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A narrow connection between infinite binary words rich irssiaal palindromes and infinite binary words rich simul-
taneously in palindromes and pseudopalindromes (theltddd-rich words) is demonstrated. The correspondence
between rich and{-rich words is based on the operatiSracting over words over the alphalét 1} and defined by
S(uouiusz ...) = vivavs ..., wherev; = u;—1 + u; mod 2. The operatiors enables us to construct a new class
of rich words and a new class &f-rich words. Finally, the operatiofi is considered on the multiliteral alphal#t,

as well and applied to the generalized Thue—Morse words. Bygeoduct, new binary rich anff -rich words are
obtained by application of on the generalized Thue—Morse words over the alphabet
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1 Introduction

In the present paper we concentrate on construction of iefimords which are filled with palindromes
or pseudopalindromes to the highest possible level, thealed rich words. Before we explain the
expression “the highest possible level” we recall the basitons we work with. We understand by
an infinite word over a finite alphabetl a sequencer = (up,)nen = wouius. .., Whereu,, € A for
eachn € N. A factor of u is a finite sequence = wyw; - --w,_1 Of letters fromA such thatw =
Uit - Uirn—1 fOr somei,n € N. The set of all factors ofi is thelanguageof u, usually denoted
L(u). A finite wordw = wow; - - - w,_1 is called palindrome ifv coincides with its reversaR(w) =
Wy —1Wp—-2 - W1WQ.

Infinite words whose language contains infinitely many ghiimes are being studied by many authors.
Apart from the impulses from outside mathematics (sudh dHal] {1995) where these words are used
in a model of solid materials with finite local complexity¥tiain reason of the interest of mathematicians
is the variety of characterizations of rich words. To spettie expression “the highest possible level” one
can adopt two distinct points of view: local and global.

From the local point of view, one looks at a finite piece of thinite word, i.e., at a factor af, and
counts the number of distinct palindromes occurring in fagtor. A motivation for rich word definition
was an inequality due to Droubay and Pirillo, $ee DroubayRinitig (L999), which states that a finite
word of lengthn contains at most + 1 distinct palindromes (the empty word is counted as a padime).

An infinite word isrich, orfull, if every its factor of lengtm contains: + 1 distinct palindromes.
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From the global point of view, one counts the palindromengthn in the set of all factors of, i.e.,
in the languagé(u). LetCy,(n) andPy,(n) denote the number of factors of lengtrand the number of
palindromic factors of length, respectively. As shown in Balazi et|4l. (2007)fu) is closed under
reversal, then the number of palindromesiiis bounded from above by the relation

Cu(n+1)—Cu(n) +2>Pu(n+1)+Pu(n) foreveryn € N. 1)

In Bucci et al. [2049), Bucci, De Luca, Glen and Zamboni shbat for infinite words with language
closed under reversal the local and global points of viema@de. More precisely is rich if and only if
the inequality in ﬂl) can be written as an equality for every N.

Classic examples of rich words on binary alphabets includen8an words, i.e., infinite words over
binary alphabet with the factor complexi€y,(n) = n + 1 for eachn € N. Sturmian words can be
generalized to multiliteral alphabets in many ways, seekamplg Balkova et al{ (20[L0). Two of these
generalizations, namelary Arnoux—Rauzy words and words codikgnterval exchange transforma-
tion with symmetric interval permutation, are rich as wdloth mentioned classes have their language
closed under reversal.

Blondin Massg, Brlek, Garon and Labbé showed in Blondirsséget d1.[(2011) that rich words include
complementary-symmetric Rote words. They can be definedrasybwords with factor complexity
Cu(n) = 2n for every nonzero integer and with language closed under the exchange of Ietter@e R
). This implies that the language of a complementgmgrsetric Rote word is closed under two
mappings acting on the s@t, 1}* of all finite binary words: the first i& and the second i& defined by
E(wg -+ wy) = E(wy) - -+ E(wp) for lettersw; and F(0) = 1 andE(1) = 0. Thus, the language of a
complementary-symmetric Rote word is closed under all efgmof a groug? = {R, F, ER,1d}. The
same property has the language of the famous Thue—Morsetwoayertheless, it is well-known that
is not rich.

For binary words having language closed under all eleménfs, ave show irf Pelantova and Starpsta

(013) that
Cu(nHl) = Cu(n) + 4 > Pu(ntl) + Pu(n) + PE(n+1) + PE(n) foreveryn > 1, 2)

wherePk is the function countingz-palindromes — words fixed b¥ — in the wordu. Analogously to
the case of equality ir[|(1), we say that an infinite word withglaage closed under all elementsfbfis
H-rich if in (2) the equality holds for alh > 1. We also demonstrated that the Thue—Morse wtoisl
H-rich. In2) the second author proved thatitrarypgeneralizatiot; , of the Thue—Morse
word is H-rich for all b > 2 (the definition oft; » is recalled in Preliminaries). In fact, the wortls, are
the only H-rich words that have been found up to now.

One of the main aims of the present article is to describe agghare which produces neW-rich
words. We have found an inspiration in a connection betweenptementary-symmetric Rote words
and Sturmian words due to Rote[in Hofe (993). Given an isfindrdu = ugu; ... € {0,1}Y, we
setS(u) = vivy ... € {0, 1} with v; = (u;_1 + u;) mod 2 for all positive integeri. The operatotS
defines the mentioned relation: a wards a complementary-symmetric Rote word if and onlg {in) is
a Sturmian word.

In Sectiorﬂ4, we investigate binary words which are sim@tarslyH -rich and also rich in the classical
sense. In particular, we prove that every complementanyrsgtric Rote word ig7-rich, see Corollary
fl4. The main result concerning-richness is presented in Theorg¢nj 24. On the one hand theetheo
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says that the operatdr applied to anf -rich word produces a rich word. Using the examplegiofich
words mentioned earlier, we get a new class of rich wordsghathe wordsS(t;, 2) for all b > 2. On the
other hand, the theorem transforms the task to discoverfiewech words to the task to discover a new
class of rich words with special structures of palindron@se such class is described in Stajofta (2016).
Section|]5 is devoted to the notion @frichness on a multiliteral alphabet. In particular, the@ions

is defined over the alphab#t,, . Theoren@l illustrates that even on a multiliteral alpti&he operation

S connectgs-richness andy’-richness for, in general, distinct grou@sandG’. In this sense Theorem
B1 is a weaker version of Theordn] 24.

2 Preliminaries

The setA* is the set of all finite words over thaphabetA which is a finite set ofetters Thelengthof
the wordw = wow; - - - w,—1 € A* with w; € Afor all i is denotedw| and equals. Theempty word-
the unique word of length — is denoted. The setA* together with concatenation forms a free monoid
with the neutral element A wordv € A* is afactorof w € A* if w = uvz for some wordy, z € A*.
If, moreover,u = ¢, then we say that is aprefixof w, if z = ¢, the wordv is asuffixof w. If w has the
formw = vz, thenz is denoted = v~'w and the worch~'ww is aconjugateof the worduw.

Theinfinite wordover A is a sequenca = (u,)nen = upuiusz . ... The symbolAY denotes the set
of all infinite words overA. A finite wordw € A* of lengthn = |w| is afactor of u if there exists an
indexi such thatv = w,;u;11 - - - u;+,—1; the index is anoccurrenceof the factorw. The symbolZ,, (u)
stands for the set of all factors of lengttoccurring inu. The set of all factors oi is thelanguageof u
and is denoted by (u).

