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Vincular or dashed patterns resemble classical patterns except that some of the letters within an occurrence are re-
quired to be adjacent. We prove several infinite families of Wilf-equivalences for k-ary words involving vincular
patterns containing a single dash, which explain the majority of the equivalences witnessed for such patterns of length
four. When combined with previous results, numerical evidence, and some arguments in specific cases, we obtain
the complete Wilf-classification for all vincular patterns of length four containing a single dash. In some cases, our
proof shows further that the equivalence holds for multiset permutations since it is seen to respect the number of
occurrences of each letter within a word. Some related enumerative results are provided for patterns τ of length four,
among them generating function formulas for the number of members of [k]n avoiding any τ of the form 11a-b.
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1 Introduction
The Wilf-classification of patterns is a general question in enumerative combinatorics that has been ad-
dressed on several discrete structures mostly in the classical case. We refer the reader to such texts as
[8, 11, 13] and the references contained therein. Vincular patterns (also called “generalized” or “dashed”
patterns) resemble classical patterns, except that some of the letters must be consecutive within an oc-
currence. The Wilf-classification of vincular patterns of length three for permutations was completed by
Claesson [5]. Progress on the classification of length four vincular patterns for permutations was made in
[12, 6, 1, 10], and now all but possibly two equivalences have been shown (see [2]).

The analogous question concerning avoidance by k-ary words has also been addressed. Burstein and
Mansour [3, 4] considered the Wilf-classification of vincular patterns of length three for k-ary words and
found generating function formulas for the number of members of a class in several cases. The comparable
problem for length four patterns has been partially addressed in [10], where several equivalences were
shown to follow from a more general result on partially commutative monoids generated by a poset. In
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this paper, we continue work started in [10] and complete the Wilf-classification of vincular patterns of
type (3, 1) or (2, 2) for k-ary words.

Let [k] = {1, 2, . . . , k}. A k-ary word refers to a member of [k]n. The reduction of a k-ary word α
having ` distinct letters is the word in [`] obtained by replacing all copies of the i-th smallest letter of α
with i for each i ∈ [`] and is denoted by red(α). For example, red(694614) = 342312. The words α and
β are said to be isomorphic, denoted α ≡ β, if red(α) = red(β).

By a pattern σ = σ1σ2 · · ·σm, we will mean a member of [`]m for some ` and m in which each letter
in [`] appears at least once. A word w = w1w2 · · ·wn ∈ [k]n contains σ as a classical pattern if there is
a subsequence wi1wi2 · · ·wim for 1 ≤ i1 < i2 < · · · < im ≤ n such that wi1wi2 · · ·wim ≡ σ. Vincular
patterns are similar to classical patterns except that some of the indices ij are required to be consecutive.
One may regard a vincular pattern as a pair (σ,X) for a word σ and a set of adjacenciesX ⊆ [m−1]. Then
we say that w contains an occurrence (or copy) of (σ,X) if there exists a subsequence wi1wi2 · · ·wim of
w that is isomorphic to σ with ij+1 − ij = 1 for each j ∈ X . Otherwise, we say that w avoids (σ,X).

One often expresses (σ,X) as the permutation σ with a dash between σj and σj+1 if j /∈ X and refer
to “the vincular pattern σ” without explicitly writing X . For example, (1342, {2}) is written 1-34-2.
The word 24356213 contains an occurrence of 1-34-2 as witnessed by the subsequence 2563, but the
subsequence 2453 is not an occurrence of 1-34-2 since the 4 and 5 are not adjacent. Classical patterns
are those of the form (σ,∅) where no adjacencies are required, while consecutive or subword patterns
are those of the form (σ, [m− 1]) where copies of σ must appear as subfactors wiwi+1 · · ·wi+m−1 ≡ σ.
Vincular patterns of the form σ1-σ2- · · · -σr, where each σi has length si for 1 ≤ i ≤ r, are said to be of
type (s1, s2, . . . , sr).

The reverse of a k-ary word w = w1w2 · · ·wn is given by wr = wnwn−1 · · ·w1, and the complement
by wc = (k+1−w1)(k+1−w2) · · · (k+1−wn). The reverse of a vincular pattern σ having ` distinct
letters is obtained by reading the letters and dashes together in reverse order, while the complement is
obtained by replacing each copy of the letter j with `+ 1− j for all j, maintaining the relative positions
of the dashes. For example, we have (13-23-4)r = 4-32-31 and (13-23-4)c = 42-32-1. Observe that a
word w contains a pattern σ if and only if wr contains σr and likewise for the complement.

We will make use of the following notation. Given a generalized pattern σ, let Aσ(n, k) denote the
subset of [k]n whose members avoid σ and let aσ(n, k) = |Aσ(n, k)|. Two patterns σ and τ are Wilf-
equivalent if aσ(n, k) = aτ (n, k) for all n and k, and we denote this by σ ∼ τ . From the preceding
remarks on symmetry, it is clear that σ ∼ σr ∼ σc ∼ σrc. The Wilf-equivalence class of a pattern σ
consists of all patterns τ such that τ ∼ σ.

It will be useful to refine the sets Aσ(n, k) according to various prefixes. Given w = w1w2 · · ·wm,
let Aσ(n, k;w) denote the subset of Aσ(n, k) whose members π = π1π2 · · ·πn satisfy π1π2 · · ·πm =
w1w2 · · ·wm and let aσ(n, k;w) = |Aσ(n, k;w)|.

The paper is divided as follows. Section 2 proves several infinite families of Wilf-equivalences for
vincular patterns containing a single dash. These results have as corollaries the majority of the non-trivial
equivalences witnessed for such patterns of length four. One of the results provides a partial answer to
a question raised in [10] of finding analogues for k-ary words and compositions of some known equiv-
alences on permutations. In some cases, the family of equivalences is seen to respect the number of
occurrences of each letter within a word and hence is actually an equivalence for multiset permutations
(see [9]).

Section 3 proves additional equivalences for patterns of length four and completes the Wilf-classification
for patterns of length four. All non-trivial equivalences, up to symmetry, involving patterns of type (3, 1)
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or (2, 2) are listed. Section 4 provides some related enumerative results. Among them are formulas for
the generating functions for the sequences aτ (n, k) where k is fixed and τ is any pattern of the form
11a-b. We make use of primarily combinatorial methods to prove our results in the second and third sec-
tions, while in the last our methods are more algebraic. In that section, we adapt the scanning-elements
algorithm described in [7], a technique which has proven successful in enumerating length three pattern
avoidance classes for permutations, to the comparable problem involving type (3, 1) vincular patterns and
k-ary words.

2 Some General Equivalences
In this section, we show that some general families of equivalences hold concerning the avoidance of
a vincular pattern having one dash. We will make use of the following notation and terminology. A
sequence of consecutive letters within π = π1π2 · · ·πn ∈ [k]n starting with the letter in the i-th position
and isomorphic to a subword σ will be referred to as an occurrence of σ at index i. An ascent (resp.,
descent) refers to an index i such that πi < πi+1 (resp., πi > πi+1). By a non-ascent, we will mean an
index i such that πi ≥ πi+1. A sequence of consecutive letters within π possessing a common property
will be often referred to as a string (of letters) having the given property. If i ≥ 1, then ai stands for the
sequence consisting of i copies of the letter a. If σ is a word and s a positive integer, then σ + s is the
word obtained from σ by adding s to each of its entries. Finally, if m and n are positive integers, then
[m,n] = {m,m+ 1, . . . , n} if m ≤ n and [m,n] = ∅ if m > n.

