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A narrow connection between infinite binary words rich in classical palindromes and infinite binary words rich simul-
taneously in palindromes and pseudopalindromes (the so-calledH-rich words) is demonstrated. The correspondence
between rich andH-rich words is based on the operationS acting over words over the alphabet{0, 1} and defined by
S(u0u1u2 . . .) = v1v2v3 . . ., wherevi = ui−1 + ui mod 2. The operationS enables us to construct a new class
of rich words and a new class ofH-rich words. Finally, the operationS is considered on the multiliteral alphabetZm

as well and applied to the generalized Thue–Morse words. As abyproduct, new binary rich andH-rich words are
obtained by application ofS on the generalized Thue–Morse words over the alphabetZ4.
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1 Introduction
In the present paper we concentrate on construction of infinite words which are filled with palindromes
or pseudopalindromes to the highest possible level, the so-called rich words. Before we explain the
expression “the highest possible level” we recall the basicnotions we work with. We understand by
an infinite word over a finite alphabetA a sequenceu = (un)n∈N = u0u1u2 . . ., whereun ∈ A for
eachn ∈ N. A factor of u is a finite sequencew = w0w1 · · ·wn−1 of letters fromA such thatw =
uiui+1 · · ·ui+n−1 for somei, n ∈ N. The set of all factors ofu is the languageof u, usually denoted
L(u). A finite wordw = w0w1 · · ·wn−1 is called palindrome ifw coincides with its reversalR(w) =
wn−1wn−2 · · ·w1w0.

Infinite words whose language contains infinitely many palindromes are being studied by many authors.
Apart from the impulses from outside mathematics (such as Hof et al. (1995) where these words are used
in a model of solid materials with finite local complexity) the main reason of the interest of mathematicians
is the variety of characterizations of rich words. To specify the expression “the highest possible level” one
can adopt two distinct points of view: local and global.

From the local point of view, one looks at a finite piece of the infinite word, i.e., at a factor ofu, and
counts the number of distinct palindromes occurring in thisfactor. A motivation for rich word definition
was an inequality due to Droubay and Pirillo, see Droubay andPirillo (1999), which states that a finite
word of lengthn contains at mostn+1 distinct palindromes (the empty word is counted as a palindrome).
An infinite word isrich, or full, if every its factor of lengthn containsn+ 1 distinct palindromes.
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From the global point of view, one counts the palindromes of lengthn in the set of all factors ofu, i.e.,
in the languageL(u). Let Cu(n) andPu(n) denote the number of factors of lengthn and the number of
palindromic factors of lengthn, respectively. As shown in Baláži et al. (2007), ifL(u) is closed under
reversal, then the number of palindromes inu is bounded from above by the relation

Cu(n+ 1)− Cu(n) + 2 ≥ Pu(n+ 1) + Pu(n) for everyn ∈ N. (1)

In Bucci et al. (2009), Bucci, De Luca, Glen and Zamboni show that for infinite words with language
closed under reversal the local and global points of view coincide. More precisely,u is rich if and only if
the inequality in (1) can be written as an equality for everyn ∈ N.

Classic examples of rich words on binary alphabets include Sturmian words, i.e., infinite words over
binary alphabet with the factor complexityCu(n) = n + 1 for eachn ∈ N. Sturmian words can be
generalized to multiliteral alphabets in many ways, see forexample Balková et al. (2010). Two of these
generalizations, namelyk-ary Arnoux–Rauzy words and words codingk-interval exchange transforma-
tion with symmetric interval permutation, are rich as well.Both mentioned classes have their language
closed under reversal.

Blondin Massé, Brlek, Garon and Labbé showed in Blondin Massé et al. (2011) that rich words include
complementary-symmetric Rote words. They can be defined as binary words with factor complexity
Cu(n) = 2n for every nonzero integern and with language closed under the exchange of letters, see Rote
(1993). This implies that the language of a complementary-symmetric Rote word is closed under two
mappings acting on the set{0, 1}∗ of all finite binary words: the first isR and the second isE defined by
E(w0 · · ·wn) = E(wn) · · ·E(w0) for letterswi andE(0) = 1 andE(1) = 0. Thus, the language of a
complementary-symmetric Rote word is closed under all elements of a groupH = {R,E,ER, Id}. The
same property has the language of the famous Thue–Morse wordt, nevertheless, it is well-known thatt
is not rich.

For binary words having language closed under all elements of H , we show in Pelantová and Starosta
(2013) that

Cu(n+1)− Cu(n) + 4 ≥ Pu(n+1) + Pu(n) + PE
u
(n+1) + PE

u
(n) for everyn ≥ 1, (2)

wherePE
u

is the function countingE-palindromes – words fixed byE – in the wordu. Analogously to
the case of equality in (1), we say that an infinite word with language closed under all elements ofH is
H-rich if in (2) the equality holds for alln ≥ 1. We also demonstrated that the Thue–Morse wordt is
H-rich. In Starosta (2012) the second author proved that the binary generalizationtb,2 of the Thue–Morse
word isH-rich for all b ≥ 2 (the definition oftb,2 is recalled in Preliminaries). In fact, the wordstb,2 are
the onlyH-rich words that have been found up to now.

One of the main aims of the present article is to describe a procedure which produces newH-rich
words. We have found an inspiration in a connection between complementary-symmetric Rote words
and Sturmian words due to Rote in Rote (1993). Given an infinite wordu = u0u1 . . . ∈ {0, 1}N, we
setS(u) = v1v2 . . . ∈ {0, 1}N with vi = (ui−1 + ui) mod 2 for all positive integeri. The operatorS
defines the mentioned relation: a wordu is a complementary-symmetric Rote word if and only ifS(u) is
a Sturmian word.