An infinite word u is recurrentif any factor ofu has at least two occurrencesun Equivalently, a
word is recurrent if any factor has infinitely many occurresc If moreover for any factow the gaps
between consecutive occurrenceswére bounded, then the wordis uniformly recurrent Let w and
vw be factors of£(u) such thatw has a prefixv andw occurs invw exactly twice. The word is a
return wordof w andvw is acomplete return woraf w. One can say equivalently: a recurrent woris
uniformly recurrent if any factow € £(u) has finite number of return words of

Thefactor complexityof u is the mapping, : N — N, defined byCy(n) = #£L,,(u). Givena € A
andw € A*, afactorwa € L(u) is aright extensiorof the factorw. Any factor ofu has at least one right
extension, the set of all right extensionswis denotedRext(w). If w has at least two right extensions
we call it right special Analogously one can defifeft extensiorandleft specialandLext(w). In a
recurrent wordu any factor has at least one left extension. A faetowhich is left and right special is
bispecial Special factors can be used to determine the factor coritylexparticular

ACy(n) =Cu(n+1) = Cu(n) = Y (#Rext(w) —1).
weLy(u)
If A is a binary alphabet, we get
ACy(n) = #{w € L,,(u): w is right specia}. 3)

A mappingu : A* — B* is amorphismf p(wv) = p(w)u(v) forall w,v € A*. Itis anantimorphism
if p(wv) = p(v)u(w) forall w,v € A*. An infinite wordu is closed under the mappingif p(w) €
L(u) for any factorw € £(u). Domain of a morphisnyp : A* — A* can be naturally extended 4"
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by the prescriptionp(u) = ¢(uguius - ..) = p(ug)p(ur)p(usz) . ... Aninfinite wordu € A" is called
fixed pointof a morphismp if ¢(u) = u.

An antimorphismV isinvolutoryif ¥2 = Id. The most frequent involutory antimorphism is the reversal
mappingR. If the wordu is closed under an involutory antimorphism, theis necessarily recurrent.

If p = ¥(p), the wordp is a ¥-palindromeor pseudopalindromef specification of the mappin@
is not needed. In the cade = R, we say only palindrome instead &Fpalindrome. The set of all-
palindromes occurring as factors of a finite wards denotedPal” (w). The ¥-palindromic complexity
of an infinite wordu is the mapping®? : N — N, defined byPY (n) = #{p € L,(u): p= ¥(p)}.

A U-palindromew is centered atr € AU {e} if w = va¥(v) for some wordv. If a ¥-palindrome is
centered at, then it is of even length.

3 (-defect and G-richness

First, we recall the definition of palindromic defect as itsaiatroduced by Brlek, Hamel, Nivat and

Reutenauer ifi Briek et k[ (2404). This classical definitibased on the inequality
#Pal®(w) < |w|+1  forallw e A*, (4)

wherePalR(w) is the set of allR-palindromic factors ofv including the empty word.
The R-defectof a finite wordw is

DR (w) = Jw| + 1 — #Pal”(w),
and R-defect of an infinite worah is
DR (u) = sup{ D (w): w € L(u)}.

We prefer to use the nanie-defect instead of the originally used “defect” because wkimtroduce an
analogous notion for a general antimorphignas well. An infinite wordu with D (u) = 0 is called
R-full or R-rich. If Df(u) is finite, we say thati is almostR-rich. In Brlek and Reutenader (2411), the
inequality ﬂ.) is used to introduce the value

Tu(n) = ACu(n) +2 — PE(n+1) - PE(n)  foreveryn € N

and they conjectured thatif is closed under reversal, then
2D"(u) =Y Tu(n). (5)
n=1

Their conjecture was proven |n Balkova e} &l. (3013). Irtipatar, it means thaD % (u) is finite if and
only if there existsV € N such thafl,(n) = 0 for alln > N, or in other words in|]1) the equality holds
foralln > N.

To proveR-richness we will use the characterizationffich words given ir] Balkova et al. (2009). It
exploits the notion of the bilateral ordefw) of a factorw and the palindromic extension of a palindrome.
The bilateral order was introduced[in Cassdidne (1997) as

b(w) = #{awb € L(u): a,b € A} — #Rext(w) — #Lext(w) + 1. (6)
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The set of all palindromic extensions of a palindrome £(u) is defined by
Pext(w) = {awa: awa € L(u),a € A}.

Theorem 1 (Balkova et a). [2070)) Let u be an infinite word closed under reversal.

1. The wordu is R-rich if and only if any bispecial factow of u satisfies:

()

#Pext(w) —1 if wis a palindrome;
b(w) = .
0 otherwise.

2. If the wordu is almostR-rich, then(ﬂ) is satisfied for all bispecial factors up to finitely many
exceptions.

The first attempt to study the number&fpalindromes for an involutory antimorphisinwas made
in Blondin Massé et 41[(20p8). Blondin Massé, Brlek, Gaamd Labbé considered the binary alphabet
{0,1} and the antimorphisiv. They showed that

#Pal” (w) < |w| forallw e A*\ {e}. (8)

In Btarosta [(2011), this results is generalized for an rtyitinvolutory antimorphismé and arbitrary
alphabet into the inequality

#Pal” (w) < |w|+1 — vg(w) forallw e A*, 9)

whereyy (w) = #{{a, ¥(a)}: a € A, a occurs inw and¥(a) # a}. Clearly, if ¥ = E we have[fg) as
ve(w) = 1foranyw # ¢, if & = R we have[}) agr(w) = 0 for anyw. Based on the inequalit}](9),
the W-defectof w € A* is defined by

D¥(w) = |w| + 1 — yu (w) — #Pal” (w). (10)

The W-defect of an infinite wordh is defined analogously, i.eQ¥ (u) = sup{D¥ (w): w € L(u)}.

Infinite words having finitel-defect can be characterized by several properties, foe metails about
R-defect sef Balkova etl?k[ g:gll) and abdutefect se¢ Staroptp (201[1); Pelantova and Starfosta)2012
In [Pelantova and étarols (2p12) we showed that theresexigéry narrow connection between words
with finite defect and words with zero defect. We proved that is closed under an involutory antimor-
phism¥ and DY (u) is finite, thenu is a morphic image of a word with D®(v) = 0 for some involutory
antimorphismd. If moreoveru is uniformly recurrent, the® = R. In this sense, considering instead
of R does not bring a broader variability into the concept of kairds.

The situation changes when we consider more antimorphismBelantova and Staropta (2013) we
defined a generalization of the notion of defect. In whaiofe$i, the symbolZ stands for a finite group
consisting of morphisms and antimorphisms adérand containing at least one antimorphism. dhigit
of w € A* is the set

[w] = {u(w): p e G} (11)
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We say thau is closed unde6 if [w] C L(u) for anyw € L(u). Wordp € A* is aG-palindromeif
p = ¥(p) for some antimorphisn¥ € G. The generalization of the set of all palindromic factorsof
word is a set consisting of palindromic orbits, namely thte se

Pal®(w) = {[p]: p occurs inw andp is aG-palindromg.

Note that ifG = {Id, ¥'} where¥ is an involutory antimorphism, thePal” (w) is in one-to-one corre-
spondence with the s&tl® (w) (the only difference is that the latter is a set of orbitseast of factors).
Let us stress that iftal® (w) we count how many different orbits haveC&palindromic representative
occurring inw.

Definition 2. Letw be a finite word. Thé&r-defectof w is defined as
D% (w) = w| + 1 — #Pal®(w) — ya(w),
where
va(w) = #{[a]: a € A, a occurs inw, anda # ¥(a) for every antimorphisn¥ € G} .

A finite word is G-rich if its G-defect is0. An infinite word isG-rich if all its factors areG-rich. In
Pelantova and Starosta (2P13), a distinct and equivakfintition of G-richness is used: it is based on a
specific structure of graphs representing the factors oédangth of the word.

Example 3. We illustrate the previous notions on the Thue—Morse wotlde fixed point of the morphism
0 — 01 and1 ~ 10 starting with0, i.e.,t = 011010011001011010- - -. The wordt is closed undeR?
andE. Let H = {Id, R, E, ER}. For the groupH the valueyy(w) = 0 for anyw € A*. Consider
w = 011010011001, the prefix oft of length12. We have

Pal®(w) = {¢,0,1,11,00,101,010,0110, 1001, 001100, 10011001},

Pal” (w) = {&,01,10,0011,1100, 1010, 110100, 001100,01101001},

Pal (w) = {[¢], [0], [00], [01], [010], [0110], [0011], [1010], [110100],

[100110], [001100], [10011001], [01101001]}.

