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Assume that n, δ, k are integers with 0 ≤ k < δ < n. Given a graph G = (V,E) with |V | = n. The symbol
G − F , F ⊆ V , denotes the graph with V (G − F ) = V − F , and E(G − F ) obtained by E after deleting the
edges with at least one endvertex in F . G is called k-vertex fault traceable, k-vertex fault Hamiltonian, or k-vertex
fault Hamiltonian-connected if G − F remains traceable, Hamiltonian, and Hamiltonian-connected for all F with
0 ≤ |F | ≤ k, respectively. The notations h1(n, δ, k), h2(n, δ, k), and h3(n, δ, k) denote the minimum number of
edges required to guarantee an n-vertex graph with minimum degree δ(G) ≥ δ to be k-vertex fault traceable, k-vertex
fault Hamiltonian, and k-vertex fault Hamiltonian-connected, respectively. In this paper, we establish a theorem which
uses the degree sequence of a given graph to characterize the k-vertex fault traceability/hamiltonicity/Hamiltonian-
connectivity, respectively. Then we use this theorem to obtain the formulas for hi(n, δ, k) for 1 ≤ i ≤ 3, which
improves and extends the known results for k = 0.

Keywords: graph size, Hamiltonian, fault-tolerant Hamiltonian, Hamiltonian-connected, degree sequence.

1 Introduction
In this paper, all graphs are undirected, simple, and without loops. For graph definitions and notations,
we refer to Hsu and Lin (2009). We denote any graph by G = (V,E), where V is the vertex set and
E ⊆ {(u, v) | (u, v) is an unordered pair of V } the edge set of G. The order of a graph G, denoted by
|G|, is the number of vertices of G. An edge of G is denoted by (u, v), where u, v ∈ V and (u, v) ∈ E.
Two vertices u and v are adjacent in G if there is an edge (u, v) in G. The degree of a vertex u in G,
denoted by degG(u), is the number of vertices adjacent to u. The notation δ(G) represents the minimum
degree of vertices of the graph G. A walk of length k is denoted by 〈v0, v1, . . . , vk〉, where vi’s are
vertices such that (vi−1, vi) ∈ E for all i. A walk from u to v starts from the first vertex u and ends at
the last vertex v; u and v are called the endvertices. A path is a walk with no repeated vertex. A graph
G is traceable if G contains a Hamiltonian path. A cycle is a closed walk in which the first vertex and
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the last vertex are the only vertex repetition. A Hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A Hamiltonian graph is a graph with a Hamiltonian cycle. A graph G is
connected if there is a path between any two distinct vertices in G and is Hamiltonian-connected if there
is a Hamiltonian path between any two distinct vertices in G. The symbol G − F , F ⊆ V , denotes the
graph with V (G − F ) = V − F , and E(G − F ) obtained by E after deleting the edges with at least
one endvertex in F . A graph G is k-vertex fault traceable (resp. k-vertex fault Hamiltonian, k-vertex
fault Hamiltonian-connected) if G − F remains traceable (resp. Hamiltonian, Hamiltonian-connected)
for any set F ⊆ V with |F | ≤ k. However, it is obvious that for a graph G to be k-vertex fault traceable
(resp. k-vertex fault Hamiltonian, k-vertex fault Hamiltonian-connected), it must be k ≤ δ(G)− 1 (resp.
k ≤ δ(G)− 2, k ≤ δ(G)− 3). See Kao et al. (2006).

We use
(
a
b

)
to denote the binomial coefficient indexed by a and b, where a and b are positive integers

and a ≥ b. Let G1 and G2 be two graphs. We say that G1 and G2 are disjoint if G1 and G2 have no
vertex in common. The union of two disjoint graphs G1 and G2, denoted by G1 + G2, is a graph with
V (G1+G2) = V (G1)∪V (G2) and E(G1+G2) = E(G1)∪E(G2). The join of two disjoint subgraphs
G1 and G2, denoted by G1 ∨ G2, is the graph obtained from G1 + G2 by connecting each vertex of G1

to each vertex of G2 with an edge. We use Kn for a complete graph with n vertices and Kn for the union
of n isolated vertices.

If G is a graph with |G| = n and degrees d1 ≤ d2 ≤ . . . ≤ dn, then the sequence (d1, d2, . . . , dn) is
called the degree sequence of G. A sequence of real numbers (p1, p2, . . . , pn) is said to be majorized by
another sequence (q1, q2, . . . , qn) if pi ≤ qi for 1 ≤ i ≤ n. A graph G is degree-majorized by a graph
H if |G| = |H| and the nondecreasing degree sequence of G is majorized by that of H . For example,
the 5-cycle is degree-majorized by the complete bipartite graph K2,3 since (2, 2, 2, 2, 2) is majorized by
(2, 2, 2, 3, 3).

Ever since Dirac’s theorem for hamiltonicity was established, theorems for various Hamiltonian prop-
erties have been derived based on the degree conditions of a given graph. Some of the well-known results
are presented below.

Theorem 1 (Ore (1960, 1963)) Let G = (V,E) be a graph with |G| = n ≥ 3. If degG(u) + degG(v) ≥
n+ k∗ for any pair of non-adjacent vertices {u, v} in V , then G is traceable if k∗ = −1, Hamiltonian if
k∗ = 0, and Hamiltonian-connected if k∗ = 1.

Theorem 2 (Chvátal (1972)) Let G be a graph with |G| = n ≥ 3. Assume that (d1, d2, . . . , dn) is the
degree sequence of G. Then
(i) G is traceable if for every i ≤ n/2, di < i⇒ dn+1−i ≥ n− i holds.
(ii) G is Hamiltonian if for every i < n/2, di ≤ i⇒ dn−i ≥ n− i holds.

Theorem 3 (Lick (1970)) Let G be a graph with |G| = n ≥ 3. Assume that (d1, d2, . . . , dn) is the degree
sequence ofG. ThenG is Hamiltonian-connected if for every 2 ≤ i ≤ n/2, di−1 ≤ i⇒ dn−i ≥ n− i+1
holds.

Obviously, compared with degree sums, the concept of degree sequences characterizes a graph in a
more refined way. Consider Gi = (2K2 +K1) ∨Ki+1, where 1 ≤ i ≤ 2, for example. It is easy to see
that |Gi| = 6 + i. Applying Theorem 2(i) on G1 and (ii) on G2, we know that G1 is traceable and G2 is
Hamiltonian. However, for any pair of non-adjacent vertices {u, v} inGi, G1 fails to satisfy the condition
degG1

(u)+degG1
(v) ≥ |G1|−1, andG2 fails to satisfy the condition degG2

(u)+degG2
(v) ≥ |G2|. Let

G3 be obtained as (K2+K4)∨K3 with an additional edge between a vertex of K2 and K4. Then G3 is a
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Hamiltonian-connected graph, which satisfies Theorem 3 but fails to satisfy Theorem 1. These examples
show that the degree sequence of a graph helps to determine the associated Hamiltonian properties when
its degree sum condition (as in Theorem 1) gives no conclusion.

In the past decade, some results regarding the minimum number of edges that guarantees various prop-
erties have been published. In Brandt (1997), Bollobás and Thomason (1999), and Erdős et al. (1996), for
example, the minimum number of edges is given as a function of the total number of vertices of any graph.
In Ho et al. (2010, 2011), Ho and his coauthors studied the minimum number of edges required to guar-
antee an n-vertex graph G with minimum degree δ(G) ≥ δ to be Hamiltonian or Hamiltonian-connected,
and expressed it as a function of |G| = n and the minimum degree δ(G) ≥ δ. Such results have many
applications in interconnection networks under conditional faults, and provide better lower bounds for the
number of edges by taking δ into account. See Ho et al. (2010, 2011) and their references. Our present
results extend the formulas of Ho et al.

Chvátal (1972) characterized the degree sequence behavior for a graph to remain Hamiltonian after the
removal of up to k faulty vertices. To our knowledge, other than this study, no result about the vertex fault
version of Theorem 2 and 3 has been published. Inspired by the above-mentioned works, we intend to
establish two main theorems as follows. Note that Theorem 4(ii) was proved by Chvátal (1972).

Theorem 4 Let G be a graph with |G| = n ≥ 3. Assume that (d1, d2, . . . , dn) is the degree sequence of
G.
(i) Let k be an integer with 0 ≤ k ≤ n − 2. G is k-vertex fault traceable if the degree sequence
(d1, d2, . . . , dn) satisfies

dj < j + k′ ≤ n+ k′

2
⇒ dn−j−k′+1 ≥ n− j for all integers k′ with 0 ≤ k′ ≤ k. (1)

(ii) Let k be an integer with 0 ≤ k ≤ n − 3. G is k-vertex fault Hamiltonian if the degree sequence
(d1, d2, . . . , dn) satisfies

dj ≤ j + k′ <
n+ k′

2
⇒ dn−j−k′ ≥ n− j for all integers k′ with 0 ≤ k′ ≤ k. (2)

(iii) Let k be an integer with 0 ≤ k ≤ n − 4. G is k-vertex fault Hamiltonian-connected if the degree
sequence (d1, d2, . . . , dn) satisfies

dj ≤ j + k′ + 1 ≤ n+ k′

2
⇒ dn−j−k′−1 ≥ n− j for all integers k′ with 0 ≤ k′ ≤ k. (3)

In the sequel, the notation a mod b denotes the remainder of the division of a by b.

Theorem 5 Assume that n, δ, and k are integers with 0 ≤ k < δ < n. For 1 ≤ i ≤ 3, let αi =
n−k−9+5i+3×[(n−k+i+1) mod 2]

6 and βi = n+k−3+i
2 . Denote by h1(n, δ, k), h2(n, δ, k), and h3(n, δ, k)

the minimum number of edges required to guarantee the n-vertex graphG with minimum degree δ(G) ≥ δ
to be k-vertex fault traceable, k-vertex fault Hamiltonian, and k-vertex fault Hamiltonian-connected,
respectively. Then

hi(n, δ, k) =


(
n+k−δ−2+i

2

)
+ δ2 − (k − 2 + i)δ + 1 if k + i ≤ δ ≤ αi + k;(

n+k−bβic−2+i
2

)
+ bβic2 − (k − 2 + i)bβic+ 1 if αi + k < δ ≤ βi;

dnδ
2
e if δ > βi.
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It can be observed that Theorem 2 and Theorem 3 become special cases for Theorem 4 with k = 0; the
formula in Ho et al. (2010, 2011) becomes a special case of Theorem 5 by taking k = 0. In other words,
Theorem 5 further extends Ho’s formulas for fault tolerant Hamiltonian graphs.

2 Proof of the main theorems
Let n be the total number of vertices in a graph and k be an integer with k ≥ 0. We first define three graph
families as follows.
(1) T km,n = (Km+1 +Kn−2m−k−1) ∨Km+k, where n ≥ 4, 0 ≤ k ≤ n− 2, and 0 ≤ m ≤ n−k−2

2 .
(2) Ckm,n = (Km +Kn−2m−k) ∨Km+k, where n ≥ 5, 0 ≤ k ≤ n− 3, and 1 ≤ m ≤ n−k−1

2 .
(3) Hk

m,n = (Km−1 +Kn−2m−k+1) ∨Km+k, where n ≥ 6, 0 ≤ k ≤ n− 4, and 2 ≤ m ≤ n−k
2 .

See Figure 1 for Hk
m,n in two different layouts.

m  k+ n   2m   k   1+

1

+n   m   k   1

n   m   k

2

1m

1m

m

n

1n

1

1m

m

n   m   k

+m   1

n

+n   m   k   1

n   m   1+

1m

(a) (b)

m  1,m  k(            )+

2

Fig. 1: (a)Hk
m,n; (b)Hk

m,n with a different layout.

We will use these three graph families to establish the sharpness of the bounds in Theorem 5. Let the
faulty vertex set F ⊆ V (Km+k) with |F | = k. For example, F = {vn−k−m+i | 1 ≤ i ≤ k} as labeled
in Figure 1 for Hk

m,n. Then it is easy to check that T km,n − F has no Hamiltonian path, Ckm,n − F has no
Hamiltonian cycle, and Hk

m,n − F has no Hamiltonian path between some pair of distinct vertices {u, v}
in Km+k − F . Thus we have the following lemma.

Lemma 1 (i) Let n ≥ 4, 0 ≤ k ≤ n − 2, and 0 ≤ m ≤ n−k−2
2 . The graph T km,n is not k-vertex fault

traceable.
(ii) Let n ≥ 5, 0 ≤ k ≤ n− 3, and 1 ≤ m ≤ n−k−1

2 . The graph Ckm,n is not k-vertex fault Hamiltonian.
(iii) Let n ≥ 6, 0 ≤ k ≤ n− 4, and 2 ≤ m ≤ n−k

2 . The graph Hk
m,n is not a k-vertex fault Hamiltonian-

connected graph.

2.1 Proof of Theorem 4
To prove Theorem 4, we recall the following theorem by Chvátal (1972) first, which contains (ii) of
Theorem 4. Note that any graph in the family Ckm,n, which was introduced by Chvátal (1972), has the
greatest degree sequence among all graphs with the same number of vertices and being not k-vertex fault
Hamiltonian.
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Theorem 6 (Chvátal (1972)) Let k be an integer with 0 ≤ k ≤ n−3. If the degree sequence (d1, d2, . . . , dn)
of a graph G satisfies

dj ≤ j + k′ <
n+ k′

2
⇒ dn−j−k′ ≥ n− j for all integers k′ with 0 ≤ k′ ≤ k, (4)

then G is k-vertex fault Hamiltonian. On the other hand, if the degree sequence of G fails to satisfy (4),
then it is majorized by the degree sequence of the graph Ckm,n, which is not k-vertex fault Hamiltonian.

Proof of Theorem 4: (ii) is directly derived from Theorem 6. We will show (iii) and (i) in order using the
result of (ii).

To show (iii), we assume that the sequence (d1, d2, . . . , dn) satisfies (3). Let k′ be an arbitrary integer
with 0 ≤ k′ ≤ k. For any faulty vertex set F = {y1, y2, . . . , yk′} in G, we want to show that for any pair
of vertices {u, v} in G− F , there exists a Hamiltonian path between u and v in G− F . Let G = (V,E).
Define G∗ = (V ∗, E∗), where V ∗ = V ∪ {x} and E∗ = E ∪ {(x, u), (x, v)} ∪ {(x, yi)|1 ≤ i ≤ k′}. Let
(d∗1, d

∗
2, . . . , d

∗
n+1) be the degree sequence of G∗. Note that d∗1 = degG∗(x) = k′ + 2 since d∗2 ≥ d1 ≥

δ(G) ≥ k′ + 3, and for 1 ≤ i ≤ n, di ≤ d∗i+1 ≤ di + 1. From (3), we have

dj−1 ≤ (j − 1) + k′ + 1 ≤ n+ k′

2
⇒ dn−(j−1)−k′−1 ≥ n− (j − 1). (5)

Note that n and k′ are integers. Thus (5) is equivalent to

dj−1 ≤ j + k′ <
(n+ 1) + k′

2
⇒ d(n+1)−j−k′−1 ≥ (n+ 1)− j. (6)

Note that d∗j = dj−1 + 1. If d∗j > j + k′, we do not need to check the above condition. If d∗j ≤ j + k′,
since d∗(n+1)−j−k′ ≥ d(n+1)−j−k′−1, from (6), we have

d∗j ≤ j + k′ <
(n+ 1) + k′

2
⇒ d∗(n+1)−j−k′ ≥ (n+ 1)− j. (7)

Therefore, according to (7), the degree sequence (d∗1, d
∗
2, . . . , d

∗
n+1), with n + 1 in place of n, satisfies

(2). By (ii), G∗ − F is Hamiltonian. Since G∗ − F has a Hamiltonian cycle if and only if G − F has a
Hamiltonian path between u and v, G− F is Hamiltonian-connected.

To show (i), we assume that the sequence (d1, d2, . . . , dn) satisfies (1). Let k′ be an arbitrary integer
with 0 ≤ k′ ≤ k. For any faulty vertex set F = {v1, v2, . . . , vk′} in G, we want to show there exists
a Hamiltonian path in G − F . Let Ĝ be a graph by adding to G a new vertex x and new edges joining
x to all the vertices of G. Let (d̂1, d̂2, . . . , d̂n+1) be the degree sequence of Ĝ. Note that d̂i = di + 1

for 1 ≤ i ≤ n and d̂n+1 = degĜ(x) = n. As in (iii), it is easy to show that the degree sequence
(d̂1, d̂2, . . . , d̂n+1) satisfies (2)(with n+ 1 in place of n). According to (ii), Ĝ− F is Hamiltonian. Since
that Ĝ− F has a Hamiltonian cycle if and only if G− F has a Hamiltonian path, G− F is traceable. 2

Corollary 1 Let G be a graph with |G| = n ≥ 4 and k ≥ 0 be an integer.
(i) If G is not k-vertex fault traceable, then G is degree-majorized by T km,n, where 0 ≤ k ≤ n − 2 and
0 ≤ m ≤ n−k−2

2 .
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(ii) If n ≥ 5 and G is not k-vertex fault Hamiltonian, then G is degree-majorized by Ckm,n, where 0 ≤
k ≤ n− 3 and 1 ≤ m ≤ n−k−1

2 .
(iii) If n ≥ 6 and G is not k-vertex fault Hamiltonian-connected, then G is degree-majorized by Hk

m,n,
where 0 ≤ k ≤ n− 4 and 2 ≤ m ≤ n−k

2 .

Proof: We show (iii) only. The proofs for (i) and (ii) can be derived similarly.
According to Theorem 4(iii), if G − F is not k-vertex fault Hamiltonian-connected, then for some k′

with 0 ≤ k′ ≤ k, there exists m, 2 ≤ m ≤ n−k′
2 , such that

dm−1 ≤ m+ k′ and dn−m−k′ ≤ n−m. (8)

The greatest degree sequence satisfying (8) is of the following form:

(m+ k′, · · · ,m+ k′︸ ︷︷ ︸
m−1

, n−m, · · · , n−m︸ ︷︷ ︸
n−2m−k′+1

, n− 1, · · · , n− 1︸ ︷︷ ︸
m+k′

).

For any graph being not k-vertex fault Hamiltonian-connected, its degree sequence must be degree-
majorized by

(m+ k, · · · ,m+ k︸ ︷︷ ︸
m−1

, n−m, · · · , n−m︸ ︷︷ ︸
n−2m−k+1

, n− 1, · · · , n− 1︸ ︷︷ ︸
m+k

).

It is easy to see that Hk
m,n’s degree sequence is the same as above. Consequently, adding an extra edge

to Hk
m,n results in a graph where no index m in (8) exists, which means the sufficient condition of Theo-

rem 4(iii) is satisfied. Therefore, Hk
m,n + e is k-vertex fault Hamiltonian-connected for any extra edge e.

2

2.2 Proof of Theorem 5
Theorem 5 consists of three results. We shall derive h3(n, δ, k) in this section. The values h1(n, δ, k) and
h2(n, δ, k) can be obtained by the similar derivations.

Theorem 7 (Ore (1963)) Let n ≥ 3. Any simple graph G, where |G| = n, with δ(G) ≥ n+1
2 is

Hamiltonian-connected.

Corollary 2 Let n and k be integers with n ≥ 4 and 0 ≤ k ≤ n − 4. If G is a graph with |G| = n and
δ(G) > n+k

2 , then G is k-vertex fault Hamiltonian-connected.

Lemma 2 Let n,m, k be integers with n ≥ 6 and 0 ≤ k ≤ n− 4. Let G be a graph with |G| = n and δ
be an integer with k+3 ≤ δ ≤ δ(G). IfG is not k-vertex fault Hamiltonian-connected, then δ(G) ≤ n+k

2
and |E(G)| ≤ max{|E(Hk

δ−k,n)|, |E(Hk
bn−k

2 c,n
)|}.

Proof: If G is not a k-vertex fault Hamiltonian-connected graph with |G| = n ≥ 6, by Corollary 2,
δ(G) ≤ n+k

2 . By Corollary 1, G is degree-majorized by the graph Hk
m,n for some positive integer m.

Since δ(Hk
m,n) = m+ k, δ ≤ δ(G) ≤ m+ k. Thus, |E(G)| ≤ max{|E(Hk

m,n)| | δ − k ≤ m ≤ n−k
2 }.

A calculation of |E(Hk
m,n)| shows that

|E(Hk
m,n)| =

3

2
m2 + (−n+ k − 3

2
)m+ (

1

2
n2 +

1

2
n− k) (9)
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is a quadratic function of m and its maximum value occurs at the boundary m = δ − k or m = bn−k2 c.
Therefore, |E(G)| ≤ max{|E(Hk

δ−k,n)|, |E(Hk
bn−k

2 c,n
)|}. 2

Lemma 3 Let n, k, t be integers with n ≥ 6, 0 ≤ k ≤ n − 4, and 1 ≤ t ≤ n−k
2 . Then |E(Hk

t,n)| ≥
|E(Hk

bn−k
2 c,n

)| if and only if 1 ≤ t ≤ n−k+6+3×[(n−k) mod 2]
6 or t = bn−k2 c.

Proof: See (9) for |E(Hk
t,n)|. We finish this proof by the following two cases.

Case 1: n − k is even. In this case, bn−k2 c =
n−k
2 and |E(Hk

n−k
2 ,n

)| = 1
2 [3(

n−k
2 )2 + (−2n + 2k −

3)(n−k2 ) + (n2 + n − 2k)]. We claim that |E(Hk
t,n)| ≥ |E(Hk

n−k
2 ,n

)| if and only if 1 ≤ t ≤ bn−k6 c or

t = n−k
2 . Assume that |E(Hk

t,n)| ≥ |E(Hk
n−k

2 ,n
)|. Then we obtain 3t2+(−2n+2k−3)t+ 1

4 [n
2−(2k−

6)n+ (k2 − 6k)] ≥ 0, which is equivalent to [t− 1
2 (n− k)][3t−

1
2 (n− k+6)] ≥ 0. That is, t ≤ n−k+6

6

or t ≥ n−k
2 . Note that n and k are integers with n − k even, n ≥ 6, and 1 ≤ t ≤ n−k

2 . Therefore, we
have |E(Hk

t,n)| ≥ |E(Hk
n−k

2 ,n
)| if and only if 1 ≤ t ≤ n−k+6

6 or t = n−k
2 .

Case 2: n−k is odd. In this case, bn−k2 c =
n−k−1

2 and |E(Hk
n−k−1

2 ,n
)| = 1

2 [3(
n−k−1

2 )2+(−2n+2k−
3)(n−k−12 ) + (n2 + n− 2k)]. Reasoning in the same way, we obtain that |E(Hk

t,n)| ≥ |E(Hk
n−k−1

2 ,n
)| if

and only if 1 ≤ t ≤ n−k+9
6 or t = n−k−1

2 . 2

Proof of the derivation of h3(n, δ, k) of Theorem 5: We define S3(n, δ, k) as the set of all integers
M with M ≥ nδ

2 such that every graph H with |H| = n and δ(H) ≥ δ satisfying |E(H)| ≥ M is
k-vertex fault Hamiltonian-connected. Obviously, h3(n, δ, k) = min S3(n, δ, k). It can be observed that
if δ is large enough so that every n-vertex graph with minimum degree greater than or equal to δ is k-fault
Hamiltonian-connected, then h3(n, δ, k) is dnδ2 e. For example, if k = 0 and δ ≥ n+1

2 , then by Theorem 7,
h3(n, δ, 0) = dnδ2 e. Note that 0 ≤ k < δ < n and k ≤ δ − 3. If n = 4, then δ = 3 and k = 0. If
n = 5, there are three combinations for δ and k, which are δ = 3 and k = 0, δ = 4 and k = 0, and δ = 4
and k = 1. The theorem holds for n = 4, 5 since h3(4, 3, 0) = 6, h3(5, 3, 0) = 8, h3(5, 4, 0) = 10, and
h3(5, 4, 1) = 10. We prove the theorem by deriving h3(n, δ, k) for n ≥ 6 in the following three cases.
Case 1: 3 ≤ δ − k ≤ n−k+6+3×[(n−k) mod 2]

6 . According to Lemma 3, |E(Hk
δ−k,n)| ≥ |E(Hk

bn−k
2 c,n

)|.
Since Hk

δ−k,n + e is a graph with δ(Hk
δ−k,n + e) ≥ δ and |E(Hk

δ−k,n)| + 1 edges for any extra edge e,
by Lemma 2, Hk

δ−k,n + e is k-vertex fault Hamiltonian-connected. Thus |E(Hk
δ−k,n)|+ 1 ∈ S3(n, δ, k).

Hence, h3(n, δ, k) ≤ |E(Hk
δ−k,n)| + 1. In addition, note that 3 ≤ δ − k ≤ δ(G) − k ≤ n−k

2 . Thus,
by Lemma 1, Hk

δ−k,n is not k-vertex fault Hamiltonian-connected. Hence, h3(n, δ, k) > |E(Hk
δ−k,n)|.

Therefore, h3(n, δ, k) = |E(Hk
δ−k,n)|+1. Since |E(Hk

δ−k,n)| =
(
n+k−δ+1

2

)
+δ2−(k+1)δ, h3(n, δ, k) =(

n+k−δ+1
2

)
+ δ2 − (k + 1)δ + 1.

Case 2: n−k+6+3×[(n−k) mod 2]
6 < δ−k ≤ n−k

2 . According to Lemma 3, |E(Hk
δ−k,n)| < |E(Hk

bn−k
2 c,n

)|.
Since Hk

bn−k
2 c,n

+ e is a graph with δ(Hk
bn−k

2 c,n
+ e) ≥ bn+k2 c ≥ δ and |E(Hk

bn−k
2 c,n

)|+1 edges for any

extra edge e, by Lemma 2, Hk
bn−k

2 c,n
+e is k-vertex fault Hamiltonian-connected. Thus |E(Hk

bn−k
2 c,n

)|+
1 ∈ S3(n, δ, k). Hence, h3(n, δ, k) ≤ |E(Hk

bn−k
2 c,n

)| + 1. In addition, since, by Lemma 1, Hk
bn−k

2 c,n
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is not k-vertex fault Hamiltonian-connected, h3(n, δ, k) > |E(Hk
bn−k

2 c,n
)|. Therefore, h3(n, δ, k) =

|E(Hk
bn−k

2 c,n
)| + 1. Since |E(Hk

bn−k
2 c,n

)| = |E(Hk
bn+k

2 c−k,n
)| =

(
n+k−bn+k

2 c+1
2

)
+ bn+k2 c

2 − (k +

1)bn+k2 c, h3(n, δ, k) =
(
n+k−bn+k

2 c
2

)
+ bn+k2 c

2 − (k + 1)bn+k2 c+ 1.
Case 3: δ−k > n−k

2 . Thus δ(G) ≥ δ > n+k
2 . By Corollary 2,G is k-vertex fault Hamiltonian-connected.

Obviously, |E(G)| ≥ dnδ2 e. Therefore, h3(n, δ, k) = dnδ2 e. 2
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