In Section 4, we investigate binary words which are simultaneouslyH-rich and also rich in the classical
sense. In particular, we prove that every complementary-symmetric Rote word isH-rich, see Corollary
14. The main result concerningH-richness is presented in Theorem 24. On the one hand the theorem
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says that the operatorS applied to anH-rich word produces a rich word. Using the examples ofH-rich
words mentioned earlier, we get a new class of rich words, namely the wordsS(tb,2) for all b ≥ 2. On the
other hand, the theorem transforms the task to discover newH-rich words to the task to discover a new
class of rich words with special structures of palindromes.One such class is described in Starosta (2016).
Section 5 is devoted to the notion ofG-richness on a multiliteral alphabet. In particular, the operationS
is defined over the alphabetZm. Theorem 31 illustrates that even on a multiliteral alphabet the operation
S connectsG-richness andG′-richness for, in general, distinct groupsG andG′. In this sense Theorem
31 is a weaker version of Theorem 24.

2 Preliminaries
The setA∗ is the set of all finite words over thealphabetA which is a finite set ofletters. The lengthof
the wordw = w0w1 · · ·wn−1 ∈ A∗ with wi ∈ A for all i is denoted|w| and equalsn. Theempty word–
the unique word of length0 – is denotedε. The setA∗ together with concatenation forms a free monoid
with the neutral elementε. A word v ∈ A∗ is a factor of w ∈ A∗ if w = uvz for some wordu, z ∈ A∗.
If, moreover,u = ε, then we say thatv is aprefixof w, if z = ε, the wordv is asuffixof w. If w has the
formw = vz, thenz is denotedz = v−1w and the wordv−1wv is aconjugateof the wordw.

The infinite wordoverA is a sequenceu = (un)n∈N = u0u1u2 . . .. The symbolAN denotes the set
of all infinite words overA. A finite wordw ∈ A∗ of lengthn = |w| is a factor of u if there exists an
indexi such thatw = uiui+1 · · ·ui+n−1; the indexi is anoccurrenceof the factorw. The symbolLn(u)
stands for the set of all factors of lengthn occurring inu. The set of all factors ofu is thelanguageof u
and is denoted byL(u).

An infinite wordu is recurrent if any factor ofu has at least two occurrences inu. Equivalently, a
word is recurrent if any factor has infinitely many occurrences. If moreover for any factorw the gaps
between consecutive occurrences ofw are bounded, then the wordu is uniformly recurrent. Let w and
vw be factors ofL(u) such thatvw has a prefixw andw occurs invw exactly twice. The wordv is a
return wordof w andvw is acomplete return wordof w. One can say equivalently: a recurrent wordu is
uniformly recurrent if any factorw ∈ L(u) has finite number of return words ofw.

The factor complexityof u is the mappingCu : N → N, defined byCu(n) = #Ln(u). Givena ∈ A
andw ∈ A∗, a factorwa ∈ L(u) is aright extensionof the factorw. Any factor ofu has at least one right
extension, the set of all right extensions ofw is denotedRext(w). If w has at least two right extensions
we call it right special. Analogously one can defineleft extensionand left specialandLext(w). In a
recurrent wordu any factor has at least one left extension. A factorw which is left and right special is
bispecial. Special factors can be used to determine the factor complexity, in particular

∆Cu(n) = Cu(n+ 1)− Cu(n) =
∑

w∈Ln(u)

(

#Rext(w) − 1
)

.

If A is a binary alphabet, we get

∆Cu(n) = #{w ∈ Ln(u) : w is right special}. (3)

A mappingµ : A∗ → B∗ is amorphismif µ(wv) = µ(w)µ(v) for all w, v ∈ A∗. It is anantimorphism
if µ(wv) = µ(v)µ(w) for all w, v ∈ A∗. An infinite wordu is closed under the mappingµ if µ(w) ∈
L(u) for any factorw ∈ L(u). Domain of a morphismϕ : A∗ → A∗ can be naturally extended toAN
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by the prescriptionϕ(u) = ϕ(u0u1u2 . . .) = ϕ(u0)ϕ(u1)ϕ(u2) . . . . An infinite wordu ∈ AN is called
fixed pointof a morphismϕ if ϕ(u) = u.

An antimorphismΨ is involutoryif Ψ2 = Id. The most frequent involutory antimorphism is the reversal
mappingR. If the wordu is closed under an involutory antimorphism, thenu is necessarily recurrent.

If p = Ψ(p), the wordp is aΨ-palindromeor pseudopalindrome, if specification of the mappingΨ
is not needed. In the caseΨ = R, we say only palindrome instead ofR-palindrome. The set of allΨ-
palindromes occurring as factors of a finite wordw is denotedPalΨ(w). TheΨ-palindromic complexity
of an infinite wordu is the mappingPΨ

u
: N → N, defined byPΨ

u
(n) = #{p ∈ Ln(u) : p = Ψ(p)}.

A Ψ-palindromew is centered atx ∈ A ∪ {ε} if w = vxΨ(v) for some wordv. If a Ψ-palindrome is
centered atε, then it is of even length.

3 G-defect and G-richness
First, we recall the definition of palindromic defect as it was introduced by Brlek, Hamel, Nivat and
Reutenauer in Brlek et al. (2004). This classical definitionis based on the inequality

#PalR(w) ≤ |w|+ 1 for all w ∈ A∗, (4)

wherePalR(w) is the set of allR-palindromic factors ofw including the empty word.
TheR-defectof a finite wordw is

DR(w) = |w|+ 1−#PalR(w),

andR-defect of an infinite wordu is

DR(u) = sup{DR(w) : w ∈ L(u)}.