The corresponding defects afare
DE(w) = [w| +1 — #Palf(w) =2,
D" (w) = |w| — #Pal®(w) = 3,
DH (w) = |w| + 1 — #Pal” (w) = 0.
In fact, the Thue—Morse word i -rich, whereas itf2-defect andr-defect are both infinite, see Example

g later.

For G-richness, theorems analogous to the theorems for theadhsshness can be stated, c.f. Pelan-
tova and Starost14). The list of kno@irich words withG having at least two antimorphisms is
modest. It contains the generalized Thue—Morse weggds. The wordt, ., is defined on the alphabet
{0,...,m—1}forallb > 2andm > 2 as

—+o0

to.m = (sp(n) mod m), ~,
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where s,(n) denotes the sum of digits in the baseepresentation of the integer See for instance
Allouche and Shallif(2000); Cusick and Ciupgu (2011) whbigclass of words is studied. The language
of t;..,, is closed under a group isomorphic to the dihedral group déii@m, here denoteds(m). In

Section[p, we describe the group in details. dstadraie second author proved that,,, is
I5(m)-rich for any parameterls> 2 andm > 2.

In Corollary we add to the list off-rich words also complementary-symmetric Rote words. As
already mentioned in Introduction, an infinite binary warés acomplementary-symmetric Rote wafrd
its factor complexity satisfieS,(n) = 2n for all » > 1 and its language is closed under the exchange of
the two letters?.

In this article, we focus on grougs acting onA* for which the implication

\Ill(a) = \IJQ((I) — U, =W,

is true for any lettem € A and any pair of antimorphism&,, ¥, € G. In|Pelantova and Stargsta
), for such a group, the numbhleis calledG-distinguishing, since the image of a single letter by an
antimorphism front allows to identify the antimorphism. For example, the nunikie H-distinguishing
for the groupH used in ExampIE 3. Also for the dihedral groupém) studied in SectioﬂS, the number
1is Iy (m)-distinguishing.

If an infinite wordu is closed under a grou@ and1 is G-distinguishing, then

ACu(n) +#G > Y (Pf(n) +PY(n+ 1)) forall neNn> 1, (12)
veg®

whereG® denotes the set of all involutory antimorphisms fréinsed Pelantova and Starpsta (2013).
Clearly, if G is generated by one antimorphism, seythen#G = 2 andG® = {¥}. The inequality
(@) is the special case df {12). Similarly, the inequalffy¢an be obtained fronf (IL.2) if we pGt = H =
{14, R, E, ER}. The followingG-analogue of the result obtained by Bucci, De Luca, Glen aardlzoni

in Bucci et a]. [2009) for the classical richness is prove@mntova and Starokta (2014).

Theorem 4. Let an infinite worda be closed under a grou@ such that the numbdris G-distinguishing.
TheG-defectD® (u) is zero if and only if in([L3) the equality holds for each € N,n > 1.

In Pelantova and Starosta (2p13) we also introduced thiematmostG-rich word. A wordu closed
under a groug- is almostG-rich if there existsN € N such that the equality irEle) takes place for all
integersn > N. An infinite wordu is almostG-rich if and only if its G-defect

D% (u) = sup{D%(w): w € L(u)}

is finite.

Remarks. In fact, in[Pelantova and Stardsfa (2p14) the last stateimshown only for uniformly recur-
rent words. However, one can use the same argument we apppedof of Theorem 2 i Balkova etlal.
(01B) and show thab® (u) is finite if and only if in (1) the equality takes place frormseN on.
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4 Binary words invariant under two involutory antimorphisms
4.1 G-richness in binary alphabet

In this section we supposé = {0,1}. On binary alphabet we have only two antimorphisfhand E.
Therefore, only the groups

{14, R}, {Id,E}, and H ={Id,R,FE,ER},

can be considered when inspecting the def#ct Let us start with examples 6f-rich and almosG-rich
words for these three groups.

Example 6. (G = {Id, R})

The classical richness has been studied very intensivelyhaus there are known many examples of binary
R-rich words including Sturmian words, sge Droubay ¢t|al0@h0Rote Words, sge Blondin Masseé gt al.
(01}), the period doubling word, s), étenty examples of binary almog-rich
words can be constructed by application of special stanéfandorphisms to any rich word, see Glen
etal. ) for the definition of standaftdmorphism and a proof.

Example 7. (G = {14, E})
It can be easily seen, or shown using the resul{s of Blondisgdat gl.[(2008), that there exist only two
E-rich infinite words, namely the periodic word= (01)“ and its shift(10)~. The two mentioned words
are alsaR-rich andH-rich as the equalities hold ifif (1) ar{dl (2) for alk N, n > 1.

Examples of infinite words with finit&-defect are-standard words with segded Bucci et 41[(20p8)
for their definition and Pelantova and Starpsta (2012) fpraof). This class also includes very simple
examples of words with finité’-defect: periodic words having the forat’ with w = E(w). One can

easily show that in this case” (w*) = DZ(w?) (see Corollary 8 iff Brlek et &lI[ (2004) fdt-defect, a
modification forE is straightforward).

Example 8. (G = H ={1d, R, E, ER})
The only so far known examples &f-rich words are given ifi Staroth (2012): they are the géineda
Thue—Morse words;, o.

If bis odd, thert, » = (01)“ and hence, 5 is alsoR-rich andE-rich.

If bis even, the word is aperiodic afef*(t, ») = D (t;2) = +oco. To prove it for any eveh we use
the fact that,  is a fixed point of the morphism determined by

¢: 0 (01)2 and 1+ (10)2.

Itis readily seen that the factar = (01)% is strong i.e., its bilateral ordeb(w) is positive, specifically
b(w) = 1, as all four word9w1, 0w0, 1wl, and1w0 belong toL(u). Moreoverw is an E-palindrome.
The form of the morphism ensures that

e b(p(v)) = 1forany strong factop # ¢;
e if vis anR-palindrome, therp(v) is an E-palindrome,

e if vis anE-palindrome, therp(v) is an R-palindrome,
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These properties imply that for ay< N, the factorp?” (w) is an E-palindrome and hence it is not an
R-palindrome. Thus there exist infinitely many non-palindrobispecial factors with non-zero bilateral
order. Using Theorelﬂ 1 one may see thdt(t, 2) = +oo.

To prove thatDZ (t, ») = +o0o we may proceed analogously. The factpf§*? (w) areR-palindromes
but they are not-palindromes for alk > 0. These factors are bispecial with the same bilateral order
A modification of Theorerﬂl for the antimorphism(which can be found in full generality in Pelantova
and Starostg (20]14), Proposition 45) gives the result.

Now we look at the question whether a word can be simultadgdgabnost) G-rich for two groups
on the binary alphabet. We will discuss the connection benmiteness of defect®”, DF and D .
In what follows we will consider words invariant undé& and £ simultaneously. First we study the
relationship betweeR- and E£-palindromes.

Lemma 9. Letp, g € A* be R-palindromes such that the wogd is an E-palindrome, i.e.,
pq = E(q)E(p). (13)
There exist: € A* andi, j € N such thatp = ¢ (E(c)c)’ andg = (E(c)c)’ E(c).

Proof: We will induce on the difference df| and|q|. First, suppose thap| = |g|, then [IB) implies that
q = E(p) and it suffices to set=p andi = j = 0.