Our first result provides a way of extending the equivalence of a pair of subword patterns to a pair of
longer vincular patterns containing the subwords. By a monotonic subword, we will mean one whose
letters are either weakly increasing or decreasing.

Theorem 2.1 Let τ ∼ ρ be subwords each having largest letter s. Let σ be a non-empty monotonic
subword pattern whose largest letter is t. Then τ -(σ + s) ∼ ρ-(σ + s) and σ-(τ + t) ∼ σ-(ρ+ t).

Proof: Note that the second equivalence follows from the first by reverse complementation. Let τ ′ =
τ -(σ + s) and ρ′ = ρ-(σ + s). We will show the first equivalence by constructing a bijection f between
Aτ ′(n, k) and Aρ′(n, k). Clearly, we may assume s+ t ≤ k. By a b-occurrence of σ in π, we will mean
one in which the smallest letter in the occurrence is b. Throughout the rest of the proof, let c = |σ| denote
the length of the pattern σ.

Let g be a bijection which realizes the equivalence between τ and ρ. Let π = π1π2 · · ·πn ∈ Aτ ′(n, k).
If π contains no b-occurrences of σ for which b ∈ [s + 1, k], then let f(π) = π. Otherwise, we define
sequences {aj}j≥1 and {`j}j≥1 as follows. Let a1 denote the largest i ∈ [s+ 1, k] for which there is an
i-occurrence of σ in π and suppose the rightmost a1-occurrence of σ occurs at index `1. Define aj and `j
inductively for j > 1 as follows: Let aj denote the largest letter i ∈ [s+1, aj−1−1] for which there exists
an i-occurrence of σ whose first letter occurs to the right of position `j−1 + c− 1 in π, with the rightmost
aj-occurrence of σ occurring at index `j . Note that a1 > a2 > · · · > ar and `1 < `2 < · · · < `r for some
r ≥ 1.

If σ is (weakly) increasing and 1 ≤ j ≤ r, then no section of S = π`jπ`j+1 · · ·π`j+c−1 can form
part of an occurrence of ρ′ coming prior to the dash, for otherwise there would be an i-occurrence of σ
for which i > aj occurring to the right of S in π, which is impossible. The same conclusion concerning
sections of S holds if σ is (weakly) decreasing. For if a section of S comprised some of the letters coming
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prior to the dash in an occurrence of ρ′, then there would be at least one letter to the left of the dash that
is larger than a letter to the right of it, which is impossible.

We then apply g separately to any and all non-empty strings of letters in the alphabet [aj+1−1] occurring
amongst π`j+cπ`j+c+1 · · ·π`j+1−1 for each 1 ≤ j < r as well as to any strings of letters in the alphabet
[a1 − 1] occurring amongst π1π2 · · ·π`1−1. We leave any letters occurring to the right of the rightmost
ar-occurrence of σ in π unchanged. The resulting word f(π) avoids ρ′ and the mapping f is seen to be
a bijection. Note that π avoids τ ′ if and only if each of the strings described above avoids τ and likewise
for ρ′. To define f−1, one then applies g−1 to the same strings of letters to which one applied g.

For example, if τ = 12, ρ = 21, and σ = 123, then τ ′ = 12-345 and ρ′ = 21-345. If n = 32, k = 8,
and

π = 43176783245633254572134521358434 ∈ Aτ ′(32, 8),

then a1 = 6, a2 = 4, and a3 = 3, with `1 = 5, `2 = 17, and `3 = 27. Note that the mapping g is given
by the reversal in this example. Changing the order of the overlined strings would then imply

f(π) = 13476782345623354571234512358434 ∈ Aρ′(32, 8).

Here the rightmost ai-occurrences of σ in π and f(π) are underlined and the strings of letters that they
dominate within these words are overlined. 2

The equivalence of the patterns ρ and σ over [k]n is said to be strong if it respects the number of
occurrences of each letter, that is, if ρ and σ are equivalent when viewed as patterns over permutations of
the same multiset. Observe that the proof of the preceding theorem shows further that strong equivalence
of τ and ρ is preserved by τ ′ and ρ′.

The following avoidance result is known for permutations (see [6, 12]): if α ∼ β are subword patterns
of length k, then (i) α-(k + 1) ∼ β-(k + 1), (ii) α-(k + 2)(k + 1) ∼ β-(k + 2)(k + 1), and (iii)
α-(k + 1)(k + 2) ∼ α-(k + 2)(k + 1). In [10, Section 4.2], Kasraoui raised the question of finding
analogues of (i)-(iii) for k-ary words and compositions. Theorem 2.1 provides the requested equivalences
in the case of words upon taking σ = 1 or σ = 21 in the first statement and taking τ = 12, ρ = 21 in the
second. Note that for (iii), we obtain a proof of the result only in the case when α is monotonic. However,
modifying the proof of Theorem 2.5 below will imply (iii) for all α.

Our next result concerns an infinite family of equivalences involving vincular patterns in which the
sequence of letters prior to the dash contain exactly one peak and no valleys.

Theorem 2.2 Let ` ≥ 3 and τ = τ1τ2 · · · τ`-τ`+1 denote a vincular pattern of length ` + 1 such that
τ1 ≤ τ2 ≤ · · · ≤ τj−1 < τj > τj+1 ≥ τj+2 ≥ · · · ≥ τ`, where 2 ≤ j ≤ ` − 1 and τj < τ`+1. Let
ρ = ρ1ρ2 · · · ρ`-ρ`+1 denote the pattern obtained from τ by interchanging the letters τj and τ`+1. Then
τ ∼ ρ and this equivalence respects the first letter statistic.

Proof: We will show that aτ (n, k; a) = aρ(n, k; a) for each a ∈ [k] by induction on n and k. We
may restrict attention to the subsets of Aτ (n, k; a) and Aρ(n, k; a) whose members contain each letter of
[k] at least once, since the complementary subsets have the same cardinality by induction on k. Given
1 ≤ i ≤ `, let w1w2 · · ·wi be a k-ary word of length i with w1 = a such that w1w2 · · ·wi−1 ≡
τ1τ2 · · · τi−1 but w1w2 · · ·wi 6≡ τ1τ2 · · · τi. Given a word α, let a∗τ (n, k;α) denote the cardinality of the
subset A∗τ (n, k;α) ⊆ Aτ (n, k;α) whose members contain every letter in [k] at least once and likewise
for ρ. By induction on n, we have that a∗τ (n, k;w1w2 · · ·wi) = a∗ρ(n, k;w1w2 · · ·wi), upon deleting the
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first i − 1 letters and considering how many distinct letters occurring amongst the first i − 1 positions
occur again beyond the (i− 1)-st position.

Let us assume now concerning the pattern τ that at least one of the inequalities τ1 ≤ τ2 or τ`−1 ≥ τ`
holds strictly. We will first complete the proof in this case. Suppose w = w1w2 · · ·w` is a k-ary word
isomorphic to τ1τ2 · · · τ` with w1 = a. Note that in order for the set A∗τ (n, k;w1w2 · · ·w`) to be non-
empty, we must have wj = k, and in order for the set A∗ρ(n, k;w1w2 · · ·w`) to be non-empty, we must
have wj = m, where m = max{wj−1, wj+1}+ 1. If wj = k in w, then let w̃ be the word obtained from
w by replacing wj = k with wj = m and leaving all other letters of w unchanged.