We prefer to use the nameR-defect instead of the originally used “defect” because we will introduce an
analogous notion for a general antimorphismΨ as well. An infinite wordu with DR(u) = 0 is called
R-full or R-rich. If DR(u) is finite, we say thatu is almostR-rich. In Brlek and Reutenauer (2011), the
inequality (1) is used to introduce the value

Tu(n) = ∆Cu(n) + 2− PR
u
(n+ 1)− PR

u
(n) for everyn ∈ N

and they conjectured that ifu is closed under reversal, then

2DR(u) =

∞
∑

n=1

Tu(n). (5)

Their conjecture was proven in Balková et al. (2013). In particular, it means thatDR(u) is finite if and
only if there existsN ∈ N such thatTu(n) = 0 for all n ≥ N , or in other words in (1) the equality holds
for all n ≥ N .

To proveR-richness we will use the characterization ofR-rich words given in Balková et al. (2009). It
exploits the notion of the bilateral orderb(w) of a factorw and the palindromic extension of a palindrome.
The bilateral order was introduced in Cassaigne (1997) as

b(w) = #{awb ∈ L(u) : a, b ∈ A} −#Rext(w) −#Lext(w) + 1. (6)
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The set of all palindromic extensions of a palindromew ∈ L(u) is defined by

Pext(w) = {awa : awa ∈ L(u), a ∈ A}.

Theorem 1(Balková et al. (2010)). Letu be an infinite word closed under reversal.

1. The wordu isR-rich if and only if any bispecial factorw of u satisfies:

b(w) =

{

#Pext(w)− 1 if w is a palindrome;

0 otherwise.
(7)

2. If the wordu is almostR-rich, then(7) is satisfied for all bispecial factorsw up to finitely many
exceptions.

The first attempt to study the number ofΨ-palindromes for an involutory antimorphismΨ was made
in Blondin Massé et al. (2008). Blondin Massé, Brlek, Garon and Labbé considered the binary alphabet
{0, 1} and the antimorphismE. They showed that

#PalE(w) ≤ |w| for all w ∈ A∗ \ {ε}. (8)

In Starosta (2011), this results is generalized for an arbitrary involutory antimorphismΨ and arbitrary
alphabet into the inequality

#PalΨ(w) ≤ |w|+ 1− γΨ(w) for all w ∈ A∗, (9)

whereγΨ(w) = #
{

{a,Ψ(a)} : a ∈ A, a occurs inw andΨ(a) 6= a
}

. Clearly, ifΨ = E we have (8) as
γE(w) = 1 for anyw 6= ε, if Ψ = R we have (4) asγR(w) = 0 for anyw. Based on the inequality (9),
theΨ-defectof w ∈ A∗ is defined by

DΨ(w) = |w|+ 1− γΨ(w) −#PalΨ(w). (10)

TheΨ-defect of an infinite wordu is defined analogously, i.e.,DΨ(u) = sup{DΨ(w) : w ∈ L(u)}.
Infinite words having finiteΨ-defect can be characterized by several properties, for more details about

R-defect see Balková et al. (2011) and aboutΨ-defect see Starosta (2011); Pelantová and Starosta (2012).
In Pelantová and Starosta (2012) we showed that there exists a very narrow connection between words
with finite defect and words with zero defect. We proved that if u is closed under an involutory antimor-
phismΨ andDΨ(u) is finite, thenu is a morphic image of a wordv with DΦ(v) = 0 for some involutory
antimorphismΦ. If moreoveru is uniformly recurrent, thenΦ = R. In this sense, consideringΨ instead
of R does not bring a broader variability into the concept of richwords.

The situation changes when we consider more antimorphisms.In Pelantová and Starosta (2013) we
defined a generalization of the notion of defect. In what follows, the symbolG stands for a finite group
consisting of morphisms and antimorphisms overA∗ and containing at least one antimorphism. Theorbit
of w ∈ A∗ is the set

[w] = {µ(w) : µ ∈ G}. (11)
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We say thatu is closed underG if [w] ⊂ L(u) for anyw ∈ L(u). Word p ∈ A∗ is aG-palindromeif
p = Ψ(p) for some antimorphismΨ ∈ G. The generalization of the set of all palindromic factors ofa
word is a set consisting of palindromic orbits, namely the set

PalG(w) =
{

[p] : p occurs inw andp is aG-palindrome
}

.

Note that ifG = {Id,Ψ} whereΨ is an involutory antimorphism, thenPalΨ(w) is in one-to-one corre-
spondence with the setPalG(w) (the only difference is that the latter is a set of orbits instead of factors).
Let us stress that inPalG(w) we count how many different orbits have aG-palindromic representative
occurring inw.

Definition 2. Let w be a finite word. TheG-defectof w is defined as

DG(w) = |w| + 1−#PalG(w) − γG(w),

where

γG(w) = # {[a] : a ∈ A, a occurs inw, anda 6= Ψ(a) for every antimorphismΨ ∈ G} .

A finite word isG-rich if its G-defect is0. An infinite word isG-rich if all its factors areG-rich. In
Pelantová and Starosta (2013), a distinct and equivalent definition ofG-richness is used: it is based on a
specific structure of graphs representing the factors of same length of the word.