Suppose now thdp| # |¢|. We can suppose without loss of generality thét< |q|. Setq = ¢1¢2
with [p| = |g|. It follows from [@3) thatpgiqs = E(q2)E(q1)E(p), thusp = E(q2) andg, = E(q1).
Therefore,g; is a palindrome. Since is a palindrome, we hav&(qi1q2) = R(q2)R(q1) = q1g2 =
g2R(q1). We get

7192 = g2 R(q1). (14)

This equation on words, written in generalas = zy, has a well-known solution: there exist words
u,v € A* andk € N such thatr = uv,y = vu andz = (uv)*u. If the wordz is palindrome, then the
form of z implies thatu andv are palindromes as well. To use the solutiontef= zx to solve ),
we setz = o, z = q; andy = R(q;) and we get the solutiong = wv = E(uv) andge = (uv)*u.
Since|q1| = |q| — |p| = |u| + |v|, it follows that the difference ofu| and|v| is less thang: | = |q| — |p|.
We apply the induction hypothesis on the palindromemndv satisfyingE(uv) = uv and we get that
u = d(E(d)d)™ andv = (E(d)d)" E(d) for somed € A*. Substituting forp andq one can find that it
suffices to set = E(d) and the claim is proved. O

Corollary 10. If p and ¢ are palindromes such thaty = F(pq), then there exists € A* such that
pq = (cE(c))’ for somej € N.

Proposition 11. If an infinite recurrent worda has finiteR-defect and finitg”-defect, then is periodic
with a period conjugate toE(r), wherer is an R-palindrome.

Proof: Letu be an infinite recurrent word with finitB- and E-defects. Using Proposition 5 in Pelantova
and Starostd (20]12), it follows thatis closed undeR andE and there exists an integersuch that

ACy(n) +2 =PR(n+ 1)+ PE(n) and
ACy(n) +2=PF(n+1)+PF(n)
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for all n > h. Sinceu is also closed under all elements of the grdilipcombining the two previous
equalities with |Z|2) we geh > ACy(n) for all n > h, i.e., the wordu is eventually periodic. Since
u is recurrent and closed undé&r, the wordu is purely periodic, i.e.u = w*. Asu is closed under
E, the wordE(w) is a factor ofww. It implies thatw = wywy with E(wy) = wy and E(ws) = ws.
As the length of any-palindrome is even, the concatenation of tiigpalindromes is conjugate to an
E-palindrome, in other words, the wotdis conjugate to arZ-palindrome, say. Thusu = w* = v/v¥
for somev’. Asv* has language closed underas well, by the same reasoning we have pq, where
R(p) = pandR(q) = q. Applying Corollary[1p we get = pq = (cE(c))? for somej € N. Itis enough
to setr = c. |

The following proposition treats another combination ob t-defects.

Proposition 12. Letu € {0, 1} be a word having its language closed under the grélipnd let¥ = R
or U = E. If D¥(u) is finite (resp. zero), the (u) is finite (resp. zero) as well.

Before giving a proof of the last proposition, we recall Rysition 4.3 of| Balkova et al] (20[L1) which
will be needed.

Proposition 13. Letu be an infinite word with language closed under reversal. $8pthat there exists
an integerN such that for alln > N the equalityP(n) + PE(n + 1) = Cu(n + 1) — Cu(n) + 2 holds.
The complete return words of any palindromic factor of léngt> N are palindromes.

Proof of Proposition [L3: Let us realize that closednesswiunder R and E ensures that the numbers
PE(n) andP(n) are even. Indeed, ifv € L£(u) is an E-palindrome of length, then R(w) is an
E-palindrome as well, and analogously f@rpalindromes.

First we considel = R. Let us suppose that there exists a positive intégesuch that

ACy(n) +2=Pln) +Pln+1) foraln> N and
ACy(N) +4 > PE(N) + PE(N + 1) + PE(N) + PE(N +1).
We will show that this assumption leads to a contradiction.
In particular the assumption yields the inequality PZ(N) + PE(N + 1), which implies that there

is no E-palindrome of length at leas{. Letw € £(u) be anR-palindrome of length at leag{. We say
that a factorf has Propertyr if it satisfies all of the following:

1) w occurs inf exactly once,
2) E(w) occursinf exactly once,
3) w is a suffix or a prefix off,
4) E(w) is a suffix or a prefix off.

Letu be a factor with Property. Such factor must exist @4 u) is closed undef and thusE'(w) € L(u)
as well. Asw is anR-palindrome andu is closed under reversal, the fac®(u) has Propertyr as well.
SinceER(w) = E(w), we can assume without loss of generality thas the factor starting inv and
ending inE(w). Let us look at the complete return word @f sayp, with prefixu. The fact that the
equalityACy(n) + 2 = Pf(n) + PL(n + 1) is valid for alln > N implies according to Propositign]13
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that the complete return wogdof w is an R-palindrome. Thus the factd®(u) is a suffix ofp. Moreover
p contains only two factors (namelyand R(u)) with Propertyr.

We have shown for every factaf with Propertyr that its closest right neighbor u with Propertyr
is its mirror imageR(u’). Therefore, there exist only two factors with Properfynamelyu and R(u).

On the other hand, ifi has Propertyr, thenE () has Propertyr as well and thu#(u) € {u, R(u)}.
As E(w) is a suffix ofu, the factorE(u) has a prefixw. It implies thatE(u) = « which contradicts the
fact that there is n&-palindrome longer thahw|.

We have shown that

ACy(n) +2=PEn)+PEn+1) foraln>N
implies
ACu(n) +4="Pln)+Pln+1)+PEn)+PL(n+1)  foralln> N.

If uis R-rich, thenN = 1 and thusu is also H-rich. If its defectD(u) is finite but nonzero, then
N > 1 andu has finiteH -defect.
In the casel = E the proof is analogous. O

Corollary 14. Every complementary-symmetric Rote wordfisich.

Proof: In Blondin Massé et &l|(2011), it is proved that Rote wondsZa-rich. Since a complementary-
symmetric Rote word is closed undHr, the previous theorem proves the statement. O

Remark15. Let us stress that the reverse implication in Proposi@rdaés not hold. As shown in
Example[B, the Thue-Morse word h&d’ (t) = 0, whereasD®(t) = D (t) = co.

According to Propositiof 11, the finiteness of both defdzfgu) and D (u) forces the wordh to be
periodic. The Rote words illustrate that there exist agiciavords with finite D™ (u) and D (u).

4.2 The mapping S on binary words

In this section we introduce and study the basic properfigeeomappingS : A* \ {¢} — A* thatis
given by

S(ug -+ up) =vy vy, where v; = (u;—1 +u;) mod2 fori=1,... n.
In particular,S(a) = ¢ for everya € A. The following list contains some elementary propertie§ of
I. SR=RS,and SE = SR.
II. S(w)=S(u)ifand only ifw = uorw = ER(u).
Ill. S(w) is anR-palindrome if and onlyw is an R-palindrome or ar-palindrome.
Proof: Points]| and ]I give
S(w) = R(S(w)) = S(w) = $(R(w)) <= w = R(w) orw = ER(R(w)) = E(w).
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The operatiors is naturally extended tal™ by setting
S(uguiug...) =vivy..., where v; = (u;—1 + u;) mod 2 for i > 1.
To describe the factor complexity 6fu) we study special factors in
L(S)) ={S(v): v e L(u)}.

Lemma 16. Letu € {0, 1}. A factorS(v) is right special inZ(S(u)) if and only if one of the following
occurs:

a) v or ER(v) is right special in£(u),
b) {v, ER(v)} C L(u), and{va, ER(va)} ¢ L(u) for botha € {0,1}.

Proof: Let S(v) be right special inC(S(u)). ThenS(v0) andS(v1) belong toL£(S(u)). It may happen
that either both/0 andwv1 belong to£(u), which means that is right special in{(u), or both ER(v0)
andER(v1) belong toL(u), which means thak R(v) is right special in(u).

Otherwisev and ER(v) are not right special irC(u), but necessarily both belong ®(u). Letva
and FR(v)b be the unique right prolongations i(u) of v and ER(v) respectively. Sinc&(va) and
S(ER(v)b) must be distinct right prolongations 8{v) = S(ER(v)), we haven # ER(b), i.e.,a = b.
SinceE R(v) has a unique extension to the righR (v)a, we getER(v)(1 —a) = ER(va) ¢ L(u). O

Lemma 17. Letu € {0, 1}. The wordu is uniformly recurrent if and only if (u) is uniformly recurrent.

Proof: (=): Let w be a factor ofS(u). Thenw = S(v) for somev € L(u). The gaps between the
neighboring occurrences ofin u are bounded by some constant. The gaps between the ocasm@nc
w in S(u) are bounded by the same constant.

(«<): Letw be a factor ofu. Thenw = S(v) is a factor ofS(u) and the gaps between the occurrences
of w are bounded, say b . If v is the only factor ofu such thatv = S(v), i.e.,v is the only preimage
of w by S in u, then the occurrences ofin u are bounded by< as well. Let us suppose thathas more
preimages in1. According to Property Il, there are only two preimageswwhamelyv and ER(v). Let
f be afactor on such thaw is a prefix of f and ER(v) is a suffix of f andv and ER(v) occur in f only
once. TherS(f) is a complete return word @b = S(v) = S(ER(v)). As S(u) is uniformly recurrent,
the gaps between the occurrences of the fagtgh are bounded, say by. Both possible preimages of
S(f) inu, namelyf and ER(f), containv either as its prefix or its suffix. Thus the gaps between the
occurrences of in u are bounded by’ as well. O

Lemma 18. Letu € {0, 1}". If S(u) is closed undeR, thenu is closed under: or underE.

Proof: Letv be a prefix ofu. The wordS(v) is a factor ofS(u). According to the assumptio®S(v) =
SR(v) belongs to£(S(u)) as well. Due to Property I, eitheR(v) or E(RR(v)) = E(v) belong to
L(u). Thus

a) either there exist infinitely many prefixess £(u) such that?(v) € £(u);

b) or there exist infinitely many prefixesc £(u) such thatt(v) € L(u).
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Let us suppose that a) happens. For ang £(u) we may find a prefiw such thatR(v) € £(u) and
w is a factor ofv. Thus,R(w) € £(u) and we can conclude thatis closed undeR.
The case b) is analogous. O

Example 19. The period doubling word is the fixed point of the primitive rmbism
©PD 00— 11 and 1+~ 10.

Thus
upp = 10111010101110111011101010. ...

It is well-known that the period doubling word is the imagelod Thue—Morse wort by S.
The wordupp = S(t) is closed undeR, the wordt is closed undeR andE. It illustrates that in the
previous lemma the simultaneous closedness uRdard E is not excluded.

The previous lemma guarantees thds closed at least under one of the antimorphigfrend R. We
now focus on a property df (u) that ensures that is closed under both of them.

Lemma 20. Letv = S(u) € {0,1}". The languageC(u) contains infinitely manyz-palindromes and
R-palindromes if and only ifZ(v) contains infinitely manyR-palindromes centered at the lettérand
infinitely manyR-palindromes not centered at the letter

Proof: Let u be a finite non-empty word and let= S(u). It suffices to realize the following:

1. uis anE-palindrome if and only i is an R-palindrome centered at the lettier
2. uis anR-palindrome of even length if and onlysfis an R-palindrome centered at the lettier

3. uis anR-palindrome of odd length if and only ifis an R-palindrome of even length, i.e., centered
ate.

O

Corollary 21. Letv = S(u) € {0,1}" be uniformly recurrent. If£(v) contains infinitely manyz-
palindromes centered at the lettérand infinitely manyR-palindromes not centered at the letterthen
u is closed under all elements 6&f.

Proof: The previouslemma implies th&{u) contains infinitely many-palindromes andk-palindromes.
Letw € L(u). SinceL(u) containsR-palindromes of arbitrary length andis uniformly recurrent by
Lemma[1J, the factow is a factor of ank-palindromic factor ofu, thus?(w) also occurs in1. Analo-
gously,E(w) is factor of anE-palindromic factor and thug(w) € £(u). O

An example of application of the last corollary are Sturmveords. It is known that they contain
infinitely many R-palindromes centered atand0, which implies that their preimages I8 namely the
complementary-symmetric Rote words, have their languxsed underd .

Another example is the period doubling word defined in Exm@. One can easily see can that
given anR-palindromew centered at € {0, 1}, the wordppp(w)1 is also anR-palindrome centered at
1 — z. Therefore, the period doubling word satisfies the assumgtbf the corollary and it follows that
the language of one of its preimage Bynamely the Thue—Morse word, is closed unger

The following definition is inspired bl Balkova et|d. (201&iven a finite wordy and a lettem, the
notation|w|, stands for the number of occurrences of the letter v.
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Definition 22. We say that an infinite wor¢ € {0,1}" haswell distributed occurrences modufb
(denoted WELLDOC(2)) if for every factar € L£(v) we have

{(|v|0, [v]1) mod 2: vw is a prefix Ofv} =73.

Proposition 23. Letv € {0, 1} have WELLDOC(2) and be closed under reversal i§ a word such
thatv = S(u), thenu is closed under all elements #f.

Proof: Denotev = vjvs ... andu = wpug . ... SinceS(u) = v, it follows thatug + u; = v1 mod 2,
u1 +uz = vy mod 2, ... Summing firstt equations we get

k
U = Ug + E ;.
i=1

It follows that
k+j

Uk4j = Uk—1 + Zvi
i=k
forall k > 0andj € N. Suppose thatand/ are two distinct occurrences of a facfoe £(v) of lengthn.
We havey *H v, = 44, forall j € {0,...,n — 1} If us_y = ug_y, then we haver, - - - ey =
Up—1 -+ Uptn. ONthe other hand ifis—1 # we—1, thenug_q1 -+ us1n = ER(ug—1 - - upsr). Note that
Us_1 = Ug + Zf;ll v; andwvy - --vs_1 f is a prefix ofv, and analogously for the inde% Sincev has
WELLDOC(2), we may choose the indicesind/ such that

s—1 —1

Zvi:O and szzl

i=1 =1

It implies that with every factow € £(u), the factorER(w) also occurs in1. Asv = S(u) is closed
under reversal, Lemn{al18 implies thais closed undeR or E. This together with the closedness under
ER already implies thai is closed under all elements éf. O

4.3 Richness of u versus richness of S(u)
This section is devoted to the study of images and preimaggmast rich words by the mappirtg)

Theorem 24. Letu € {0, 1}" be closed under all elements &f = {Id, E, R, ER}. The wordu is
H-rich (resp. almost{-rich) if and only if S(u) is R-rich (resp. almostz-rich).

Proof: Letv = S(u). Sinceu is closed unde® R, any factor of£(v) has two preimages if(u).
Moreover is right special inC(u) if and only if ER(v) is right special inC(u) as well. Thus by Lemma
f8, any right special factor iff(v) of lengthn is image of two right special factors of length+ 1.
According to [B) we get

2ACy(n) = ACy(n + 1). (15)
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Analogously,w is an R- or E-palindrome inL(u) if and only if ER(v) is an R- or E-palindrome in
L(u). According to Propertf il we have

2PE(n) = PR+ 1)+ PE(n +1).

Thus the equality
ACy(n) +2 = Pi(n +1) + Pi(n),

testifying thatv is R-rich, holds if and only if the equality
ACu(n+1)+4=Pln+1)+PEn+1)+PEn+2)+Pln+2),
testifying thatu is H-rich, is satisfied. O

As already noted above, the wotgly is H-rich. Thus, using the last theorem with= t; » and )
together with the equality

Co(n) =1+ ni: ACy (i)
=0

valid for any infinite wordw, we obtain the following corollary:

Corollary 25. For every integeb greater thanl the wordv = S(t;2) is R-rich. Its factor complexity
satisfies

Cyln) = 5(Cu,.,(m) — 1)

Using the factor complexity of the wortd, » described irf Starogth (2912), one can see that the binary
R-rich word S(tp2) is not Sturmian.
Remark26. Since a complementary-symmetric Rote warts closed under all elements &f andS(u)
is Sturmian, which isR-rich, Theorerrg4 provides an alternative proof of Cortyl@ without exploiting
the result that every Rote woudis R-rich.

