(
p+ 2

2i

)
5
p+1
2 −i − 8

p−1
2∑
i=0

(
p

2i

)
5
p−1
2 −i

 ≡
≡ 1

23

(
2× 5

p+1
2 + 2× (p+ 2)(p+ 1)

2
× 5

p−1
2 + 2(p+ 2)− 8× 5

p−1
2

)
≡

≡ 1

23

(
4× (5

p−1
2 + 1)

)
,

which is equivalent to 5
p−1
2 ≡ −1, mod p.

Assume, now, 5
p−1
2 ≡ 1, mod p. Then by Euler’s Criterion there exists α ∈ Z, such that α2 ≡ 5. As

in (8) the coefficients of
√
5 will sum zero, and we obtain, mod p:

u p−3
2
≡ α−1

(
(1 + α)

p+1
2 − 4(−1 + α)

p−3
2 − (1− α)

p+1
2 + 4(−1− α)

p−3
2

)
2−

p+1
2 .

Multiplying both sides by 2
p+1
2 α(1 + α)

p+1
2 , applying Fermat’s Little Theorem and noting p - (α± 1)

for α2 ≡ 5 6= 1:

2
p+1
2 α(1 + α)

p+1
2 u p−3

2
≡

≡ (1 + α)p+1 − 4(1 + α)2(−1 + α2)
p−3
2 − (1− α2)

p+1
2 + 4(−1)

p−3
2 (1 + α)p−1 ≡

≡ (1 + α)2 − 4(1 + α)2(−1 + 5)
p−3
2 − (1− 5)

p+1
2 + 4(−1)

p−3
2 ≡

≡ (1 + α)2 − (1 + α)22p−1 − (−1)
p+1
2 2p+1 + 4(−1)

p−3
2 ≡

≡ (1 + α)2 − (1 + α)2 − 4(−1)
p−3
2 + 4(−1)

p−3
2 ≡ 0,

which implies u p−3
2
≡ 0, mod p, concluding the proof. 2
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Corollary 2.4 Let p 6= 5 be an odd prime. Then, mod p:{
ψ(p) | (p+ 1) if and only if 5

p−1
2 ≡ −1

ψ(p) |
(
p−1
2

)
if and only if 5

p−1
2 ≡ 1

In particular, when ψ(p) is odd, then ψ(p) ≤ (p+ 1)/2.

Proof: It is a straightforward application of Propositions 2.11 and 2.12 2

Proposition 2.13 Let p be a prime greater than 5.

1. If ψ(p) is odd then mincolpTHK(3, ψ(p)) ≤ ψ(p),

2. If ψ(p) is even then,

(a) If 4 | ψ(p), then mincolpTHK(3, ψ(p)) ≤ ψ(p)− 1,

(b) If 4 - ψ(p), then mincolpTHK(3, ψ(p)) ≤ ψ(p)− 5.

Proof: Let us first suppose ψ(p) is odd, and set a = 1, c = 0 and b arbitrary, for the moment (Figure 7).
We will show that b can be chosen so that the R sequence i.e., the sequence (zn)|0≤n≤ψ(p), is a circular

2

b 0

1 −b

1

Fig. 7: Propagation of colors down σ2σ
−1
1 for a particular choice of a, b, c.

shift of the L sequence i.e., the sequence (xn)|0≤n≤ψ(p), yielding the required result. As we saw above,
in the beginning of this Subsection, this implies that the number of colors is bounded above by ψ(p).

By Proposition 2.1:

xk = 3xk−1 − xk−2 − 1 + b ⇔ (xk − 1 + b) = 3(xk−1 − 1 + b)− (xk−2 − 1 + b). (10)

and similarly for yk, zk. In particular, the above relations tell us that any term of xk (respect., zk) is
obtained from the preceding two terms of the sequence. We then focus on two consecutive terms of the
x-sequence, (xk, xk+1) and we will later equate a certain pair of them to (z0, z1) = (0,−b) in order to
obtain the equality between the R and L sequences, modulo circular shift.
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The expressions in (10) lead to:[
xk+1

xk

]
=

[
3 −1
1 0

] [
xk − 1 + b
xk−1 − 1 + b

]
+

[
1− b
1− b

]
=

[
3 −1
1 0

]([
3 −1
1 0

] [
xk−1 − 1 + b
xk−2 − 1 + b

])
+

[
1− b
1− b

]
= · · · =

[
3 −1
1 0

]k [
x1 − 1 + b
x0 − 1 + b

]
+

[
1− b
1− b

]
=

[
3 −1
1 0

]k [
1 + b
b

]
+

[
1− b
1− b

]
.