We now partition Aτ (n, k;w) and Aρ(n, k; w̃) as follows. Let S denote a subset of distinct letters
amongstw1w2 · · ·w` excluding the letterw`, where |S| = r and |S|∩[w`−1] = s for some r and s, and let
A∗τ (n, k;w, S) ⊆ A∗τ (n, k;w) consist of those words in which the only letters amongst those in the prefix
w that fail to occur beyond the (` − 1)-st position are those in S. Let S̃ be a subset of [k] obtained from
S by either replacing k with m if k ∈ S or doing nothing if k 6∈ S, and let A∗ρ(n, k; w̃, S̃) ⊆ A∗ρ(n, k; w̃)
consist of those words in which the only letters amongst those in the prefix w̃ that fail to occur beyond the
(`− 1)-st position are those in S̃.

Note that a∗τ (n, k;w) =
∑
S |A∗τ (n, k;w, S)| and a∗ρ(n, k; w̃) =

∑
S |A∗ρ(n, k; w̃, S̃)|, where the sums

range over all possible S with r and s varying. By deletion of the first `− 1 letters and induction, we have

a∗τ (n, k;w, S) = a∗τ (n− `+ 1, k − r;w` − s) = a∗ρ(n− `+ 1, k − r;w` − s) = a∗ρ(n, k; w̃, S̃)

for each possible choice of S, which implies a∗τ (n, k;w) = a∗ρ(n, k; w̃). Note that as w ranges over all
possible prefixes isomorphic to τ1τ2 · · · τ` within members ofA∗τ (n, k; a), we have that w̃ ranges over the
comparable prefixes within members of A∗ρ(n, k; a).

Collecting all of the cases above in which a prefix starts with the letter a shows that a∗τ (n, k; a) =
a∗ρ(n, k; a) and completes the induction. This then completes the proof in the case when at least one of
the inequalities τ1 ≤ τ2 or τ`−1 ≥ τ` holds strictly.

Suppose now that neither of these inequalities holds strictly for τ and furthermore that τ1 = τ2 = · · · =
τb and τ`−b+1 = τ`−b+2 = · · · = τ`, where 1 < b < min{j, ` − j + 1} is maximal. In this case, we
proceed by induction and show the following:

(i) a∗τ (n, k; a) = a∗ρ(n, k; a), and

(ii) a∗τ (n, k; a
b) = a∗ρ(n, k; a

b).

By the preceding, we only need to show that (ii) follows by induction in the case when the words in
question have prefix w = w1w2 · · ·w` isomorphic to τ1τ2 · · · τ` with w1 = a. Using the same notation as
above, we have by the induction hypothesis for (ii) that

a∗τ (n, k;w, S) = a∗τ (n− `+ b, k − r; (w` − s)b) = a∗ρ(n− `+ b, k − r; (w` − s)b) = a∗ρ(n, k; w̃, S̃)

for all S, which implies a∗τ (n, k;w) = a∗ρ(n, k; w̃). Lettingw vary implies (ii) in the n case and completes
the induction of (i) and (ii), which finishes the proof. 2

Our next result shows the equivalence of a family of patterns each differing from one another by a
single letter.
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Theorem 2.3 If i ≥ 2 and c, d ∈ [i], then 12 · · · i-c ∼ 12 · · · i-d.

Proof: We’ll show that A12···i-c(n, k; a) and A12···i-d(n, k; a) have the same cardinality for all a ∈ [k]
by induction. Clearly, both sets contain the same number of strictly increasing members, so let us restrict
attention to those that are not. Let α = a1a2 · · · ajaj+1, where j ≥ 1 and a = a1 < a2 < · · · <
aj ≥ aj+1. If j < i, then both sets contain the same number of members starting with the prefix α, by
induction, upon deleting the first j letters, so let us assume j ≥ i. Then members of A12···i-c(n, k;α) can
only contain letters in [k]−{ac, ac+1, . . . , ac+j−i} beyond the j-th position and a similar remark applies
to A12···i-d(n, k;α).

Let s be given and suppose π ∈ A12···i-c(n, k;α) has s as its (j + 1)-st letter. Let s̃ denote the
value corresponding to s when the set [aj ] − {ac, ac+1, . . . , ac+j−i} is standardized. Pick t ∈ [aj ] −
{ad, ad+1, . . . , ad+j−i} such that the standardization t∗ of t relative to this set satisfies t∗ = s̃. Let
α′ = a1a2 · · · aj . By induction, we have

a12···i-c(n, k;α′s) = a12···i-c(n− j, k − j + i− 1; s̃) = a12···i-d(n− j, k − j + i− 1; t∗)
= a12···i-d(n, k;α′t).

Note that as s varies over all the possible values in [aj ] − {ac, ac+1, . . . , ac+j−i}, t varies over all
possible values in [aj ] − {ad, ad+1, . . . , ad+j−i}. It follows that the subset of A12···i-c(n, k; a) whose
members have their first non-ascent at position j has the same cardinality as the comparable subset of
A12···i-d(n, k; a). Allowing j to vary implies a12···i-c(n, k; a) = a12···i-d(n, k; a) as desired. 2

Our next result concerns the equivalence of a family of patterns of the same length consisting of distinct
letters that are strictly increasing except for the final letter to the right of the dash.

Theorem 2.4 If r ≥ 3 and 2 ≤ u, v ≤ r, then

1 · · · (u− 1)(u+ 1) · · · (r + 1)-u ∼ 1 · · · (v − 1)(v + 1) · · · (r + 1)-v.

Proof: It is enough to show the equivalence in the case when v = u + 1. Let τ = 1 · · · (s − 1)(s +
1) · · · (r+1)-s and ρ = 1 · · · s(s+2) · · · (r+1)-(s+1), where 2 ≤ s ≤ r−1. We show by induction on
n that aτ (n, k; a) = aρ(n, k; a) for all k and any a ∈ [k]. Deletion of the first i letters implies by induction
that the sets Aτ (n, k; a) and Aρ(n, k; a) have the same cardinality if w = w1w2 · · ·wi+1 is a k-ary word
satisfying a = w1 < w2 < · · · < wi ≥ wi+1 where 1 ≤ i ≤ r − 1. So assume π = π1π2 · · ·πn ∈
Aτ (n, k; a) starts with at least r − 1 ascents and contains at least one non-ascent. That is, for some
t ≥ r − 1 and x1 < x2 < · · · < xt, we have α := π1π2 · · ·πt+2 = a(a + x1)(a + x2) · · · (a + xt)b,
where b ≤ a+ xt. Deleting the first t+ 1 letters and noting some forbidden letters in [k], we have

aτ (n, k;α) = aτ (n− t− 1, k − xs+t−r + xs−2 + t− r + 2; b̃),

where x0 = 0 and b̃ denotes the relative size of b in the set

[a+ xt]− ∪t−r+1
i=0 [a+ xi+s−2 + 1, a+ xi+s−1 − 1].

Let d = xs+t−r+1 − xs+t−r. Define the word α′ by α′ = a(a+ y1)(a+ y2) · · · (a+ yt)c, where

yi =

{
xi, if 1 ≤ i ≤ s− 2 or s+ t− r + 1 ≤ i ≤ t;
xi−1 + d, if s− 1 ≤ i ≤ s+ t− r,
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the xi are as before, and c ≤ a+ yt is to be determined. Reducing letters we have

aρ(n, k;α
′) = aρ(n− t− 1, k − xs+t−r + xs−2 + t− r + 2; c∗),

where c∗ denotes the relative size of c in the set

[a+ xt]− ∪t−r+1
i=0 [a+ xi+s−2 + d+ 1, a+ xi+s−1 + d− 1].

Observe that there are a + xt + xs−2 − xs+t−r + t − r + 2 possibilities for b̃ and the same number of
possibilities for c∗. So given b, if we pick c such that c∗ = b̃, it follows by induction that aτ (n, k;α) =
aρ(n, k;α

′) for such a choice of c. Note that as α varies over all prefixes of the given form within members
of Aτ (n, k; a) containing at least r − 1 ascents prior to the first non-ascent, we have that α′ varies over
the comparable sequences within the members of Aρ(n, k; a). Since both sets clearly contain the same
number of strictly increasing members, it follows that aτ (n, k; a) = aρ(n, k; a), which completes the
induction and proof. 2

Our final result of this section provides a way of generating equivalences from subwords and explains
several equivalences witnessed for patterns of small size.

Theorem 2.5 If σ is a subword whose largest letter is r, then σ-r(r + 1) ∼ σ-(r + 1)r.

Proof: Let τ = σ-r(r + 1) and ρ = σ-(r + 1)r. By an s-occurrence of σ, τ or ρ within π, we will
mean an occurrence in which the role of the r is played by the letter s in π. We will define a bijection
between Aτ (n, k) and Aρ(n, k). Suppose π = π1π2 · · ·πn ∈ Aτ (n, k). If π has no s-occurrences of
σ for any s, then let f(π) = π. Otherwise, let k1 be the smallest s ∈ [k] such that π contains at least
one s-occurrence of σ. Suppose that the leftmost k1-occurrence of σ within π occurs at index j1. Let
S1 denote the subsequence of π consisting of any letters in [k1, k] amongst πj1+aπj1+a+1 · · ·πn, where
a = |σ| denotes the length of σ. Then S1 may be empty or it may consist of one or more non-empty
strings of letters in [k1, k] separated from one another by letters in [k1 − 1]. Within each of these strings,
all letters k1 must occur after all letters in [k1 + 1, k] in order to avoid an occurrence of τ in π. We move
any copies of k1 from the back of each string to the front, and let π1 denote the resulting word.

Note that π1 contains no k1-occurrences of ρ and that π1 = π if π contains no such occurrences of ρ.
Furthermore, we have that π1 contains no s-occurrences of ρ for any s ∈ [k1 − 1] as well. To see this,
suppose to the contrary that it contains a b-occurrence of ρ for some b ∈ [k1−1]. By the minimality of k1,
such an occurrence of ρ must involve some letter c ∈ [k1 + 1, k] that was moved in the transition from π
to π1 playing the role of the r+ 1. But then π would have contained a b-occurrence of ρ (with k1 playing
the role of the r + 1), contradicting the minimality of k1.

We define the πi recursively as follows. Define ki, i > 1, by letting ki be the smallest s ∈ [ki−1 +1, k]
for which there exists an s-occurrence of σ in πi−1. Let ji denote the index of the leftmost ki-occurrence
of σ in πi−1 and Si be the subsequence of πi−1 consisting of letters in [ki, k] lying to the right of the
(ji + a − 1)-st position. Again, we move any copies of ki from the back to the front within each non-
empty string of letters in Si. Let πi denote the resulting word. Note that no letters in [ki−1] are moved in
this step (or in later ones). It may be verified that πi contains no s-occurrences of ρ for any s ∈ [ki] since
no s-occurrences of σ for s < ki are created in the transition from πi−1 to πi as well as no ki-occurrences
of σ to the left of the leftmost such occurrence in πi−1. Since the ki strictly increase, the process must
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terminate after a finite number of steps, say t. Let f(π) = πt. Note that f(π) avoids s-occurrences of ρ for
all s ∈ [kt], and hence avoids ρ, since πt doesn’t even contain any s-occurrences of σ for s ∈ [kt + 1, k].

The mapping f is seen to be a bijection. To define its inverse, consider whether or not f(π) contains
an s-occurrence of σ for any s, and if so, the largest s ∈ [k] for which there is an s-occurrence of σ in
f(π), along with the position of the leftmost such s-occurrence. Note that this s must be kt, by definition,
for if not and there were a larger one, then the procedure described above in generating f(π) would not
have terminated after t steps. Within strings of letters in [kt, k] occurring to the right of the leftmost kt-
occurrence of σ in f(π), re-order the letters so that the kt’s succeed rather than precede any other letters.
Note that this undoes the transformation step from πt−1 to πt, where π0 = π. On the word that results,
repeat this procedure, considering the largest s ∈ [kt − 1] occurring in some s-occurrence of σ and then
the leftmost position of such an occurrence.

For example, if n = 30, k = 6, σ = 11, and

π = π0 = 215562213422116535443543654211 ∈ A11-12(30, 6),

then

π1 = 215562213422111165354435436542, π2 = 215562212234111126535443543654,

π3 = 215562212234111126535443453465,

and
f(π) = π4 = 215562212234111125635443453456 ∈ A11-21(30, 6).

Letters corresponding to the leftmost ki-occurrence, 1 ≤ i ≤ 4, of σ are underlined in each step, and any
ki that must be moved in the i-th step are overlined. 2

Note that the preceding proof shows further the strong equivalence of the patterns σ-r(r + 1) and
σ-(r + 1)r.

3 Patterns of length four
In this section, we consider some further equivalences for patterns of length four containing a single
dash. Combining the results of this section with those from the prior and from [10] will complete the
Wilf-classification for avoidance of a single (3, 1) or (2, 2) pattern by k-ary words. The Wilf-equivalence
tables for these patterns are given at the end of this section.

3.1 Further results
In this subsection, we provide further equivalences concerning the avoidance of (3, 1) patterns by k-ary
words. Our first result generalizes the equivalence 113-2 ∼ 133-2.

Theorem 3.1 If i ≥ 2, then 1i3-2 ∼ 13i-2.
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Proof: For simplicity, we prove only the i = 2 case, the general case following by making the suitable
modifications. By a 113 or 133 avoiding k-ary word, we will mean, respectively, one which avoids either
the 112 or 122 subword except for possible adjacencies of the form aa(a + 1) or a(a + 1)(a + 1). We
first show that the number of members of Aτ (n, k) starting with a and ending with b where a and b are
given is the same for τ = 113 as it is for τ = 133. Suppose π ∈ A113(n, k) starts with the letter a and
ends in b. First assume that there are no descents in π. Then π may be expressed as π = an1

1 an2
2 · · · anr

r

for some r ≥ 1 where a = a1 < a2 < · · · < ar = b, ni ≥ 1 for i ∈ [r], and ni = 1 if ai+1 > ai + 1.
Similarly, if ρ ∈ A133(n, k) starts with a and ends in b and contains no descents, then we may write
ρ = am1

1 am2
2 · · · amr

r for some r where mi+1 = 1 if ai+1 > ai + 1.
We define a bijection f between the words π and ρ described above as follows. Let 1 ≤ i1 < · · · <

i`−1 < i` = r be the set of indices such that aij+1 = aij +1 for 1 ≤ j ≤ `−1. Note that the exponent ni
must be one if i ∈ [r]− {i1, i2, . . . , i`}, with the nij exponents unrestricted. We define the mi exponents
for indices lying in the interval [ij + 1, ij+1], 0 ≤ j ≤ ` − 1, by setting mij+1 = nij+1

and mt = 1 if
ij + 1 < t ≤ ij+1, where i0 = 0. This yields the desired bijection between members of A113(n, k) and
A133(n, k) whose first and last letters are given and containing no descents.

Now suppose π = π1π2 · · ·πn ∈ A113(n, k) contains at least one descent. For this case, we will
proceed by induction on n. We may assume n ≥ 4 since the result is clear if 1 ≤ n ≤ 3. Then
a = π1 ≤ π2 ≤ · · · ≤ πi′−1 > πi′ for some i′ > 1. Likewise, suppose ρ = ρ1ρ2 · · · ρn ∈ A133(n, k)
starts with a and contains at least one descent, with i′ − 1 the position of the leftmost descent. By the
bijection in the previous paragraph, we have that the number of possible subsequences π1π2 · · ·πi′−1 in
which πi′−1 is a given number s is the same as the number of possible subsequences ρ1ρ2 · · · ρi′−1 in
which ρi′−1 = s. If πi′ = ρi′ = t < s is given, then there are the same number of possibilities for
πi′πi′+1 · · ·πn as there are for ρi′ρi′+1 · · · ρn by induction since both classes of sequences are to begin
with t and end with b, with the former avoiding 113 and the latter 133. Letting the position of the first
descent vary as well as the values of s and t, it follows that the number of members of Aτ (n, k) whose
first and last letters are prescribed is the same for τ = 113 as it is for τ = 133.

We now show that a113-2(n, k; a) = a133-2(n, k; a) for each a ∈ [k] by induction. Clearly the members
of either set not containing an occurrence of 113 or 133, respectively, are equinumerous by the preceding.
So assume π = π1 · · ·πn ∈ A113-2(n, k; a) contains at least one occurrence of the 113 subword and that
` is the smallest index i such that πi−1πiπi+1 is an occurrence of 113. Let π` = u and π`+1 = v, where
v > u + 1. Similarly, define `, u, and v in conjunction with ρ = ρ1 · · · ρn ∈ A133-2(n, k; a) and the
subword 133. We will show that the respective subsets of A113-2(n, k; a) and A133-2(n, k; a) containing
such π and ρ have the same cardinality.

To do so, first note that the number of 113-avoiding words α of length `− 1 starting with a and ending
with u equals the number of comparable 133-avoiding words β, by the preceding. Furthermore, for any
pair α and β as described, we have

a113-2(n, k;αuv) = a113-2(n− `, k − v + u+ 1;u+ 1)
= a133-2(n− `, k − v + u+ 1;u+ 1)
= a133-2(n, k;βvv),

by induction. Allowing the prefixes αuv and βvv to vary over all possible lengths and values of u and v,
it follows that a113-2(n, k; a) = a133-2(n, k; a) for all a, as desired. 2

Remark 3.2 A similar proof may be given for the equivalences 1i2-1 ∼ 12i-1 for i ≥ 2.
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We next show the equivalence of the patterns 132-1 and 132-2.

Theorem 3.3 We have 132-1 ∼ 132-2.

Proof: We will simultaneously show by induction on n for all k the following:

(i) a132-1(n, k; a) = a132-2(n, k; a) for all a, and

(ii) a132-1(n, k;xyz) = a132-2(n, k;xyz) for any x < z < y.

We may assume n > 4, since both statements clearly hold if n ≤ 4. We first show (i). To do so, first
note that both A132-1(n, k; a) and A132-2(n, k; a) contain as a subset all of the 132-avoiding members
of [k]n starting with the letter a, so let us assume all words under consideration contain at least one
occurrence of 132. Let π = π1 · · ·πn ∈ A132-1(n, k; a) denote a k-ary word and i be the smallest index
such that πiπi+1πi+2 is a 132 subword. If i > 1, then let ρ = π1 · · ·πi−1 and u, v, and w be the letters
comprising the first occurrence of 132. Then we have by induction that

a132-1(n, k; ρuvw) = a132-1(n− i+ 1, k;uvw) = a132-2(n− i+ 1, k;uvw) = a132-2(n, k; ρuvw)

in this case. So assume i = 1. Note that this case in showing (i) is equivalent to showing (ii).
To do so, suppose π = π1π2 · · ·πn is either a member of A132-1(n, k;xyz) or A132-2(n, k;xyz),

where x < z < y. Let r denote the fourth letter of π. We consider cases on r. If r ≤ z, then there are
z − 1 possibilities concerning r for members of either set. Thus if 1 ≤ r < x, we have

a132-1(n, k;xyzr) = a132-1(n− 3, k − 1; r) = a132-2(n− 3, k − 1; r) = a132-2(n, k;xyzr),

while if x < r ≤ z, we have

a132-1(n, k;xyzr) = a132-2(n−3, k−1; r−1) = a132-2(n−3, k−1; r−1) = a132-2(n, k;xyz(r−1)).

If r > z, then let j be the smallest index greater than three such that πj+1 ≤ πj . Note that if no such
index exists, then z = π3 < π4 < · · · < πn and there are clearly an equal number of options concerning
membership in either set. Otherwise, we have z = π3 < π4 < · · · < πj ≥ πj+1 for some j ≥ 4. Let
α = π4π5 · · ·πj+1. If s = πj+1 = πj , then

a132-1(n, k;xyzα) = a132-1(n− j, k − 1; s− 1) = a132-2(n− j, k − 1; s− 1) = a132-2(n, k;xyzα).

Next suppose s = πj+1 < πj but that πj−1πjπj+1 does not form an occurrence of 132. Then

a132-1(n, k;xyzα) = a132-2(n, k;xyzα)

in this case, by the preceding arguments, upon considering the further subcases 1 ≤ s < x, x < s ≤ z, or
z < s ≤ πj−1.

Finally, suppose πj+1 < πj and that πj−1πjπj+1 = uvw is an occurrence of 132. For this case, we
consider an equivalent description of (ii) above. Note that (ii) holds if and only if a132-1(n−2, k−1; z−1)
equals the number of 132-2 avoiding k-ary words of length n − 2 starting with z in which the only
occurrence of z is the first letter. Deleting the first j letters of π ∈ A132-1(n, k;xyzα) implies in this
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case that a132-1(n, k;xyzα) = a132-1(n− j, k − 2;w − 2). On the other hand, deleting the first j letters
of π ∈ A132-2(n, k;xyzα) implies that a132-2(n, k;xyzα) equals the number of members of [k − 1]n−j

starting with w − 1 in which the only occurrence of w − 1 is the first letter. By the reformulation of
(ii) just described and induction, we have a132-1(n, k;xyzα) = a132-2(n, k;xyzα) in this case as well.
Combining all of the cases above completes the inductive proof of (ii), as desired. 2

Remark 3.4 Comparable proofs to the one above may be given for the equivalences

213-1 ∼ 213-2 and 122-1 ∼ 122-2.

The final result of this subsection features an outwardly dissimilar looking pair of equivalences.

Theorem 3.5 We have 134-2 ∼ 143-2, 124-3 ∼ 214-3, and 142-3 ∼ 241-3.

Proof: By an i-occurrence of 134-2 (or 143-2) within some word w, we will mean one in which the
position of 4 is occupied by the letter i in w. We first define a mapping f between A134-2(n, k) and
A143-2(n, k) as follows. Let π ∈ A134-2(n, k). First consider whether or not there are any k-occurrences
of 143-2 within π. If there are any, we first remove the leftmost such occurrence of 143-2 in π by inter-
changing the letter k within this occurrence with its successor. Then remove the leftmost k-occurrence of
143-2 in the resulting word in the same manner and repeat until there are no k-occurrences left. Let f1(π)
denote the word so obtained. Note that f1(π) contains no k-occurrences of 143-2 and that f1(π) = π
if π avoids such occurrences to start with. Proceeding inductively, if j > 1, we remove any (k − j)-
occurrences of 143-2 from fj(π) by interchanging the letters corresponding to the 4 within these occur-
rences with their successors, starting with the leftmost and working from left to right. Note that fj(π)
contains no (k + 1− i)-occurrences of 143-2 for any i ∈ [j]. The process is seen to terminate after k − 3
steps. Set f(π) = fk−3(π). Note that f(π) avoids 143-2.

For example, if n = 25, k = 6, and

π = 3656264116356143254163423 ∈ A134-2(25, 6),

then
f1(π) = 3566246113566143254136423, f2(π) = 3566246113566143245136423,

and
f(π) = f3(π) = 3566246113566134245136423 ∈ A143-2(25, 6).

We now show that f is a bijection. First note that each k in π ∈ A134-2(n, k) corresponding to a
k-occurrence of 143-2 is translated to the right (several places, if necessary) until it is no longer part of
an occurrence, starting with the leftmost such k. Furthermore, each k that must be moved is separated
from any other such k’s by at least one letter less than k. Since each time a k is moved to the right, the
leftmost k-occurrence of 143-2 is also shifted to the right, the number of steps involved in the process of
removing all k-occurrences of 143-2 from a word is bounded above by the total number of letters, and
hence it terminates. Similar remarks apply to any i ∈ [4, k − 1] that must be translated to the right in
the transition from fk−i(π) to fk−i+1(π). Finally, any i that is moved in the (k − i + 1)-st step remains
undisturbed in possible later steps when only letters strictly less than i may be moved.
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So in order to define the inverse of f , we can start with the rightmost 4-occurrence of 134-2 in f(π), if
there is one, and move the 4 contained within it to the left by interchanging its position with its predeces-
sor’s until it is no longer part of a 4-occurrence of the pattern. Repeat for each subsequent 4 that is part
of a 4-occurrence of 134-2, going from right to left. Then repeat this process for each i > 4, ending with
i = k. It may be verified that the mapping fromA143-2(n, k) toA134-2(n, k) that results from performing
this procedure is the inverse of f .

A similar bijection may be given for the equivalence 124-3 ∼ 214-3. By a j-occurrence of 124-3 (or
214-3), we mean one in which the 1 position corresponds to the actual letter j. Suppose π ∈ A124-3(n, k).
Consider any 1-occurrences of 214-3 in π and switch them to 124-3 by interchanging the letters corre-
sponding to the 1 and 2 positions, starting with the rightmost 1-occurrence of 214-3 and working from
right to left. Subsequently replace any j-occurrences of 214-3 in π with 124-3 for j > 1, ending with
j = k − 3. The resulting word is seen to belong to A214-3(n, k). The mapping is reversed by first re-
placing any (k − 3)-occurrences of 124-3 with 214-3, starting with the leftmost and working from left to
right, and then repeating this for any smaller j-occurrences of 124-3, ending with j = 1.

A bijection comparable to the first one above applies to the equivalence 142-3 ∼ 241-3. By an i-
occurrence of either pattern in a k-ary word, we mean one in which the 2 corresponds to the letter i,
where 2 ≤ i ≤ k − 2. Begin by removing any (k − 2)-occurrences of 241-3 within π ∈ A142-3(n, k) by
interchanging the positions of the two smallest letters within these occurrences, starting with the leftmost
and working from left to right. Subsequently remove any i-occurrences of 241-3 for i < k − 2 from the
word that results in a similar manner, ending with i = 2. The mapping so obtained is seen to be invertible.

2

Note that the bijections used in the proof of the prior theorem preserve the number of occurrences of
each letter and hence show the strong equivalence.

3.2 Table of equivalence classes for (3, 1) and (2, 2) patterns
Combining the previous results yields a complete solution to the problem of identifying all of the Wilf-
equivalence classes for patterns of type (3, 1) and (2, 2). By symmetry, this identifies all of the Wilf-
equivalence classes for vincular patterns of length four containing a single dash. Below are the lists of
the non-trivial (3, 1) and (2, 2) equivalences. Others not listed hold due to symmetry. The Wilf-classes of
size one, which may be distinguished from all others by numerical evidence, are also not included.

• 112-1 3.2∼ 122-1 3.4∼ 122-2

• 112-3 2.1∼ 122-3 2.1∼ 211-3 2.1∼ 221-3

• 113-2 3.1∼ 133-2

• 131-2 2.2∼ 121-3 2.1∼ 212-3

• 123-1 [10]∼ 123-3 2.3∼ 123-2
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• 123-4 2.1∼ 321-4

• 124-3 [10]∼ 134-2 3.5∼ 143-2 3.5∼ 214-3

• 132-1 3.3∼ 132-2

• 213-4 2.1∼ 231-4 2.1∼ 312-4 2.1∼ 132-4 2.2∼ 142-3 3.5∼ 241-3

• 213-1 3.4∼ 213-2.

We remark that Theorem 2.3 also applies to the equivalence 123-1 ∼ 123-3 found in [10], and that the
equivalence 124-3 ∼ 134-2 is a special case of Theorem 2.4.

The (2, 2) equivalence classes are given as follows.

• 11-12 2.5∼ 11-21

• 11-23 2.1∼ 11-32

• 12-13 [10]∼ 13-12

• 12-34 2.1∼ 12-43 2.1∼ 21-43 2.1∼ 21-34

• 12-32 2.5∼ 12-23 [10]∼ 21-32 2.5∼ 21-23

• 13-24 [10]∼ 24-13

• 14-23 [10]∼ 23-14.

Note that the equivalence 12-23 ∼ 21-32 also follows from taking reverse complements in Theorem
2.5.
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4 Enumerative results
In this section, we find explicit formulas for and/or recurrences satisfied by the generating functions of
the sequences aτ (n, k) for various τ where k is fixed. Let us define the following generating functions in
conjunction with a pattern τ :

Wτ (x; k) =
∑
n≥0

aτ (n, k)x
n,

Wτ (x; k|j1j2 · · · jm) =
∑
n≥0

aτ (n, k; j1j2 · · · jm)xn.

We will make use of the convention that empty sums take the value zero and empty products the value
one. Our first result provides a way of calculating generating functions for vincular patterns from those
for subword patterns.

Theorem 4.1 Let τ be a subword pattern whose largest letter is r − 1. Define τ ′ = τ -r. Then for all
k ≥ r − 1,

Wτ ′(x; k) =
1

(1− (r − 1)x)
∏k−1
j=r−1 (1− xWτ (x; j))

.

Proof: Let k ≥ r. Since each k-ary word π either contains no k’s or can be expressed as π = π′kπ′′,
where π′ is a (k − 1)-ary word, we obtain

Wτ ′(x; k) =Wτ ′(x; k − 1) + xWτ (x; k − 1)Wτ ′(x; k),

which implies

Wτ ′(x; k) =
Wτ ′(x; k − 1)

1− xWτ (x; k − 1)

for all k ≥ r. Iterating this last relation, we get

Wτ ′(x; k) =
1

(1− (r − 1)x)
∏k−1
j=r−1 (1− xWτ (x; j))

,

since Wτ ′(x; r − 1) = 1
1−(r−1)x . 2

Example 4.2 By Theorem 4.1 and [3, Section 3], we obtain

W111-2(x; k) = 1

(1−x)
∏k−2

j=0

(
1−x 1+x+x2

1−jx(1+x)

) , k ≥ 1,

W112-3(x; k) = 1

(1−2x)
∏k−1

j=2

(
1− x

1− 1
x

+ 1
x

(1−x2)j

) , k ≥ 2,

W212-3(x; k) = 1

(1−2x)
∏k−1

j=2

(
1− x

1−x−x
∑j

i=0
1

1−ix2

) , k ≥ 2,

W123-4(x; k) = 1

(1−3x)
∏k−1

j=3

1− x

1−jx−
∑j

i=3
((−1)b(i−3)/3c+(−1)b(i−2)/3c)(−x)i

2 (ji)

 , k ≥ 3,

W213-4(x; k) = 1

(1−3x)
∏k−1

j=3

(
1− x

1−x−x
∑j−2

i=0

∏i
`=0

(1−`x2)

) , k ≥ 3.
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The next four theorems, taken together with the prior example, provide a complete solution to the
problem of determining the generating function Wτ (x; k) in the case when τ is a pattern of the form
τ = 11a-b. We apply a modification of the scanning-elements algorithm described in [7] (see also related
work in [14, 15]).

Theorem 4.3 For k ≥ 1,

W111-1(x; k) =
k∑
j=1

(k − j)!
(
k
j

)
(1 + x(1 + x) + δj,1x

3)x3(k−j)∏k
i=j(1− (i− 1)x(1 + x))

.

Proof: From the definitions,

W111-1(x; k) = 1 +
∑k
i=1W111-1(x; k|i),

W111-1(x; k|i) = xW111-1(x; k)− xW111-1(x; k|i) +W111-1(x; k|ii),

W111-1(x; k|ii) = x2W111-1(x; k)− x2W111-1(x; k|i) + x3W111-1(x; k − 1).

Solving this system yields the recurrence

W111-1(x; k) =
1 + x(1 + x)

1− (k − 1)x(1 + x)
+

kx3

1− (k − 1)x(1 + x)
W111-1(x; k − 1), k ≥ 1,

with W111-1(x; 0) = 1, which we iterate to complete the proof. 2

Theorem 4.4 For k ≥ 0,

W112-1(x; k) = 1 +

k−1∑
j=0

k−1∑
i=j

(
i

j

)
(1− x2)i−j

x2j+1W112-1(x; k − j).

Proof: By the definitions,

W112-1(x; k|i) = xW112-1(x; k)− xW112-1(x; k|i) +W112-1(x; k|ii),

W112-1(x; k|ii) = x2 + x2
∑i−1
j=1W112-1(x; k|j) + xW112-1(x; k|ii) +

∑k
j=i+1W112-1(x; k|iij)

= x2 + x2
∑i−1
j=1W112-1(x; k|j) + xW112-1(x; k|ii) + x2

∑k−1
j=i W112-1(x; k − 1|j),

which implies

W112-1(x; k|i) = xW112-1(x; k)− x2
k∑

j=i+1

W112-1(x; k|j) + x2
k−1∑
j=i

W112-1(x; k − 1|j)

for 1 ≤ i ≤ k. Therefore, for 0 ≤ i ≤ k − 1, we have

W112-1(x; k|k− i)−W112-1(x; k|k− i+1) = −x2W112-1(x; k|k− i+1)+ x2W112-1(x; k− 1|k− i).
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Define the array ai,j for 0 ≤ i ≤ j by

W112-1(x; k|k − i) =
i∑

j=0

ai,jW112-1(x; k − j).

The ai,j are seen to be polynomials in x. Comparing coefficients ofW112-1(x; k−j) in the last recurrence
yields

ai,j = (1− x2)ai−1,j + x2ai−1,j−1, i ≥ 1 and 0 ≤ j ≤ i,

where a0,0 = x and ai,j = 0 if j > i or j < 0. Define Ai(y) =
∑i
j=0 ai,jy

j so that

Ai(y) = (1− x2 + x2y)Ai−1(y), i ≥ 1,

with A0(y) = x. Iteration gives

Ai(y) = x(1− x2 + x2y)i =

i∑
j=0

(1− x2)i−j
(
i

j

)
x2j+1yj ,

which implies ai,j = (1− x2)i−j
(
i
j

)
x2j+1. Noting

W112-1(x; k) = 1 +

k−1∑
i=0

W112-1(x; k|k − i) = 1 +

k−1∑
j=0

k−1∑
i=j

ai,jW112-1(x; k − j)

yields the desired result. 2

Theorem 4.5 For k ≥ 1,

W112-2(x; k) =
k∑
j=1

x

(1− x2)j − 1 + x

k∏
i=j+1

ix2 − 1 + (1− x2)i

(1− x2)i − 1 + x
.

Proof: By the definitions,

W112-2(x; k|i) = xW112-2(x; k)− xW112-2(x; k|i) +W112-2(x; k|ii),

W112-2(x; k|ii) = x2 + x2
∑i−1
j=1W112-2(x; k|j) + xW112-2(x; k|ii) +

∑k
j=i+1W112-2(x; k|iij)

= x2 + x2
∑i−1
j=1W112-2(x; k|j) + xW112-2(x; k|ii) + (k − i)x3W112-2(x; k − 1),

for 1 ≤ i ≤ k. Thus,

W112-2(x; k|i) = x2 + x(1− x)W112-2(x; k) + (k − i)x3W112-2(x; k − 1) + x2
i∑

j=1

W112-2(x; k|j),
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which implies

W112-2(x; k|1) = x2

1−x2 + x(1−x)
1−x2 W112-2(x; k) +

(k−1)x3

1−x2 W112-2(x; k − 1),

W112-2(x; k|i) = 1
1−x2W112-2(x; k|i− 1)− x3

1−x2W112-2(x; k − 1), i > 1.

An induction on i yields

W112-2(x; k|i) =
x2

(1− x2)i
+
x(1− x)
(1− x2)i

W112-2(x; k) + x

(
kx2 − 1

(1− x2)i
+ 1

)
W112-2(x; k − 1)

for all k ≥ 2. An induction on k now completes the proof. 2

Let Ti(t) = 2tTi−1(t) − Ti−2(t) if i ≥ 2 with T0(t) = 1 and T1(t) = t denote the Chebyshev
polynomial of the first kind and Ui(t) denote the Chebyshev polynomial of the second kind satisfying the
same recurrence but with initial conditions U0(t) = 1 and U1(t) = 2t (see, e.g., [16]). The following
result provides a connection between Chebyshev polynomials and the pattern 113-2 (∼ 133-2).

Theorem 4.6 For k ≥ 0,

W113-2(x; k) = 1 +

k−1∑
j=0

k−1∑
i=j

ai,jW113-2(x; k − j),

where ai,j denotes the coefficient of yj in the polynomial

x(x2(1− y) + y)i/2

1 + y

(
2yTi

(
1 + y

2
√
x2(1− y) + y

)
+ (1− y)Ui

(
1 + y

2
√
x2(1− y) + y

))
.

Proof: By the definitions,

W113-2(x; k|i) = xW113-2(x; k)− xW113-2(x; k|i) +W113-2(x; k|ii)

and
W113-2(x; k|ii) = x2 + x2

∑i−1
j=1W113-2(x; k|j) + xW113-2(x; k|ii)

+x2W113-2(x; k|i+ 1) + x2
∑k−1
j=i+1W113-2(x; j|i+ 1),

for 1 ≤ i ≤ k. Thus,

(1− x2)W113-2(x; k|i)− x(1− x)W113-2(x; k)
= x2 + x2

∑i−1
j=1W113-2(x; k|j) + x2W113-2(x; k|i+ 1) + x2

∑k−1
j=i+1W113-2(x; j|i+ 1),

which is equivalent to

W113-2(x; k|i)− xW113-2(x; k) = −x2
k∑

j=i+2

W113-2(x; k|j) + x2
k−1∑
j=i+1

W113-2(x; j|i+ 1)
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since W113-2(x; k) = 1 +
∑k
`=1W113-2(x; k|`). Replacing i with i+ 1 and subtracting gives

W113-2(x; k|i+ 1)−W113-2(x; k|i) = x2W113-2(x; k|i+ 2) + x2
∑k−1
j=i+2W113-2(x; j|i+ 2)

−x2
∑k−1
j=i+1W113-2(x; j|i+ 1).

Replacing k with k + 1 and subtracting in the last equation gives

W113-2(x; k + 1|i+ 1)−W113-2(x; k|i+ 1) −W113-2(x; k + 1|i) +W113-2(x; k|i)
= x2W113-2(x; k + 1|i+ 2)− x2W113-2(x; k|i+ 1),

which we rewrite as

W113-2(x; k + 1|k − i) =W113-2(x; k + 1|k − i+ 1) +W113-2(x; k|k − i)
−x2W113-2(x; k + 1|k − i+ 2)− (1− x2)W113-2(x; k|k − i+ 1),

where 1 ≤ i ≤ k − 1. Define the array ai,j for 0 ≤ j ≤ i by

W (x; k|k − i) =
i∑

j=0

ai,jW (x; k − j).

The ai,j are seen to be polynomials in x. Comparing coefficients ofW113-2(x; k−j) in the last recurrence
gives

ai+1,j = ai,j + ai,j−1 − x2ai−1,j − (1− x2)ai−1,j−1, 1 ≤ i ≤ k − 2 and 0 ≤ j ≤ i+ 1,

where a0,0 = a1,0 = x, a1,1 = 0 and ai,j = 0 if j > i or j < 0. Define Ai(y) =
∑i
j=0 ai,jy

j so that

Ai+1(y) = (1 + y)Ai(y)− (x2(1− y) + y)Ai−1(y), i ≥ 1,

with A0(y) = A1(y) = x. By induction, one can show for i ≥ 0 that

Ai(y) =
x(x2(1− y) + y)i/2

1 + y

(
2yTi

(
1 + y

2
√
x2(1− y) + y

)
+ (1− y)Ui

(
1 + y

2
√
x2(1− y) + y

))
,

which yields the desired formula. 2

Similar techniques also apply to the patterns 121-1 and 121-2, the results of which we state without
proof.

Theorem 4.7 For k ≥ 1,

W121-1(x; k) =
k∑
j=1

1

1−
∑j−1
`=0

x
1+`x2

k∏
i=j+1

∑i−1
`=0

`x3

1+`x2

1−
∑i−1
`=0

x
1+`x2

.

Theorem 4.8 For k ≥ 0,

W121-2(x; k) = 1 +

k−1∑
j=0

k−1∑
i=j

(
i
j

)∏i
`=i−j(1 + `x2)

 j!x2j+1W121-2(x; k − j).
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Given the quantities x1, x2, . . . , xn and 1 ≤ m ≤ n, let em(x1, x2, . . . , xn) denote them-th elementary
symmetric function in those quantities defined by

em(x1, x2, . . . , xn) =
∑

1≤i1<···<im≤n

xi1xi2 · · ·xim .

Furthermore, we take em(x1, x2, . . . , xn) to be one if m = 0 and zero if m > n. Our next three results
make use of symmetric functions to describe recurrences satisfied by the generating functions.

Theorem 4.9 For k ≥ 0,

W132-3(x; k) = 1 +

k−1∑
j=0

k−1∑
i=j

ai,jW132-3(x; k − j),

where

ai,j = x

i∑
d=0

(
i

d

)
ei−j((d− 1)x2 − 1, (d− 2)x2 − 1, . . . ,−1).

Proof: By the definitions,

W132-3(x; k|i) = x+ x
∑i+1
j=1W132-3(x; k|j) +

∑k
j=i+2W132-3(x; k|ij),

W132-3(x; k|ij) = x2 + x2
∑i
`=1W132-3(x; k|`) + x2

∑j−1
`=i+1W132-3(x; k − 1|`)

+x2W132-3(x; k|j) + x2W132-3(x; k|j + 1) + x
∑k
`=j+2W132-3(x; k|j`)

= xW132-3(x; k|j) + x2
∑j−1
`=i+1W132-3(x; k − 1|`)− x2

∑j−1
`=i+1W132-3(x; k|`),

for j > i+ 1, which implies

W132-3(x; k|i) = xW132-3(x; k) + x2
k−1∑
`=i+1

(k− `)W132-3(x; k− 1|`)− x2
k∑

`=i+1

(k− `)W132-3(x; k|`).

WriteW132-3(x; k|k− i) =
∑
j≥0 ai,jW132-3(x; k− j) for some polynomials ai,j in x, where 0 ≤ j ≤ i.

Replacing i by i− 1 in the last equation and subtracting gives

W132-3(x; k|k − i)−W132-3(x; k|k − i− 1) = ix2W132-3(x; k|k − i)− ix2W132-3(x; k − 1|k − i),

upon replacing i with k − i. Comparing coefficients of W132-3(x; k − j) in the last recurrence gives

ai+1,j = (1− ix2)ai,j + ix2ai−1,j−1, 1 ≤ i ≤ k − 2 and 0 ≤ j ≤ i+ 1,

where a0,0 = a1,0 = x, a1,1 = 0, and ai,j = 0 if j > i or j < 0. Define Ai(y) =
∑
j≥0 ai,jy

j so that

Ai+1(y) = (1− ix2)Ai(y) + ix2yAi−1(y), i ≥ 1,

with A0(y) = A1(y) = x.
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Now define A(z, y) =
∑
i≥0Ai(y)

zi

i! . Then the last recurrence can be expressed as

(1 + zx2)
d

dz
A(z, y) = (1 + zx2y)A(z, y),

with A(0, y) = x. Hence,

A(z, y) =
xezy

(1 + zx2)(y−1)/x2 = x
∑
a≥0

zaya

a!

∑
b≥0

(
(y − 1)/x2 + b− 1

b

)
zbx2b,

which implies

Ai(y) = x
i∑

a=0

(
i
a

)
(y − 1 + (a− 1)x2)(y − 1 + (a− 2)x2) · · · (y − 1 + 0 · x2)yi−a

= x
i∑

a=0

a∑
b=0

(
i
a

)
eb((a− 1)x2 − 1, (a− 2)x2 − 1, . . . ,−1)yi−b.

Extracting the coefficient of yj from the last expression gives

ai,j = x

i∑
a=0

(
i

a

)
ei−j((a− 1)x2 − 1, (a− 2)x2 − 1, . . . ,−1),

which completes the proof. 2

Similar techniques apply to the patterns 132-1 (∼ 132-2) and 231-3, the results of which we state
without proof.

Theorem 4.10 For k ≥ 0,

W132-1(x; k) = 1 +

k−1∑
j=0

k−1∑
i=j

ai,jW132-1(x; k − j),

where

ai,j = ej

(
0

1− 0 · x2
, . . . ,

i− 1

1− (i− 1)x2

)
x2j+1

i−1∏
s=0

(1− sx2).

Theorem 4.11 For k ≥ 0,

W231-3(x; k) = 1 +

k−1∑
j=0

k∑
i=j

ai,jW231-3(x; k − j),

where

ai,m = k−i−1
k−1 x2m+1em

(
k−1

1−(k−1)x2 , . . . ,
k−i

1−(k−i)x2

)∏i
s=1(1− (k − s)x2)

+x2m+1
∑i
j=1

(k−i−1)em
(

k−j−1

1−(k−j−1)x2 ,...,
k−i

1−(k−i)x2

)
(k−j−1)(k−j)

∏i
s=j+1(1− (k − s)x2).
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