Example 3. We illustrate the previous notions on the Thue–Morse wordt, the fixed point of the morphism
0 7→ 01 and1 7→ 10 starting with0, i.e.,t = 011010011001011010 · · · . The wordt is closed underR
andE. Let H = {Id, R,E,ER}. For the groupH the valueγH(w) = 0 for anyw ∈ A∗. Consider
w = 011010011001, the prefix oft of length12. We have

PalR(w) = {ε, 0, 1, 11, 00, 101, 010, 0110, 1001, 001100, 10011001},

PalE(w) = {ε, 01, 10, 0011, 1100, 1010, 110100, 001100, 01101001},

PalH(w) = {[ε], [0], [00], [01], [010], [0110], [0011], [1010], [110100],

[100110], [001100], [10011001], [01101001]}.

The corresponding defects ofw are

DR(w) = |w|+ 1−#PalR(w) = 2,

DE(w) = |w| −#PalE(w) = 3,

DH(w) = |w|+ 1−#PalH(w) = 0.

In fact, the Thue–Morse word isH-rich, whereas itsR-defect andE-defect are both infinite, see Example
8 later.

ForG-richness, theorems analogous to the theorems for the classical richness can be stated, c.f. Pelan-
tová and Starosta (2014). The list of knownG-rich words withG having at least two antimorphisms is
modest. It contains the generalized Thue–Morse wordstb,m. The wordtb,m is defined on the alphabet
{0, . . . ,m− 1} for all b ≥ 2 andm ≥ 2 as

tb,m = (sb(n) mod m)
+∞

n=0 ,
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wheresb(n) denotes the sum of digits in the base-b representation of the integern. See for instance
Allouche and Shallit (2000); Cusick and Ciungu (2011) wherethis class of words is studied. The language
of tb,m is closed under a group isomorphic to the dihedral group of order2m, here denotedI2(m). In
Section 5, we describe the group in details. In Starosta (2012), the second author proved thattb,m is
I2(m)-rich for any parametersb ≥ 2 andm ≥ 2.

In Corollary 14 we add to the list ofH-rich words also complementary-symmetric Rote words. As
already mentioned in Introduction, an infinite binary wordu is acomplementary-symmetric Rote wordif
its factor complexity satisfiesCu(n) = 2n for all n ≥ 1 and its language is closed under the exchange of
the two lettersE.

In this article, we focus on groupsG acting onA∗ for which the implication

Ψ1(a) = Ψ2(a) =⇒ Ψ1 = Ψ2

is true for any lettera ∈ A and any pair of antimorphismsΨ1,Ψ2 ∈ G. In Pelantová and Starosta
(2013), for such a group, the number1 is calledG-distinguishing, since the image of a single letter by an
antimorphism fromG allows to identify the antimorphism. For example, the number 1 isH-distinguishing
for the groupH used in Example 3. Also for the dihedral groupsI2(m) studied in Section 5, the number
1 is I2(m)-distinguishing.

If an infinite wordu is closed under a groupG and1 is G-distinguishing, then

∆Cu(n) + #G ≥
∑

Ψ∈G(2)

(

PΨ
u
(n) + PΨ

u
(n+ 1)

)

for all n ∈ N, n ≥ 1, (12)

whereG(2) denotes the set of all involutory antimorphisms fromG, see Pelantová and Starosta (2013).
Clearly, if G is generated by one antimorphism, sayΨ, then#G = 2 andG(2) = {Ψ}. The inequality
(1) is the special case of (12). Similarly, the inequality (2) can be obtained from (12) if we putG = H =
{Id, R,E,ER}. The followingG-analogue of the result obtained by Bucci, De Luca, Glen and Zamboni
in Bucci et al. (2009) for the classical richness is proved inPelantová and Starosta (2014).

Theorem 4. Let an infinite wordu be closed under a groupG such that the number1 isG-distinguishing.
TheG-defectDG(u) is zero if and only if in(12) the equality holds for eachn ∈ N, n ≥ 1.

In Pelantová and Starosta (2013) we also introduced the notion almostG-rich word. A wordu closed
under a groupG is almostG-rich if there existsN ∈ N such that the equality in (12) takes place for all
integersn ≥ N . An infinite wordu is almostG-rich if and only if itsG-defect

DG(u) = sup{DG(w) : w ∈ L(u)}

is finite.

Remark5. In fact, in Pelantová and Starosta (2014) the last statement is shown only for uniformly recur-
rent words. However, one can use the same argument we appliedin proof of Theorem 2 in Balková et al.
(2013) and show thatDG(u) is finite if and only if in (12) the equality takes place from someN on.
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4 Binary words invariant under two involutory antimorphisms

4.1 G-richness in binary alphabet

In this section we supposeA = {0, 1}. On binary alphabet we have only two antimorphismsR andE.
Therefore, only the groups

{Id, R}, {Id, E}, and H = {Id, R,E,ER},

can be considered when inspecting the defectDG. Let us start with examples ofG-rich and almostG-rich
words for these three groups.

Example 6. (G = {Id, R})
The classical richness has been studied very intensively and thus there are known many examples of binary
R-rich words including Sturmian words, see Droubay et al. (2001), Rote Words, see Blondin Massé et al.
(2011), the period doubling word, see Balková (2008), etc.Plenty examples of binary almostR-rich
words can be constructed by application of special standardP -morphisms to any rich word, see Glen
et al. (2009) for the definition of standardP -morphism and a proof.

Example 7. (G = {Id, E})
It can be easily seen, or shown using the results of Blondin Massé et al. (2008), that there exist only two
E-rich infinite words, namely the periodic wordu = (01)ω and its shift(10)ω. The two mentioned words
are alsoR-rich andH-rich as the equalities hold in (1) and (2) for alln ∈ N, n ≥ 1.