By induction one can prove that: [
3 −1
1 0

]k
=

[
u2k+1 −u2k−1
u2k−1 −u2k−3

]
and taking determinants on both sides of the preceding equation we obtain:

1 = −u2k+1u2k−3 + u22k−1.

In order for L to be a circular shift of R we set xk+1 = z1 = −b, xk = z0 = 0. Then:[
−b
0

]
=

[
3 −1
1 0

]k [
1 + b
b

]
+

[
1− b
1− b

]
,

which is equivalent to: [
u2k+1 + 1 −u2k−1 − 1
u2k−1 + 1 −u2k−3 − 2

] [
1 + b
b

]
≡p
[
0
0

]
. (11)

The determinant of the coefficient matrix in (11) is given by:

− u2k+1u2k−3 + u22k−1 − 2u2k+1 − u2k−3 + 2u2k−1 − 1 =

= 1 + (−u2k−3 + 3u2k−1 − u2k+1)− u2k+1 − u2k−1 − 1 = −(u2k+1 + u2k−1) = −u2k.

We then set k = ψ(p)−1
2 so that 2k + 1 = ψ(p). Then u2k ≡ 0, mod p, by definition of ψ, and the kernel

associated to the system (11) is non-trivial. If the non-null vectors of this kernel had equal coordinates
then in particular,[

0
0

]
=

[
uψ(p) + 1 −uψ(p)−2 − 1
∗ ∗

] [
1
1

]
=

[
uψ(p) − uψ(p)−2

∗

]
= . . .

and, by Proposition 2.8, as ψ(p) is odd:

· · · =
[
uψ(p) − uψ(p)−2 − (uψ(p) − uψ(p)−1 + uψ(p)−2)

∗

]
=p

[
−2uψ(p)−2

∗

]
.

Now, 2uψ(p)−2 =p 0, only if p = 2 (in which case the proposition is easily verified, as ψ(2) = 3 ≥ 2),
or p | uψ(p)−2, following from Proposition 2.11 that ψ(p) | ψ(p) − 1, which implies ψ(p) = 1 and
p | u0 = 1, contradicting the fact that p is prime. We can thus assume that non-trivial elements in the
indicated kernel have distinct coordinates, say (r, s) with r 6= s mod p.

The vector ((r − s)−1r, (r − s)−1s) =p (r′, s′) also belongs to this kernel and satisfies r′ − s′ = 1.
Therefore b = s′ is a solution to equation (11). We conclude that, for the top colors (1, s′, 0), the rightmost
and leftmost arcs have equal colors in pairs. Therefore, given the recurrence relation satisfied by the colors
on each side, the colors used in the leftmost, middle, and rightmost arcs are the same and we use, at most,
ψ(p) colors.
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Let us now suppose that ψ(p) is even. By Proposition 2.8 we have:

uψ(p) + uψ(p)−2

5
= uψ(p)−1 =p 0 ⇒ uψ(p) =p −uψ(p)−2,

as p 6= 5. Remember that u0 = 1 = −u−2. So, for some integer α we have uψ(p)−2 =p αu0 and
uψ(p) =p αu−2. Furthermore, and as:

uk = 3uk−2 − uk−4 ⇔ uk−4 = 3uk−2 − uk,

one can easily see that,[
u−2
u0

]
=

[
3 −1
1 0

] [
u0
u2

]
=

[
3 −1
1 0

] [
3 −1
1 0

] [
u2
u4

]
= · · · =

[
3 −1
1 0

]ψ(p)
2
[
uψ(p)−2
uψ(p)

]
=

=p α

[
3 −1
1 0

]ψ(p)
2
[
u0
u−2

]
= α

[
3 −1
1 0

]ψ(p)
2 −1 [u2

u0

]
= · · · = α

[
uψ(p)
uψ(p)−2

]
=p α

2

[
u−2
u0

]
.

Then α2 =p 1⇔ α =p ±1. We will now show that α ≡ 1, mod p.

Assume to the contrary and suppose α ≡ −1. Then u0 ≡ −uψ(p)−2, u2 ≡ 3u0−u−2 ≡ −3uψ(p)−2 +
uψ(p) ≡ −uψ(p)−4 and, by applying Proposition 2.8 twice, we get u1 = 1 ≡ −uψ(p)−3. Using the
recurrence satisfied by un, we obtain,

u−2+i ≡ −uψ(p)−i , i = 0, 1, ..., ψ(p) + 2.

In particular, α ≡ −1 implies u−2+ψ(p)
2 +1

≡ −u
ψ(p)−ψ(p)

2 −1
⇔ uψ(p)

2 −1
≡ 0, which contradicts the

definition of ψ(p).

Thus α = 1 and uψ(p)−2 ≡ 1 ≡ −uψ(p).

We note that (x0, y0, z0) = (0, 1, 0) induces a non-trivial p-coloring on THK(3, ψ(p)), since, by
definition, p | uψ(p)−1. Then, (xψ(p), yψ(p), zψ(p)) = (0, 1, 0).

Arguing as above in the odd ψ(p) case, we obtain:[
xk+1

xk

]
=

[
3 −1
1 0

]k [
x1 + 1
x0 + 1

]
+

[
−1
−1

]
=

[
u2k+1 −u2k−1
u2k−1 −u2k−3

] [
1
1

]
+

[
−1
−1

]
[
zk+1

zk

]
=

[
3 −1
1 0

]k [
z1 + 1
z0 + 1

]
+

[
−1
−1

]
=

[
u2k+1 −u2k−1
u2k−1 −u2k−3

] [
0
1

]
+

[
−1
−1

]
.

Using these expressions along with uψ(p)−2 ≡ 1 ≡ −uψ(p) and Proposition 2.8, we obtain the colors
displayed in Figure 8.

By Proposition 2.1, the following hold:

xk = 3xk−1 − xk−2 + 1 ⇔ xk−2 = 3xk−1 − xk + 1,

zk = 3zk−1 − zk−2 + 1 ⇔ zk−2 = 3zk−1 − zk + 1.

Since x1 = 0 = xψ(p) and x2 = 1 = xψ(p)−1, then, the sequence (xi) |1≤i≤ψ(p) contains at most ψ(p)2
distinct terms.
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. . .

zψ(p)
2

+1
= −1

zψ(p)
2

+2
= 0

zψ(p)
2

+3
= 2

zψ(p)−1 = 2

zψ(p) = 0

1
x0 = 0

x2 = 1

xψ(p)
2

= −2

xψ(p)
2

+1
= −2

zψ(p)
2

= −2

−3

−6

xψ(p) = 0

xψ(p) = 0

. . .

z2 = −2

z1 = −1

z0 = 0

x1 = 0

Fig. 8: Minimizing the number of colors for prime p with ψ(p) even.

Assume 4 | ψ(p) and consider the sequence (zi) |1≤i≤ψ(p)
2 +1

. We have, z1 = −1 = zψ(p)
2 +1

and

z2 = −2 = zψ(p)
2

, then there are equal terms in two’s. Since ψ(p)
2 + 1 is odd, this means there is a central

term, zψ(p)
4 +1

, and the remaining terms are equal in two’s. Thus, this sequence contributes with ψ(p)
4 + 1

distinct terms.
Now for the sequence (zi) |ψ(p)

2 +2≤i≤ψ(p). Reasoning as in the preceding case, this sequence has at

most, ψ(p)−(ψ(p)/2+2)
2 + 1 = ψ(p)

4 .
So, in this 4 | ψ(p) instance, the number of distinct colors is at most

ψ(p)

2
+

(
ψ(p)

4
+ 1

)
+
ψ(p)

4
− 2 = ψ(p)− 1.

where the −2 stems from the fact that 0 and −2 appear on both the x and the z sequences (see Figure 8).
Assume now 4 - ψ(p) and consider the sequence (zi) |1≤i≤ψ(p)

2 +1
. Here ψ(p)

2 + 1 is even, so this

sequence is made up of ψ(p)/2+1
2 pairs of equal terms. Moreover, there are two equal consecutive terms,
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zψ(p)/2+1
2

= zψ(p)/2+3
2

(see Figure 9, with c the common value). Given the arrangement of the arcs in
these standard diagrams, this implies that the zψ(p)/2+1

2
≡ c (see Figure 9). Using the coloring condition

at the crossings and the recurrence relation zk−2 = 3zk−1 − zk + 1, we obtain the other colors in Figure
9, which tell us that there are two colors in (zi) |1≤i≤ψ(p)

2 +1
that already showed up in the x sequence: c

and −1. Thus, the net contribution of (zi) |1≤i≤ψ(p)
2 +1

is at most ψ(p)/2+1
2 − 2.

Now, for the sequence (zi) |ψ(p)
2 +2≤i≤ψ(p). Again, we have an even number of terms, ψ(p)

2 − 1,
equal in two’s. Since zψ(p)

2 +2
≡ 0 ≡ zψ(p), which has already been accounted for in the x sequence,

then we will consider only
ψ(p)

2 −3
2 pairs of terms. Moreover, there is again a phenomenon analogous

to the one depicted in Figure 9, induced by the fact that there are two equal consecutive terms in the
(zi) |ψ(p)

2 +2≤i≤ψ(p) sequence. This time is just the c that has to be considered. Moreover, we will now
prove that this c is distinct from the c occurring in connection with the sequence (zi) |1≤i≤ψ(p)

2 +1
. If

they were equal, since the next term in both subsequences, (xi) |1≤i≤ψ(p)
2

and (xi) |ψ(p)
2 +1≤i≤ψ(p), is −1

(mod p), then, given the recurrence relation zk = 3zk−1 − zk−2 + 1, then the subsequences would be
equal. But they are not equal. Hence the net contribution of (zi) |ψ(p)

2 +2≤i≤ψ(p) to the total number of

colors is at most
ψ(p)

2 −3
2 − 1.

Finally, the total number of colors in this 4 - ψ(p) instance is at most (recall that −2 shows up on both
sides):

ψ(p)

2
+

(
ψ(p)/2 + 1

2
− 2

)
+

(
ψ(p)
2 − 3

2
− 1

)
− 1 = ψ(p)− 5.

−1 = 2c− (2c+ 1) = xψ(p)−1
4

−1

c = xψ(p)−1
4

−1

zψ(p)−1
4

−1
= 3c− c+ 1 = 2c+ 1

zψ(p)−1
4

= c

zψ(p)−1
4

+1
= c

...

...

Fig. 9: The colors around zψ(p)
2

+1
, zψ(p)

2
+1+1

for prime p with ψ(p) even and 4 - ψ(p).
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This concludes the proof for the ψ(p) even case, concluding the proof of Proposition 2.12.
2

2.3.3 Proof of Theorem 1.3 and Corollary 1.3
The proof of Theorem 1.3 is a straightforward application of Proposition 2.12.
As for proof of Corollary 1.3, given positive integers n and r > 1, we choose a common prime factor of

r and un−1 (in order to ensure there are non-trivial colorings), which minimizes ψ (in order to minimize
the number of colors involved. Applying Propositions 2.6 and 2.5, we conclude the proof of Corollary
1.3.
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A Table of ψ

r ψ(r) r ψ(r) r ψ(r) r ψ(r) r ψ(r)

1 2 38 9 75 100 112 24 149 74
2 3 39 28 76 9 113 38 150 300
3 4 40 30 77 40 114 36 151 25
4 3 41 20 78 84 115 120 152 18
5 10 42 24 79 39 116 21 153 36
6 12 43 44 80 60 117 84 154 120
7 8 44 15 81 108 118 87 155 30
8 6 45 60 82 60 119 72 156 84
9 12 46 24 83 84 120 60 157 158
10 30 47 16 84 24 121 55 158 39
11 5 48 12 85 90 122 30 159 108
12 12 49 56 86 132 123 20 160 120
13 14 50 150 87 28 124 15 161 24
14 24 51 36 88 30 125 250 162 28
15 20 52 42 89 22 126 24 163 164
16 12 53 54 90 60 127 128 164 60
17 18 54 36 91 56 128 96 165 20
18 12 55 10 92 24 129 44 166 84
19 9 56 24 93 60 130 210 167 168
20 30 57 36 94 48 131 65 168 24
21 8 58 21 95 90 132 60 169 182
22 15 59 29 96 24 133 72 170 90
23 24 60 60 97 98 134 204 171 36
24 12 61 30 98 168 135 180 172 132
25 50 62 15 99 60 136 18 173 174
26 42 63 24 100 150 137 138 174 84
27 36 64 48 101 25 138 24 175 200
28 24 65 70 102 36 139 23 176 60
29 7 66 60 103 104 140 120 177 116
30 60 67 68 104 42 141 16 178 66
31 15 68 18 105 40 142 105 179 89
32 24 69 24 106 54 143 70 180 60
33 20 70 120 107 36 144 12 181 45
34 18 71 35 108 36 145 70 182 168
35 40 72 12 109 54 146 222 183 60
36 12 73 74 110 30 147 56 184 24
37 38 74 114 111 76 148 114 185 190

Tab. 2: Table of ψ. In bold: prime r’s and their ψ’s.
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