Theorem 27. Letu € {0, 1}" be a uniformly recurrent word. H is almostR-rich, then the wordS (u)
is almostR-rich.

Proof: Sinceu is almost rich, its language contains infinitely many palordes. This fact for uniformly
recurrent words implies that is closed under reversal. if is closed undeF as well, then according to
Propositior] 1P the word is almostH-rich, and the claim follows from Theoren]|24.

Itis enough to considax that is not closed unddr. We will show that the sefw € £(u): ER(w) €
L(u)} is finite. Assume the opposite. Letbe a factor of length. As u is uniformly recurrent there
exists a number(n) such that any factor of longer than-(n) contains all factors of length. Since
{w € L(u): ER(w) € L(u)} is notfinite, there exist® belonging to this set and being longer th&n).
And thus the factop of lengthn occurs inw and ER(v) occurs inER(w). Since bothw and ER(w)
belong toL(u), the factorv and ER(v) belongs tal(u) as well — a contradiction with assumption that
u is not closed undek.

Let N be the maximal length of an element of the finite fete £(u): ER(w) € L(u)}. Any factor
of S(u) longer thanN has unique preimage ifi(u). According to Lemmag 16 for any > N there is
one-to-one correspondence betwggiS(u)) andL,+1(u). Thus,

ACu(n+1) = ACs(u)(n)  foralin > N. (16)
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Moreover, there exists nB-palindrome of lengtlw > N and thus we have one-to-one correspondence
between the set of aR-palindromes inC(S(u)) of lengthn and the set of alR-palindromes inZ(u) of
lengthn + 1. It gives

Pl(n+1) = P& (n) foralln > N. (17)

Sinceu has language closed under reversal and is almost rich Lﬁ)mge(re exists a constanf such
that

ACy(n) +2="Py(n) + Pu(n+1) foralln > M.
This equality and equalitie$ (16) ar[d}(17) imply
ACS(u) (TL) +2= PS(u) (n) + PS(u) (n + 1) forall n > max{N, M}

It follows that the wordS (u) is almostR-rich. O

Corollary 28. If u is a Sturmian word, the§* (u) is almostR-rich for all k > 0.

We add two more examples related to images (Exa@le 29) aichpges (ExampIEBO) of words
constructed by iterated operatiéh However, we do not give any proofs of their properties anduse
state them as hypotheses given by computer evidence.

Example 29. As stated in Corollarfy 25, the woi§{(t;, ») is R-rich. Theorenf 47 then implies th&f (t; »)
is almostR-rich for all £ > 0. Our computer experiments suggest that in this case the $/qd ») is in
fact R-rich.

As we have already mentioned, the list of knowfirich words is very modest: complementary-
symmetric Rote words and generalized binary Thue—Morselsitgr.. Theore, Propositi23 and
Corollary give us a recipe for construction of an (almdstjich word: take a binary (almosf}-rich
word with property WELLDOC(2) or a binary (almog®)-rich word with suitable structure of palindromes
and find its preimage by the operatiSh The complementary-symmetric Rote words were obtained by
this procedure applied to the Sturmian words. The Thue-&amdt = t, o can be obtained by this
procedure applied to the period doubling word.

Example 30. Let u be a Sturmian word. Lei(*) be an infinite word such theg*(u(®)) = u for all

k € N. The wordu(" is a complementary-symmetric Rote word which is, as alrendgtioned H-rich
and R-rich. According to our computer experiments, so is the wafd. The wordu® is not R-rich,
but it is still H-rich. The wordu(® for k > 3 is not H-rich nor R-rich. However, the symmetries af*)
are preserveda®) is closed under all elements &f. This is witnessed by the following difference of its
factor complexity

ACyi(n) =2""1 foro0<n<k and ACym(n)=2" forn>k

which is suggested by our experiments.
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5 The mapping S on multiliteral alphabets

In this section we study the mappisgacting on a larger alphab®gt,, = {0,...,m — 1}. The mapping
S'is defined for every woreh = wy - - - w,, with w; € Z,, by

S(wowy « - wy) = vy - Oy, (18)

wherev; = (w;—1 + w;) mod m foreveryi € {1,...,n}.

The alphabeF,, allows many finite groups generated by involutory antimaspts. We restrict our
attention to groups isomorphic to groups of symmetries adquiar polyhedron. The reason is simple:
we have examples @f-rich words only for such groups, namely the generalizedeHMiorse words. We
demonstrate that at least for these words the map§itrgnsforms a-rich word to an almost:’-rich
word (cf. Theoremg4 ar@Z? for an analogue on the binaryaalgi).

Let us describe the elements of the mentioned group explidior all z € Z,, denote by¥, the
antimorphism given by

U, (k)y=a—Fk foralkeZ,

and byII, the morphism given by
I, (k) =x+k forallk e Z,,.
The grouplz(m) is the union of these antimorphisms and morphisms:
L(m)={Y,: 2 € Zp}U{ll,: © € Zp }.

The definition of the generalized Thue—Morse words is redatft Preliminaries. It is known that the word
ty.,, IS a fixed point of the morphismy, ,,, : Z, — Z, defined by

om: ar—ala+1)(a+2)---(a+b—1) forallacZ,.

Let us stress that all operations on letters in this sectietaken modulan. As shown irf Starodtd (2012),
the wordt, ., is closed under all elements &f(m) and moreovet,, ,, is I(m)-rich. We will focus on
images oft, ,,, by S with parameter$ > 3 andm > 3. Let I;(m) denote the group generated by
antimorphismq ¥y, : y € Z,, }; it can be easily seen that

IL(m) = {Vay: 2 € L, } U{lloy: @ € Z, }. (19)
If m is odd, thenl(m) = I>(m), if m is even, therl;(m) is isomorphic tal, ().
The aim of this section is to prove the following theorem.
Theorem 31. Letm, b € Z such thatm > 3 andb > 3.
1. The wordS(ty,,,) is almostl (m)-rich.
2. If m orbis odd, the wordS(ty, ., ) is 15 (m)-rich.

The first part of Theorer@l is a direct consequence of Prtipn@, the second part follows from
Lemm and the description of factorsdit, ,.,) up to the length 3 presented at the end of this section.
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Example 32. Let us consider the wortl, 4. It starts with 0 and it is a fixed point of the morphism
pa4: 00123, 1+~ 1230, 2+~ 2301 and 3 — 3012.

Thus t44 = 01231230230130121230230130120123230130120123 ...
and S(t44) = 1310313213103133313213103132131113103132131. ..
Now we consider the wortk 4. Its fixing morphismis

w3a: 0~—~012, 1+—123, 2+ 230 and 3 — 301.
Thus t34 = 01212323012323030123030101212323030123030101 . ..
and S(ts4) =13331113131113331313331113331113331313331113....

We start with a list of observations concerning propertiethe mappingS. To deduce some of the
observations we exploit a peculiar property of generaligtede—Morse words. The form of morphism
v».m forces the language of = t; ,,, to have the following property

upuiugus € L(u) = wu; —u,—1 =1 foratleasttwo indices € {1, 2, 3}. (20)
(A) SY, =Wy, S foranyy € Zy,. If miseven, thertt¥, = SU, = foranyy € Z,.
(B) If S(ug---upn) = S(vo---vy) with u;,v; € Z,,, then there exists € Z,, such that

Vot Uy = (UO +a:)(u1 — x) s (Un + (_l)nx)'

(C) Letu be closed under all elements bf(m) and satisfy [[(0). Consider = S(v) for somev =
vov1 -+ - Uy, € L(u) withn > 3.

If m is odd, therv is the only preimage ab by S in u.
If m is even, thenv has exactly two preimages I§yin u, namelyvov; - - - v, and(vo + %5 )(v1 +

%) (o + B).

Proof: Let S(u) = S(v) for a factoru = ugu; ---u, € L£(u). Asn > 3, property [2p) implies
that there existg € {1,2, 3} such thats; — u;_; = v; —v;_1 = 1. From Property[(B), we obtain
vj—vj_1 = uj—u;_1+(—1)72z, thus2z = 0. If mis odd, then necessarity= 0. If m is even, then
alsor = 7 satisfie2z = 0. As the morphism¥l¢ WV = mapsa to a + 7, the language ofi is closed

under addition off to all letters of any factor ofi, i.e.,(vo+ %) (v1 + ) - - - (vp + %) € L(u). O

(D) Letu be closed under all elements bfm) and satisfy[(J0). Consider € L(u).

(a) If uis a¥,-palindrome, therb () is a¥4,-palindrome.
(b) If S(u) is a¥y,-palindrome with.S(u)| > 3 andm is odd, then. is a¥,-palindrome.

(c) If S(u) is a ¥y,-palindrome with|S(u)| > 3 andm is even, then. is a U-palindrome for
UV=y,andV¥V =W, mn.
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Proof: (Dg): ApplyingS to u = ¥, (u) and using[(p), one has(u) = S(¥,(u)) = ¥a,(S(u)),
i.e.,S(u)is aly,-palindrome.

®H) and [Dt): Using Propertyf [A), we obtaii\u) = Wa, (S(u)) = S(¥,(u)). As|S(u)| > 3
implies|u| > 4 and (2]) is satisfied, we may apply Propefty (C). For eddt implies ¥, (u) = u
as we want to show. For even, we have also the second possibility= W, (VoW = (u)). Itis easy
to check thatl, WoWm = W, m. O

To prove Theorem 31 we use the notion of compl@testurn word of an orbit, as introduced in Pelan-
tova and Starost 14). Let us recall that the driof a factorw € £(u) is defined by [(Z1).
A factorv € £(u) is acompleteG-return word of[w] in u if

o [v] > wl,
e a prefix and a suffix of belong to[w], and

e v contains no other elements [af].

Theorem 33(Pelantova and Starosta (20140 u is an infinite word closed under all elementgafthen

1. uis G-rich if and only if for allw € £(u) every completé&-return word of[w] is a G-palindrome.

2. uis almostG-rich if and only if there exists and integéF such that for alkw € £(u) longer than
N every completé&:-return word of[w] is a G-palindrome.

Using the previous theorem, we can easily prove the prapasithich directly implies the validity of
the first part of Theore@l because the generalized ThueséMioords satisfy its assumption.

Proposition 34. Let A = Z,, and letu € A" be closed under all elements bf{m). If £(u) satisfies
[®3) andu is I, (m)-rich, then the wordS(u) is almostZ, (m)-rich.

Proof: To ease the notation pd@ = I(m) andG’ = I5(m). If m is odd thenG = G’. Otherwise,
#G = 24#G".

As u satisfies[(20), we can apply Propefty (D) to each palindrstng in S(u) with length|.S(u)| > 3.
Property [D) implies that € £(u) is aG-palindrome if and only ifS (u) is aG’-palindrome in(S(u)).
Let S(u) be aG’-palindrome inS(u) andS(v) be a complet&’-return word of[S ()] in S(u). Thenv
is a completeG-return word inu of [u]. The wordu is G-rich and due to Theorefn[33, the factois a
G-palindrome. According to Propertf](D), the complétereturn wordS(v) is aG’-palindrome. Thus
S(u) is almostG’-rich. O

In the remaining part of this section we focus@firichness ofS(t, ,,, ) in the case whem or b is odd.
Lemma 35. LetG’ = I} (m) andv = S(tp.,). If for n = 1 andn = 2 the equality

Acm)+#G = Y (PEm)+PEn+ 1)) (1)

’
W is an antimorphism

holds, therw = S(t;,,,,) is G'-rich.
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Proof: We combine the results pf Pelantova and Stafrqsta [2014).

It is easy to see thak s, (a) # Yo, (a) foranya € Z,, and any pair of distinct antimorphisnis,,, and
U,, from G'. This property guarantees that the numbés G’-distinguishing in the sense of Definition
7 of[Pelantova and Stardsfa (2P14). In the proof of Projpog&4 we verify that any complet&’-return
word of [w] in v is a G’-palindrome for eacli?’-palindromew € L£(v) of length at leasB. As1 is
G'-distinguishing, Lemma 28 df Pelantova and Stafdsta (p8ays that this fact implies equality [21)
for all n > 3. According to Proposition 42 ¢f Pelantova and Statdsta42€he wordy is G’-rich if the
equality in [2]) holds for each € N, n > 1. O

In the casen or b odd andn = 1 andn = 2, we will confirm the equality@l) in the next lemma. To
ease the notation we put

F(n) = Y Pln)

veg’
W is an antimorphism
andp : Z,, — Z,, denotes the permutation
plk)=k+b—1=1I_1(k).

We will use the following statements from Starpdta (20128t ¢ denote the order of, i. e., the least
positive integer such thay(b — 1) = 0 (mod m). The factors of lengtR of t;, ,,, are

Lo(tym)={p*(r—1)r:r€Z,,0<k<q—1}
and of lengtiB
L3(tym) = {p*(r—1)r(r+1): 7 € 2,0 <k < q—130{(r—1)rp " (r4+1): 7 € Z,n, 0 < k < g—1}.
It is easy to deduce the set of all factors of lengsth

L4(ty,m) ={p*r = r(r+D(r+2):r €%, 0<k<qg—1}
U{(r=2)(r=Drp " (r+1): 1 € Zn,0< k< q—1}
U{(r=Drp *r+ 1) *r+1)+1):r€Z,,0<k<q—1}.

Lemma 36. Letv = S(t;,.,). The numbers of factors efof lengthn satisfy the following:

n m odd m evenp odd | m evenp even
m
1 m 5 m
gm 3gm
2 qm 5 T
_ 3gm 3gm
3 | 3gm —2m 5 m 5 m

Proof: n =1
It follows from the form of Lo (t ) that L1 (v) = {p*(r — 1) +7 : 7 € Z,,,0 < k < ¢ — 1}. We have
PPr—D)+r=r—1+kb-1)+r=2r—1+k(b-1)

If m is odd, then we have directly thaf (v) = Z,, (for k = 0).
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If m is even and is odd, ther2r — 1 + k(b — 1) is odd for every- andk, and thusC, (v) = {2i + 1 :
0<i<F}

If m is even and is even, then fok = 0 the numberRr — 1 is odd, and fork = 1 the number
2r — 1+ (b—1) is even, and we havé, (v) = Z,,.

n=2
The structure of23(ts,,,,) implies that the factors of of length2 are of the following forms:

1. (pFr—1)+r)2r+1)=2r -1+ k(b —1))(2r+1)forr € Z,, and0 < k < ¢, and
2. (2 = 1)(p* (" + 1) +¢) = (2 —1)(2 + 1+ k' (b—1)) for+’ € Z,, and0 < k' < q.

First, let us see the number of factors of t)ﬂ)e 1. Fig Z,,. Suppos€r + 1 = 27 + 1 for somer.
This equation has solution form odd an® solutions form even. Itis easy to see thatif is odd, there
aregm distinct factors of typﬂl and i, is even their number i, The counts for the second type are
exactly the same.

Let us now look how the two types of factors overlap. Fiandk and suppose

2r—1+k(b-1)=2r" -1,
2r+1=2r"+1+k(b-1).

It follows that2r’ = 2r+k(b— 1) which may not have a solution onlysif is even and is even, otherwise
it has a solution and the two types overlap completelyn lis even and is even, the two types overlap
only if k is even. Thus, they overlap #* cases.

It fZI[)vi)s from L4(ty,,) that there are the following types of factors of length:
1. (pF(r—1)+r)2r+1)(2r+3)forr € Z,,,0< k < g;
2. (2 =3)(2r = 1)(' + p K (' + 1)) for’ € Z,,, 0 < K < g;
3.2 =)+ D)) (" )+ p (" 1)+ 1)) for ' € 2, 0 < K < q.

Analogously to the previous case= 2, it can be shown that there aje: distinct factors of each type
if m is odd, andZ* distinct factors of each type ifi is even.

When investigating the common factors of each type, one haw shat each pair has common
factors ifm is odd, and: common factors otherwise. Overall, we find thafs(v) = 3gm — 2m if m
is odd and#Ls(v) = 22 — m if m is even. O

Lemma 37. LetG’ = I}(m) andv = S(t,,,,). The values of'(n) for n € {1,2, 3} are as follows:

n | modd | mevenpodd | m evenpeven
1 m % m
qm qm
2| gm i T
qm qm
3 qm 5 5
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Proof: n = 1:
Itis not hard to show that every factor of lendtlis a U-palindrome for a uniqu& € G'.

n=2:
Suppose that the first type of factor of lengtirom the proof of Lemm@G is @ ,-palindrome. We have

2r =14+ k(b—1)=Y2r+1)=4¢—-2r—1,

which leads to = 4r — 2 + k(b — 1), i.e., every factor of length is a ¥-palindrome for som& € G’
except for the case of, even and even where one may find suélonly if & is even. As one can see in
the proof of LemmaEG, the case bkven is when the two types of factors of lengtbverlap, thus the
total number of’-palindromes is'Z* in this case.

n=3:
We will refer to the3 types of factors of lengtB as given in the proof of Lemn@G above. The first
two types can be &-palindrome for som& € I>(m) if and only if ¥ = 0 or ¥’ = 0. This case is also
included in the third type fok” = 0, so we need just to check this type.

Suppose that a factor of the third type i¥gpalindrome:

27‘” _ 1 _ \yé(p_k”(/r// + 1) + p_k//(’f'/l + 1) + 1)) _ é _ (2T/I + 3 _ 2kl/(b _ 1))7
'f'N + p—k” (T‘N + 1) — 2/{]/ + 1 _ k//(b _ 1) _ \Ifg(T” + pfk//(/r// + 1)) _ E _ (27‘” + 1 _ k”(b _ 1))

Both equalities yield = 4" 4+ 2 — 2k” (b — 1). Thus, every factor of typgis a U-palindrome for some
U € Ih(m). According to the proof of Lemmfa 36, there ape such factors ifn is odd, andZ* such
factors otherwise. O

Proof of the second part of Theoren[ 3L:Results of Lemmaf 36 ar{d]37 can be summarized into the
following table:

m odd m even,b odd | m even,b even

ACy(1) (g—1)m (¢—1)% ?’qu -m

F)+F?2) | (g+1m gtl)m 4 m

ACy(2) 2gm — 2m gm —m ?"ITm -m
F(2)+ F(3) 2qm qm 3<sz
#G' 2m m m

Therefore the assumption of Lem@ 35 is satisfied in the cémwe or b is odd. Consequently,
S(tp,m) is G’'-rich. O

Corollary 38. Letb € N,b > 1 and S be the operation defined l@)for the alphabefZ,. We have

e S(t2p+1.4) is an infinite word over the binary alphabét, 3} and it is H-rich (here H stands for
the group generated by the both involutory antimorphisnes tvwe binary alphabef1,3}).

e S2(tgp41.4) is an infinite word over the binary alphabét, 2} and it is R-rich (R stands for the
reversal mapping over the binary alphalét 2}).
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° Sk(t2b+174) is an infinite word over the binary alphab¢6, 2} and it is almostR-rich for any
ke Nk >2.

Proof: The fact that the alphabet 61tz 1.4) is {1, 3} is shown in the proof of Lemm{aB6, whefe (v)
is described for any generalized Thue—Morse werdAccording to the second part of Theor@ 31, the
word S (tay11.4) is I4(4)-rich. The groupl}(4) defined by [(19) is isomorphic tH.

Itis easy to see that the operatiSrassigns to any word € {1, 3} the word over the alphabéo, 2}.
The second part of the corollary follows from Theorerh 24 tttied one from Theorerp 27. O

6 Comments and open questions

For infinite words over the binary alphabigt, 1}, we illustrated that the operatighputs into a broader
context the classical richness (here usually referred tR-aighness) andd-richness. The main open
question is which other operation acting on infinite wordisdyes analogously. Let us mention here some
open questions connected with

e The operationS on {0,1} applied to an almosR-rich word gives an almosR-rich word, see
Theoren@. In particular, any iteration Sfapplied to a Sturmian word gives an almost rich
word, cf. Corollar. Is thék-defect ofS* (u) zero as suggested by our computer experiments?

e The operatiors on {0, 1} applied to anf-rich word gives ank-rich word. In particularS(tp 2)
is rich for any generalized Thue—Morse watrgl,. Our computational experiments suggest that
Sk(tbﬂg) is R-rich for anyk € N, k > 1, see Examplﬂg. Is it true?

e On the other hand, any preimage Byof each Sturmian wordh is H-rich and R-rich simulta-
neously, in fact it is a complementary-symmetric Rote watdir computer experiments suggest
that even the second preimage?(u) is simultaneously- and R-rich, whereasS—3(u) is only
H-rich, but notR-rich, see Examplf 30. Is it true?

We have introduced the operatighover the alphabet.,, with m > 3 as well. But our results on
multiliteral alphabet are restricted to special groupswandis.

o We have considere@i-richness forG = I»(m) only. Propositior] 34 connecfs (im)-richness of
u andj(m)-richness ofS(u) for wordsu satisfying the assumptioﬂZO). Is the proposition valid
without the assumption?

e It would be interesting to study behaviour of ternary epistian words with respect to operatiéh
onZs. For example, which group of symmetriéshas the preimage of the Tribonacci word by S?
Is the preimagé& -rich? Are images of the Tribonacci word Bystill R-rich?

° Corollar illustrates that the operatiSrover the alphabét, can produce binary almogt-rich
words as well. What is th&-defect of the word$* (to;41.4)?

The last comment we want to state here concerns the palindrdosure operator. It is used for
construction of standard episturmian words. The constmds governed by a directive sequence of
lettersA. Any episturmian wordx is closed under reversal andis rich in the classical sense. In de
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Luca and De Luc6), the authors introduced the condegereeralized pseudopalindromic closure
operator, where multiple involutory antimorphisms aredusék means that the construction is governed
by two sequences: a directive sequence of letheend a directive sequence of antimorphiggnd_et us
denote the resulting infinite word hy(A, ©).

In generalu(A, ©) is closed under the group generated by the involutory antimorphisms occurring
infinitely many times in the directive sequen®eg but the wordu(A, ©) need not to b&7-rich. Never-
theless, several examples@irich words constructed by generalized pseudopalindrofosure operator
are already known. De Luca and de Luca showed that the ThueseMdrdt = t- » can be constructed
in this way. In|[Jajcayova etl. (2J14) the generalized Hue@rse wordg,, ,,, with the same property are
characterized. The concept of generalized pseudopatimdi@osure on binary alphabet is systematically
studied by Blondin Massé, Paquin, Tremblay and Vuillon loriglin Massé et al] (2013). In particular,
they proved that any standard complementary-symmetrie ®Rotd can be constructed by using general-
ized pseudopalindromic closure operator. Neverthelbssjtiestion which pairf\, ©) produceH -rich
words is open and requires a deeper study.
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