Examples of infinite words with finiteE-defect areE-standard words with seed(see Bucci et al. (2008)
for their definition and Pelantová and Starosta (2012) for aproof). This class also includes very simple
examples of words with finiteE-defect: periodic words having the formwω with w = E(w). One can
easily show that in this caseDE(wω) = DE(w2) (see Corollary 8 in Brlek et al. (2004) forR-defect, a
modification forE is straightforward).

Example 8. (G = H = {Id, R,E,ER})
The only so far known examples ofH-rich words are given in Starosta (2012): they are the generalized
Thue–Morse wordstb,2.

If b is odd, thentb,2 = (01)ω and hencetb,2 is alsoR-rich andE-rich.
If b is even, the word is aperiodic andDR(tb,2) = DE(tb,2) = +∞. To prove it for any evenb we use

the fact thattb,2 is a fixed point of the morphismϕ determined by

ϕ : 0 7→ (01)
b
2 and 1 7→ (10)

b
2 .

It is readily seen that the factorw = (01)
b
2 is strong, i.e., its bilateral orderb(w) is positive, specifically

b(w) = 1, as all four words0w1, 0w0, 1w1, and1w0 belong toL(u). Moreoverw is anE-palindrome.
The form of the morphism ensures that

• b(ϕ(v)) = 1 for any strong factorv 6= ε;

• if v is anR-palindrome, thenϕ(v) is anE-palindrome,

• if v is anE-palindrome, thenϕ(v) is anR-palindrome,
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These properties imply that for anyk ∈ N, the factorϕ2k
(

w
)

is anE-palindrome and hence it is not an
R-palindrome. Thus there exist infinitely many non-palindromic bispecial factors with non-zero bilateral
order. Using Theorem 1 one may see thatDR(tb,2) = +∞.

To prove thatDE(tb,2) = +∞ we may proceed analogously. The factorsϕ2k+1
(

w
)

areR-palindromes
but they are notE-palindromes for allk > 0. These factors are bispecial with the same bilateral order1.
A modification of Theorem 1 for the antimorphismE (which can be found in full generality in Pelantová
and Starosta (2014), Proposition 45) gives the result.

Now we look at the question whether a word can be simultaneously (almost)G-rich for two groups
on the binary alphabet. We will discuss the connection between finiteness of defectsDR, DE andDH .
In what follows we will consider words invariant underR andE simultaneously. First we study the
relationship betweenR- andE-palindromes.

Lemma 9. Letp, q ∈ A∗ beR-palindromes such that the wordpq is anE-palindrome, i.e.,

pq = E(q)E(p). (13)

There existc ∈ A∗ andi, j ∈ N such thatp = c (E(c)c)
i andq = (E(c)c)

j
E(c).

Proof: We will induce on the difference of|p| and|q|. First, suppose that|p| = |q|, then (13) implies that
q = E(p) and it suffices to setc = p andi = j = 0.

Suppose now that|p| 6= |q|. We can suppose without loss of generality that|p| < |q|. Setq = q1q2
with |p| = |q2|. It follows from (13) thatpq1q2 = E(q2)E(q1)E(p), thusp = E(q2) andq1 = E(q1).
Therefore,q2 is a palindrome. Sinceq is a palindrome, we haveR(q1q2) = R(q2)R(q1) = q1q2 =
q2R(q1). We get

q1q2 = q2R(q1). (14)

This equation on words, written in general asxz = zy, has a well-known solution: there exist words
u, v ∈ A∗ andk ∈ N such thatx = uv, y = vu andz = (uv)ku. If the wordz is palindrome, then the
form of z implies thatu andv are palindromes as well. To use the solution ofxz = zx to solve (14),
we setz = q2, x = q1 andy = R(q1) and we get the solutionsq1 = uv = E(uv) andq2 = (uv)ku.
Since|q1| = |q| − |p| = |u|+ |v|, it follows that the difference of|u| and|v| is less than|q1| = |q| − |p|.
We apply the induction hypothesis on the palindromesu andv satisfyingE(uv) = uv and we get that
u = d(E(d)d)m andv = (E(d)d)nE(d) for somed ∈ A∗. Substituting forp andq one can find that it
suffices to setc = E(d) and the claim is proved.

Corollary 10. If p and q are palindromes such thatpq = E(pq), then there existsc ∈ A∗ such that
pq = (cE(c))j for somej ∈ N.

Proposition 11. If an infinite recurrent wordu has finiteR-defect and finiteE-defect, thenu is periodic
with a period conjugate torE(r), wherer is anR-palindrome.

Proof: Letu be an infinite recurrent word with finiteR- andE-defects. Using Proposition 5 in Pelantová
and Starosta (2012), it follows thatu is closed underR andE and there exists an integerh such that

∆Cu(n) + 2 = PR(n+ 1) + PR(n) and

∆Cu(n) + 2 = PE(n+ 1) + PE(n)
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for all n ≥ h. Sinceu is also closed under all elements of the groupH , combining the two previous
equalities with (2) we get0 ≥ ∆Cu(n) for all n ≥ h, i.e., the wordu is eventually periodic. Since
u is recurrent and closed underR, the wordu is purely periodic, i.e.,u = wω . As u is closed under
E, the wordE(w) is a factor ofww. It implies thatw = w1w2 with E(w1) = w1 andE(w2) = w2.
As the length of anyE-palindrome is even, the concatenation of twoE-palindromes is conjugate to an
E-palindrome, in other words, the wordw is conjugate to anE-palindrome, sayv. Thusu = wω = v′vω

for somev′. As vω has language closed underR as well, by the same reasoning we havev = pq, where
R(p) = p andR(q) = q. Applying Corollary 10 we getv = pq = (cE(c))j for somej ∈ N. It is enough
to setr = c.

The following proposition treats another combination of twoG-defects.

Proposition 12. Letu ∈ {0, 1}N be a word having its language closed under the groupH and letΨ = R
or Ψ = E. If DΨ(u) is finite (resp. zero), thenDH(u) is finite (resp. zero) as well.

Before giving a proof of the last proposition, we recall Proposition 4.3 of Balková et al. (2011) which
will be needed.

Proposition 13. Letu be an infinite word with language closed under reversal. Suppose that there exists
an integerN such that for alln ≥ N the equalityPR

u
(n) +PR

u
(n+ 1) = Cu(n+ 1)− Cu(n) + 2 holds.

The complete return words of any palindromic factor of lengthn ≥ N are palindromes.

Proof of Proposition 12: Let us realize that closedness ofu underR andE ensures that the numbers
PE
u
(n) andPR

u
(n) are even. Indeed, ifw ∈ L(u) is anE-palindrome of lengthn, thenR(w) is an

E-palindrome as well, and analogously forR-palindromes.
First we considerΨ = R. Let us suppose that there exists a positive integerN such that

∆Cu(n) + 2 = PR
u
(n) + PR

u
(n+ 1) for all n ≥ N and

∆Cu(N) + 4 > PR
u
(N) + PR

u
(N + 1) + PE

u
(N) + PE

u
(N + 1).

We will show that this assumption leads to a contradiction.
In particular the assumption yields the inequality2 > PE

u
(N) + PE

u
(N + 1), which implies that there

is noE-palindrome of length at leastN . Letw ∈ L(u) be anR-palindrome of length at leastN . We say
that a factorf has Propertyπ if it satisfies all of the following:

1) w occurs inf exactly once,

2) E(w) occurs inf exactly once,

3) w is a suffix or a prefix off ,

4) E(w) is a suffix or a prefix off .

Letu be a factor with Propertyπ. Such factor must exist asL(u) is closed underE and thusE(w) ∈ L(u)
as well. Asw is anR-palindrome andu is closed under reversal, the factorR(u) has Propertyπ as well.
SinceER(w) = E(w), we can assume without loss of generality thatu is the factor starting inw and
ending inE(w). Let us look at the complete return word ofw, sayp, with prefix u. The fact that the
equality∆Cu(n) + 2 = PR

u
(n) + PR

u
(n+ 1) is valid for alln ≥ N implies according to Proposition 13
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that the complete return wordp of w is anR-palindrome. Thus the factorR(u) is a suffix ofp. Moreover
p contains only two factors (namelyu andR(u)) with Propertyπ.

We have shown for every factoru′ with Propertyπ that its closest right neighbor inu with Propertyπ
is its mirror imageR(u′). Therefore, there exist only two factors with Propertyπ, namelyu andR(u).

On the other hand, ifu has Propertyπ, thenE(u) has Propertyπ as well and thusE(u) ∈ {u,R(u)}.
As E(w) is a suffix ofu, the factorE(u) has a prefixw. It implies thatE(u) = u which contradicts the
fact that there is noE-palindrome longer than|w|.

We have shown that

∆Cu(n) + 2 = PR
u
(n) + PR

u
(n+ 1) for all n ≥ N

implies

∆Cu(n) + 4 = PR
u
(n) + PR

u
(n+ 1) + PE

u
(n) + PE

u
(n+ 1) for all n ≥ N.

If u is R-rich, thenN = 1 and thusu is alsoH-rich. If its defectD(u) is finite but nonzero, then
N > 1 andu has finiteH-defect.

In the caseΨ = E the proof is analogous.

Corollary 14. Every complementary-symmetric Rote word isH-rich.

Proof: In Blondin Massé et al. (2011), it is proved that Rote words areR-rich. Since a complementary-
symmetric Rote word is closed underH , the previous theorem proves the statement.

Remark15. Let us stress that the reverse implication in Proposition 12does not hold. As shown in
Example 8, the Thue–Morse word hasDH(t) = 0 , whereasDR(t) = DE(t) = ∞.

According to Proposition 11, the finiteness of both defectsDE(u) andDR(u) forces the wordu to be
periodic. The Rote words illustrate that there exist aperiodic words with finiteDH(u) andDR(u).

4.2 The mapping S on binary words
In this section we introduce and study the basic properties of the mappingS : A∗ \ {ε} → A∗ that is
given by

S(u0 · · ·un) = v1 · · · vn, where vi = (ui−1 + ui) mod 2 for i = 1, . . . , n.

In particular,S(a) = ε for everya ∈ A. The following list contains some elementary properties ofS.

I. SR = RS, and SE = SR.

II. S(w) = S(u) if and only if w = u orw = ER(u).

III. S(w) is anR-palindrome if and onlyw is anR-palindrome or anE-palindrome.

Proof: Points I and II give

S(w) = R
(

S(w)
)

⇐⇒ S(w) = S
(

R(w)
)

⇐⇒ w = R(w) orw = ER
(

R(w)
)

= E(w).
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The operationS is naturally extended toAN by setting

S(u0u1u2 . . .) = v1v2 . . . , where vi = (ui−1 + ui) mod 2 for i ≥ 1.

To describe the factor complexity ofS(u) we study special factors in

L
(

S(u)
)

= {S(v) : v ∈ L(u)}.

Lemma 16. Letu ∈ {0, 1}N. A factorS(v) is right special inL(S(u)) if and only if one of the following
occurs:

a) v or ER(v) is right special inL(u),

b) {v, ER(v)} ⊂ L(u), and{va,ER(va)} 6⊂ L(u) for botha ∈ {0, 1}.

Proof: Let S(v) be right special inL(S(u)). ThenS(v0) andS(v1) belong toL(S(u)). It may happen
that either bothv0 andv1 belong toL(u), which means thatv is right special inL(u), or bothER(v0)
andER(v1) belong toL(u), which means thatER(v) is right special inL(u).

Otherwisev andER(v) are not right special inL(u), but necessarily both belong toL(u). Let va
andER(v)b be the unique right prolongations inL(u) of v andER(v) respectively. SinceS(va) and
S
(

ER(v)b
)

must be distinct right prolongations ofS(v) = S
(

ER(v)
)

, we havea 6= ER(b), i.e.,a = b.
SinceER(v) has a unique extension to the rightER(v)a, we getER(v)(1− a) = ER(va) /∈ L(u).

Lemma 17. Letu ∈ {0, 1}N. The wordu is uniformly recurrent if and only ifS(u) is uniformly recurrent.

Proof: (⇒): Let w be a factor ofS(u). Thenw = S(v) for somev ∈ L(u). The gaps between the
neighboring occurrences ofv in u are bounded by some constant. The gaps between the occurrences of
w in S(u) are bounded by the same constant.
(⇐): Let v be a factor ofu. Thenw = S(v) is a factor ofS(u) and the gaps between the occurrences

of w are bounded, say byK. If v is the only factor ofu such thatw = S(v), i.e.,v is the only preimage
of w byS in u, then the occurrences ofv in u are bounded byK as well. Let us suppose thatw has more
preimages inu. According to Property II, there are only two preimages ofw, namelyv andER(v). Let
f be a factor ofu such thatv is a prefix off andER(v) is a suffix off andv andER(v) occur inf only
once. ThenS(f) is a complete return word ofw = S(v) = S(ER(v)). AsS(u) is uniformly recurrent,
the gaps between the occurrences of the factorS(f) are bounded, say byC. Both possible preimages of
S(f) in u, namelyf andER(f), containv either as its prefix or its suffix. Thus the gaps between the
occurrences ofv in u are bounded byC as well.

Lemma 18. Letu ∈ {0, 1}N. If S(u) is closed underR, thenu is closed underR or underE.

Proof: Let v be a prefix ofu. The wordS(v) is a factor ofS(u). According to the assumption,RS(v) =
SR(v) belongs toL

(

S(u)
)

as well. Due to Property II, eitherR(v) or E
(

RR(v)
)

= E(v) belong to
L(u). Thus

a) either there exist infinitely many prefixesv ∈ L(u) such thatR(v) ∈ L(u);

b) or there exist infinitely many prefixesv ∈ L(u) such thatE(v) ∈ L(u).
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Let us suppose that a) happens. For anyw ∈ L(u) we may find a prefixv such thatR(v) ∈ L(u) and
w is a factor ofv. Thus,R(w) ∈ L(u) and we can conclude thatu is closed underR.

The case b) is analogous.

Example 19. The period doubling word is the fixed point of the primitive morphism

ϕPD : 0 7→ 11 and 1 7→ 10.

Thus
uPD = 10111010101110111011101010 . . . .

It is well-known that the period doubling word is the image ofthe Thue–Morse wordt by S.
The worduPD = S(t) is closed underR, the wordt is closed underR andE. It illustrates that in the

previous lemma the simultaneous closedness underR andE is not excluded.

The previous lemma guarantees thatu is closed at least under one of the antimorphismsE andR. We
now focus on a property ofS(u) that ensures thatu is closed under both of them.

Lemma 20. Letv = S(u) ∈ {0, 1}N. The languageL(u) contains infinitely manyE-palindromes and
R-palindromes if and only ifL(v) contains infinitely manyR-palindromes centered at the letter1 and
infinitely manyR-palindromes not centered at the letter1.

Proof: Let u be a finite non-empty word and letv = S(u). It suffices to realize the following:

1. u is anE-palindrome if and only ifv is anR-palindrome centered at the letter1;

2. u is anR-palindrome of even length if and only ifv is anR-palindrome centered at the letter0;

3. u is anR-palindrome of odd length if and only ifv is anR-palindrome of even length, i.e., centered
atε.

Corollary 21. Let v = S(u) ∈ {0, 1}N be uniformly recurrent. IfL(v) contains infinitely manyR-
palindromes centered at the letter1 and infinitely manyR-palindromes not centered at the letter1, then
u is closed under all elements ofH .

Proof: The previous lemma implies thatL(u) contains infinitely manyE-palindromes andR-palindromes.
Let w ∈ L(u). SinceL(u) containsR-palindromes of arbitrary length andu is uniformly recurrent by
Lemma 17, the factorw is a factor of anR-palindromic factor ofu, thusR(w) also occurs inu. Analo-
gously,E(w) is factor of anE-palindromic factor and thusE(w) ∈ L(u).

An example of application of the last corollary are Sturmianwords. It is known that they contain
infinitely manyR-palindromes centered at1 and0, which implies that their preimages byS, namely the
complementary-symmetric Rote words, have their language closed underH .

Another example is the period doubling word defined in Example 19. One can easily see can that
given anR-palindromew centered atx ∈ {0, 1}, the wordϕPD(w)1 is also anR-palindrome centered at
1 − x. Therefore, the period doubling word satisfies the assumptions of the corollary and it follows that
the language of one of its preimage byS, namely the Thue–Morse word, is closed underH .

The following definition is inspired by Balková et al. (2016). Given a finite wordv and a lettera, the
notation|w|a stands for the number of occurrences of the lettera in v.
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Definition 22. We say that an infinite wordv ∈ {0, 1}N haswell distributed occurrences modulo2
(denoted WELLDOC(2)) if for every factorw ∈ L(v) we have

{

(

|v|0, |v|1
)

mod 2: vw is a prefix ofv
}

= Z
2
2.

Proposition 23. Letv ∈ {0, 1}N have WELLDOC(2) and be closed under reversal. Ifu is a word such
thatv = S(u), thenu is closed under all elements ofH .

Proof: Denotev = v1v2 . . . andu = u0u1 . . .. SinceS(u) = v, it follows thatu0 + u1 = v1 mod 2,
u1 + u2 = v2 mod 2, . . . Summing firstk equations we get

uk = u0 +

k
∑

i=1

vi.

It follows that

uk+j = uk−1 +

k+j
∑

i=k

vi

for all k > 0 andj ∈ N. Suppose thats andℓ are two distinct occurrences of a factorf ∈ L(v) of lengthn.
We have

∑s+j

i=s vi =
∑ℓ+j

i=ℓ vi for all j ∈ {0, . . . , n− 1}. If us−1 = uℓ−1, then we haveus−1 · · ·us+n =
uℓ−1 · · ·uℓ+n. On the other hand ifus−1 6= uℓ−1, thenus−1 · · ·us+n = ER(uℓ−1 · · ·uℓ+n). Note that
us−1 = u0 +

∑s−1
i=1 vi andv1 · · · vs−1f is a prefix ofv, and analogously for the indexℓ. Sincev has

WELLDOC(2), we may choose the indicess andℓ such that

s−1
∑

i=1

vi = 0 and
ℓ−1
∑

i=1

vi = 1.

It implies that with every factorw ∈ L(u), the factorER(w) also occurs inu. As v = S(u) is closed
under reversal, Lemma 18 implies thatu is closed underR orE. This together with the closedness under
ER already implies thatu is closed under all elements ofH .

4.3 Richness of u versus richness of S(u)

This section is devoted to the study of images and preimages of almost rich words by the mappingS.

Theorem 24. Let u ∈ {0, 1}N be closed under all elements ofH = {Id, E,R,ER}. The wordu is
H-rich (resp. almostH-rich) if and only ifS(u) isR-rich (resp. almostR-rich).

Proof: Let v = S(u). Sinceu is closed underER, any factor ofL(v) has two preimages inL(u).
Moreover,v is right special inL(u) if and only ifER(v) is right special inL(u) as well. Thus by Lemma
16, any right special factor inL(v) of lengthn is image of two right special factors of lengthn + 1.
According to (3) we get

2∆Cv(n) = ∆Cu(n+ 1). (15)
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Analogously,v is anR- or E-palindrome inL(u) if and only if ER(v) is anR- or E-palindrome in
L(u). According to Property III we have

2PR
v
(n) = PR

u
(n+ 1) + PE

u
(n+ 1).

Thus the equality
∆Cv(n) + 2 = PR

v
(n+ 1) + PR

v
(n),

testifying thatv isR-rich, holds if and only if the equality

∆Cu(n+ 1) + 4 = PR
u
(n+ 1) + PE

u
(n+ 1) + PR

u
(n+ 2) + PE

u
(n+ 2),

testifying thatu isH-rich, is satisfied.

As already noted above, the wordtb,2 is H-rich. Thus, using the last theorem withu = tb,2 and (15)
together with the equality

Cw(n) = 1 +

n−1
∑

i=0

∆Cw(i)

valid for any infinite wordw, we obtain the following corollary:

Corollary 25. For every integerb greater than1 the wordv = S(tb,2) is R-rich. Its factor complexity
satisfies

Cv(n) =
1

2
(Ctb,2(n)− 1).

Using the factor complexity of the wordtb,2 described in Starosta (2012), one can see that the binary
R-rich wordS(tb,2) is not Sturmian.
Remark26. Since a complementary-symmetric Rote wordu is closed under all elements ofH andS(u)
is Sturmian, which isR-rich, Theorem 24 provides an alternative proof of Corollary 14 without exploiting
the result that every Rote wordu is R-rich.

Theorem 27. Letu ∈ {0, 1}N be a uniformly recurrent word. Ifu is almostR-rich, then the wordS(u)
is almostR-rich.

Proof: Sinceu is almost rich, its language contains infinitely many palindromes. This fact for uniformly
recurrent words implies thatu is closed under reversal. Ifu is closed underE as well, then according to
Proposition 12 the wordu is almostH-rich, and the claim follows from Theorem 24.

It is enough to consideru that is not closed underE. We will show that the set{w ∈ L(u) : ER(w) ∈
L(u)} is finite. Assume the opposite. Letv be a factor of lengthn. As u is uniformly recurrent there
exists a numberr(n) such that any factor ofu longer thanr(n) contains all factors of lengthn. Since
{w ∈ L(u) : ER(w) ∈ L(u)} is not finite, there existsw belonging to this set and being longer thanr(n).
And thus the factorv of lengthn occurs inw andER(v) occurs inER(w). Since bothw andER(w)
belong toL(u), the factorv andER(v) belongs toL(u) as well — a contradiction with assumption that
u is not closed underE.

Let N be the maximal length of an element of the finite set{w ∈ L(u) : ER(w) ