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Assume that n, d, k are integers with 0 < k < 6 < n. Given a graph G = (V, E) with |[V| = n. The symbol
G — F, F C V, denotes the graph with V(G — F) = V — F, and E(G — F) obtained by E after deleting the
edges with at least one endvertex in F'. G is called k-vertex fault traceable, k-vertex fault Hamiltonian, or k-vertex
Sfault Hamiltonian-connected if G — F' remains traceable, Hamiltonian, and Hamiltonian-connected for all F' with
0 < |F| < k, respectively. The notations hi(n,d, k), ha(n,d, k), and hs(n,d, k) denote the minimum number of
edges required to guarantee an n-vertex graph with minimum degree §(G) > 0 to be k-vertex fault traceable, k-vertex
fault Hamiltonian, and k-vertex fault Hamiltonian-connected, respectively. In this paper, we establish a theorem which
uses the degree sequence of a given graph to characterize the k-vertex fault traceability/hamiltonicity/Hamiltonian-
connectivity, respectively. Then we use this theorem to obtain the formulas for h;(n,d, k) for 1 < 4 < 3, which
improves and extends the known results for £ = 0.

Keywords: graph size, Hamiltonian, fault-tolerant Hamiltonian, Hamiltonian-connected, degree sequence.

1 Introduction

In this paper, all graphs are undirected, simple, and without loops. For graph definitions and notations,
we refer to [Hsu and Lin| (2009). We denote any graph by G = (V, E), where V is the vertex set and
E C {(u,v) | (u,v) is an unordered pair of V'} the edge set of G. The order of a graph G, denoted by
|G|, is the number of vertices of G. An edge of G is denoted by (u, v), where u,v € V and (u,v) € E.
Two vertices u and v are adjacent in G if there is an edge (u,v) in G. The degree of a vertex u in G,
denoted by degq (), is the number of vertices adjacent to u. The notation d(G) represents the minimum
degree of vertices of the graph G. A walk of length k is denoted by (vo,v1,...,vx), where v;’s are
vertices such that (v;_1,v;) € F for all i. A walk from u to v starts from the first vertex « and ends at
the last vertex v; u and v are called the endvertices. A path is a walk with no repeated vertex. A graph
G is traceable if G contains a Hamiltonian path. A cycle is a closed walk in which the first vertex and
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the last vertex are the only vertex repetition. A Hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A Hamiltonian graph is a graph with a Hamiltonian cycle. A graph G is
connected if there is a path between any two distinct vertices in G and is Hamiltonian-connected if there
is a Hamiltonian path between any two distinct vertices in G. The symbol G — F', F' C V, denotes the
graph with V(G — F) = V — F, and E(G — F) obtained by F after deleting the edges with at least
one endvertex in F'. A graph G is k-vertex fault traceable (resp. k-vertex fault Hamiltonian, k-vertex
Sfault Hamiltonian-connected) if G — F remains traceable (resp. Hamiltonian, Hamiltonian-connected)
for any set F' C V with |F'| < k. However, it is obvious that for a graph G to be k-vertex fault traceable
(resp. k-vertex fault Hamiltonian, k-vertex fault Hamiltonian-connected), it must be k& < §(G) — 1 (resp.
k <6(G) — 2, k < §(G) — 3). See Kao et al.|(2006).

We use (Z) to denote the binomial coefficient indexed by a and b, where a and b are positive integers
and a > b. Let G; and G5 be two graphs. We say that G and G» are disjoint if G; and G5 have no
vertex in common. The union of two disjoint graphs G and G, denoted by G1 + Go, is a graph with
V(G1+G2) =V(G1)UV(Gs) and E(G1 + G2) = E(G1) U E(G2). The join of two disjoint subgraphs
G and Gs, denoted by GG V G, is the graph obtained from GG; + G5 by connecting each vertex of G
to each vertex of G'» with an edge. We use K, for a complete graph with n vertices and K, for the union
of n isolated vertices.

If G is a graph with |G| = n and degrees d; < ds < ... < d,, then the sequence (d1,ds,...,d,) is
called the degree sequence of G. A sequence of real numbers (p1,pa, ..., py) is said to be majorized by
another sequence (q1,¢q2,...,q,) if p; < g; for 1 < i < n. A graph G is degree-majorized by a graph
H if |G| = |H| and the nondecreasing degree sequence of G is majorized by that of H. For example,
the 5-cycle is degree-majorized by the complete bipartite graph K 3 since (2,2, 2,2, 2) is majorized by
(2,2,2,3,3).

Ever since Dirac’s theorem for hamiltonicity was established, theorems for various Hamiltonian prop-
erties have been derived based on the degree conditions of a given graph. Some of the well-known results
are presented below.

Theorem 1 (Ore|(1960,|1963)) Let G = (V, E) be a graph with |G| = n > 3. If dege(u) + dega(v) >
n + k* for any pair of non-adjacent vertices {u,v} in'V, then G is traceable if k* = —1, Hamiltonian if
k* = 0, and Hamiltonian-connected if k* = 1.

Theorem 2 (Chvdtal (1972)) Let G be a graph with |G| = n > 3. Assume that (dy,ds, ..., dy,) is the
degree sequence of G. Then

(i) G is traceable if for every i < n/2, d; < i = dpi1-; > n — i holds.

(ii) G is Hamiltonian if for every i < n/2, d; < i = d,_; > n — i holds.

Theorem 3 (Lick (1970)) Let G be a graph with |G| = n > 3. Assume that (dy,da, . .. ,dy,) is the degree
sequence of G. Then G is Hamiltonian-connected if forevery2 < i <n/2,d;_1 <i=dp,_; >n—i+1
holds.

Obviously, compared with degree sums, the concept of degree sequences characterizes a graph in a
more refined way. Consider G; = (2K3 + K1) V K11, where 1 < i < 2, for example. It is easy to see
that |G;| = 6 + 7. Applying Theorem i) on G and (ii) on G, we know that G is traceable and G is
Hamiltonian. However, for any pair of non-adjacent vertices {u, v} in G;, G fails to satisfy the condition
dega, (u) +dega, (v) > |G1| — 1, and G5 fails to satisfy the condition degq, (1) + dega, (v) > |Ga|. Let

G3 be obtained as (Ko + K,) V K3 with an additional edge between a vertex of Ko and K. Then Gsisa



Degree-sequence and number of edges for graphs with Hamiltonian properties under fault tolerance 309

Hamiltonian-connected graph, which satisfies Theorem [3] but fails to satisfy Theorem[I} These examples
show that the degree sequence of a graph helps to determine the associated Hamiltonian properties when
its degree sum condition (as in Theorem|I)) gives no conclusion.

In the past decade, some results regarding the minimum number of edges that guarantees various prop-
erties have been published. InBrandt|(1997)), Bollobas and Thomason|(1999), and [Erdds et al.| (1996)), for
example, the minimum number of edges is given as a function of the total number of vertices of any graph.
In|Ho et al.| (2010} 2011}, Ho and his coauthors studied the minimum number of edges required to guar-
antee an n-vertex graph G' with minimum degree §(G) > ¢ to be Hamiltonian or Hamiltonian-connected,
and expressed it as a function of |G| = n and the minimum degree 6(G) > §. Such results have many
applications in interconnection networks under conditional faults, and provide better lower bounds for the
number of edges by taking ¢§ into account. See Ho et al.| (2010, [2011) and their references. Our present
results extend the formulas of Ho et al.

Chvatal|(1972) characterized the degree sequence behavior for a graph to remain Hamiltonian after the
removal of up to k faulty vertices. To our knowledge, other than this study, no result about the vertex fault
version of Theorem [2] and [3] has been published. Inspired by the above-mentioned works, we intend to
establish two main theorems as follows. Note that Theorem Elkii) was proved by |Chvatal| (1972).

Theorem 4 Let G be a graph with |G| = n > 3. Assume that (d1,ds, . .., d,) is the degree sequence of
G.

(i) Let k be an integer with 0 < k < n — 2. G is k-vertex fault traceable if the degree sequence
(dy,ds,...,dy) satisfies

n+ k'

dj <j+k < = dp_j_w1 >n—j forallintegers k' with0 < k' <k. )

(ii) Let k be an integer with 0 < k < n — 3. G is k-vertex fault Hamiltonian if the degree sequence
(dy,ds,...,dy) satisfies

kl
dj <j+k < n—|2— = dp_j_w >n—7j forallintegers k' with0 < k' <k. ()
(iii) Let k be an integer with 0 < k < n — 4. G is k-vertex fault Hamiltonian-connected if the degree
sequence (dy,ds, ..., d,) satisfies

k/,/
d<j+k+1<t

= dnp_j_p—1>n—j forallintegersk with0<k' <k. (3)

In the sequel, the notation a mod b denotes the remainder of the division of a by b.

Theorem 5 Assume that n, 6, and k are integers with 0 < k < § < n. For1 < i < 3 let a; =
nohe 9+51+3X[(” htitl) mod 2] g B; = nth=34i  Denote by hy(n,d,k), ha(n,d,k), and hs(n, 0, k)
the minimum number of edges required to guarantee the n-vertex graph G with minimum degree 6(G) > ¢
to be k-vertex fault traceable, k-vertex fault Hamiltonian, and k-vertex fault Hamiltonian-connected,
respectively. Then

(PR 18P — (k=249 |Bi) +1 if i+ k<6< B

(MR 152 — (k—244)0 + 1 fhk+i<di<a;i+k;
hi(n, 8, k)
[22] if 6> B
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It can be observed that Theorem [2 and Theorem [3] become special cases for Theorem ] with & = 0; the
formula in [Ho et al| (2010, 2011) becomes a special case of Theorem [5 by taking & = 0. In other words,
Theorem [5 further extends Ho’s formulas for fault tolerant Hamiltonian graphs.

2 Proof of the main theorems

Let n be the total number of vertices in a graph and k be an integer with £ > 0. We first define three graph
families as follows.

(1) T,’fm = (Kms1+Kn_om—k-1)V Kk, wheren >4,0<k<n-—2,and0 <m < "’5’2.

@ Ck = Em+ Kn—2m—k)V Kpir, wheren >5,0 <k <n-—3,and 1 <m < 2=5=1,
3) H,’fm = (Km-1+Kn_om 1)V Kpmip, wheren >6,0<k<n—4,and2<m < nok

2
See Figure|l|for H, fﬁw in two different layouts.
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Fig. 1: (a)HE, ,.; (b)H}, ,, with a different layout.

We will use these three graph families to establish the sharpness of the bounds in Theorem 5} Let the
faulty vertex set F' C V (K, 1) with |F| = k. For example, F' = {vp_;—m+i | 1 < i < k} as labeled
in Figurefor H}, .. Then it is easy to check that T)% , — F has no Hamiltonian path, C}}, ,, — F has no
Hamiltonian cycle, and Hﬁm — F has no Hamiltonian path between some pair of distinct vertices {u, v}
in K+ — F. Thus we have the following lemma.

Lemmal (i)Letn >4,0<k<n—2ad0<m< "*TH The graph T,’ﬁw is not k-vertex fault
traceable.

(ii)Letn >50<k<n—3,and1 <m < ”‘T’H The graph Cﬁl’n is not k-vertex fault Hamiltonian.
(iii)Letn >6,0<k<n—4and2 <m< ”T*k The graph H,ljln is not a k-vertex fault Hamiltonian-
connected graph.

2.1 Proof of Theorem

To prove Theorem [ we recall the following theorem by [Chvital| (1972) first, which contains (ii) of
Theorem 4l Note that any graph in the family Cf%,m which was introduced by (Chvital (1972), has the

greatest degree sequence among all graphs with the same number of vertices and being not k-vertex fault
Hamiltonian.
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Theorem 6 (Chvdtal|(1972)) Let k be an integer with0 < k < n—3. Ifthe degree sequence (d1,da, ..., d,)
of a graph G satisfies

k/
dj <j+k < n—i2- =dy_j_ >n—7j forallintegers k' with 0 < k' <k, 4)
then G is k-vertex fault Hamiltonian. On the other hand, if the degree sequence of G fails to satisfy (@),
then it is majorized by the degree sequence of the graph C*  which is not k-vertex fault Hamiltonian.

m,n’

Proof of TheoremEI: (ii) is directly derived from Theorem @ We will show (iii) and (i) in order using the
result of (ii).

To show (iii), we assume that the sequence (dy,ds, ..., d,) satisfies . Let k&’ be an arbitrary integer
with 0 < k¥’ < k. For any faulty vertex set F' = {y1,y2, ..., yr } in G, we want to show that for any pair
of vertices {u, v} in G — F, there exists a Hamiltonian path between w and v in G — F. Let G = (V, E).
Define G* = (V*, E*), where V* = VU {z} and E* = EU{(z,u), (z,v)} U{(z,¥:)|]1 <i < k'}. Let
(di,ds,...,dy ) be the degree sequence of G*. Note that df = degg+(x) = k' 4 2 since d5 > dy >
0(G) >k +3,andfor1 <i <n,d; <dj_ ; <d;+ 1. From , we have

/

. n+k .
di1<(—-1)+k+1< = dp—_(j—1)—k—1 =>n—(j —1). %)

Note that n and &’ are integers. Thus (3)) is equivalent to

(n+1)+ &

dj71§j+kl< 5

= dny1)—j—k—1 > (n+1) —j. (6)

Note that d] = d;—1 + 1. If dj > j + k', we do not need to check the above condition. If d; <j+ K,

since d(n+1) i 2 d(ny1)—j—k'—1, from @, we have
_ (n+D+E _ . ,
d] S J + k/ < f = (n+1)—j—k’ Z (n+ 1) -7 (7)
Therefore, according to , the degree sequence (d7,ds,...,d;,_ ), with n + 1 in place of n, satisfies

(). By (ii), G* — F is Hamiltonian. Since G* — F' has a Hamiltonian cycle if and only if G — F has a
Hamiltonian path between u and v, G — F' is Hamiltonian-connected.

To show (i), we assume that the sequence (dy,ds, ..., d,) satisfies . Let &’ be an arbitrary integer
with 0 < k' < k. For any faulty vertex set F' = {v1,vs,..., v } in G, we want to show there exists
a Hamiltonian path in G — F'. Let G be a graph by adding to G a new vertex = and new edges joining
x to all the vertices of G. Let (dl, dg, .. dn+1) be the degree sequence of G. Note that d =d; +1
for 1 < i < nand dn“ = degs(x) = n. As in (iii), it is easy to show that the degree sequence
(dl, dg, e dn+1) satisfies (2 (w1th n + 1 in place of n). According to (ii), G — F is Hamiltonian. Since
that G — F has a Hamiltonian cycle if and only if G — F has a Hamiltonian path, G — F is traceable. O

Corollary 1 Let G be a graph with |G| =n >4 and k > 0 be an integer
(i) If G is not k-vertex fault traceable, then G is degree-majorized by T, m o Where 0 < k < n —2and
0<m< ”TH
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(ii) If n > 5 and G is not k-vertex fault Hamiltonian, then G is degree-majorized by C* . where 0 <

m,n’
k<n-—-3and1 <m< "*T’H
(iii) If n > 6 and G is not k-vertex fault Hamiltonian-connected, then G is degree-majorized by H,’f%n,
where 0 < k<n—4and2 <m< ”T_k

Proof: We show (iii) only. The proofs for (i) and (ii) can be derived similarly.
According to Theorem iii), if G — F is not k-vertex fault Hamiltonian-connected, then for some &’

with 0 < k' < k, there exists m, 2 < m < ”’Qk,, such that

d’rn—l <m+ k/ and dn—m—k/ <n-—m. (8)

The greatest degree sequence satisfying () is of the following form:

(m+K, - m+k'n—m,--- . n—mmn-—1,---,n—1).

m—1 n—2m—k’+1 m—+k’
For any graph being not k-vertex fault Hamiltonian-connected, its degree sequence must be degree-
majorized by

(m+k,--- m+kn—m,---,n—mmn—1,--- n—1).

m—1 n—2m—=k+1 m-+k
It is easy to see that H,’f%n’s degree sequence is the same as above. Consequently, adding an extra edge
to H, fﬁm results in a graph where no index m in (8) exists, which means the sufficient condition of Theo-

rem iii) is satisfied. Therefore, H. T’fm + e is k-vertex fault Hamiltonian-connected for any extra edge e.
O

2.2 Proof of Theorem

Theorem 5| consists of three results. We shall derive h3(n, é, k) in this section. The values h1(n, 6, k) and
ha(n,d, k) can be obtained by the similar derivations.

Theorem 7 (Ore| (1963)) Let n > 3. Any simple graph G, where |G| = n, with §(G) > "TH is
Hamiltonian-connected.

Corollary 2 Let n and k be integers withn > 4 and 0 < k < n — 4. If G is a graph with |G| = n and

0(G) > "’;rk', then G is k-vertex fault Hamiltonian-connected.

Lemma 2 Let n,m, k be integers withn > 6 and 0 < k < n — 4. Let G be a graph with |G| = n and §
be an integer with k+3 < 6 < §(G). If G is not k-vertex fault Hamiltonian-connected, then §(G) < ”TH“
and |B(G)| < maz{|E(HL, ), B(H )

Proof: If G is not a k-vertex fault Hamiltonian-connected graph with |G| = n > 6, by Corollary
(@) < ”T““ By Corollary |1} G is degree-majorized by the graph H,’jm for some positive integer m.
Since 5(H,’fln) =m+k, 6 <6(G) <m+k. Thus, |E(G)| < maz{|EH}, )| |6 —k <m < "T_k}
A calculation of | E(HY}, ,,)| shows that

3 3 1 1
|E(Hp, ) = 5m“‘+(—n+k— §)m+(§n2+ 5n—k) 9)
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is a quadratic function of m and its maximum Value occurs at the boundary m = § — k or m = L”Q;kj

Therefore, | E(G)| < maz{|E(H}_ )| |[E(H. | I 0

Lemma 3 Let n, k,t be integers withn > 6,0 <k <n—4,and1 <t < "T*k Then |E(an)| >
|B(HY, ., )lifand only if1 < t < "=AH0E8xlnk) mod 2] .y | nok |

R

Proof: See @) for |[E(HF,,)|. We finish this proof by the following two cases.

Case 1: n — k is even. In this case, [25*| = K and |E(HL_, )| = 2[3(%5%)% + (—2n + 2k —
>=.n

3)(”7_16) + (n® 4+ n — 2k)]. We claim that |E(Hf,)| > |E(H%_, )|ifandonlyif 1 <t < 2= or
z "
t = 5%, Assume that |E(Hf,,)| > |[E(H%_, )| Then we obtain 3t*+ (—2n+2k —3)t + 3 [n* — (2k —
3 7
6)n + (k2 — 6k)] > 0, which is equivalent to [t — (n — k)][3t — 2(n — k +6)] > 0. That s, t < 2=k+6
ort > "_k . Note that n and k are integers with n — k even,n > 6,and 1 <t < ”7_’“ Therefore, we

have\E( Fo)l > | E(HY_ kn)\ifandonlyiflgtg”_Twort:"T_k.

Case 2: n — k is odd. Inthlscase |25k | = 2=k=1 and | E( Hﬁ',k )= 303 (” b=1)2 4 (—2n+2k —
3)(%=E=1) + (n% + n — 2k)]. Reasoning in the same way, we obtam that |[E(HF,,)| > |[E(HY_,_, ko1 n)| if

. —k+9 _ n—k—1
andonly if 1 <t < "= ort = “=5—. |

Proof of the derivation of h3(n,d, k) of Theorem [S; We define S3(n,d, k) as the set of all integers
M with M > 22 such that every graph H with |H| = n and §(H) > ¢ satisfying |E(H)| > M is
k-vertex fault Hamiltonian-connected. Obviously, hz(n,d, k) = min S3(n, d, k). It can be observed that
if § is large enough so that every n-vertex graph with minimum degree greater than or equal to J is k-fault
Hamiltonian-connected, then h3(n, 6, k) is [%2]. For example, if k = 0 and § > “FL, then by Theorem
hs(n,,0) = [%2]. Note that 0 < k < § < nandk < §—3. If n = 4, thend = 3and k = 0. If
n = b, there are three combinations for § and k, whichare § = 3and k=0,0 =4and k =0,and § = 4
and k = 1. The theorem holds for n = 4,5 since h3(4,3,0) = 6, h3(5,3,0) = 8, h3(5,4,0) = 10, and
hs3(5,4,1) = 10. We prove the theorem by deriving hg(n, d, k) for n > 6 in the following three cases.

Casel: 3<§— k< 2= k+6+5x[(" k) mod 2] " According to Lemma L |E(HS )| > |[E(H
Since HY , . + e is a graph with (5(H(;7,wL +e) > dand |[E(Hj_, )| + 1 edges for any extra edge e,

by Lemma Hétk’n + e is k-vertex fault Hamiltonian-connected. Thus |E(H§7kn)\ + 1€ 853(n,d,k).
Hence, h3(n,d,k) < |E(H§7k_’n)| + 1. In addition, note that 3 < § — k < §(G) — k < 5%, Thus,
by Lemma HE k.n 1S MO k-vertex fault Hamiltonian-connected. Hence, h3(n,d,k) > |E(H r ko)l
Therefore, h3(n,d, k) = |[E(HY_, ,)|+1. Since |E(HE_, )| = (""F,7T) 462~ (k+1)3, ha(n, 6, k) =
(TR 462 — (k+1)5+ 1.

Case 2: ™= k+6+3x[(" Mmod2] 5 k< n—k AccordmgtoLemma |E(H5 k)| < |E(H L" k|, ).
(2t |, +e) > |2tk | > §and |[E(H Lﬂ k|
EIPS + e is k-vertex fault Hamiltonian-connected. Thus | E(H*
1 € S3(n,d, k). Hence, hs(n,d, k) < |E(H

(ot )

Since wa |, +eisagraph with S(HF

extra edge e, by Lemma H

) +1 edges for any

Ln kJ )| +
)| + 1. In addition, since, by Lemmal H

Ln kJ,n

L" 23t n
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is not k-vertex fault Hamiltonian-connected, h3(n,d,k) > |E(H fu | )| Therefore, hs(n,d,k) =
k : k _ k _ (nerk— 2R ntk |2 _

D[R], ha(n,0,k) = (TELE) 4[R2 (k)[R
Case3: 60—k > "74“ Thus 6(G) > § > "7““ By Corollary G is k-vertex fault Hamiltonian-connected.

ObViOuSly’ |E(G)| Z |—%§~| Therefore, h3(n,(5, k) = [%5—‘ 0O
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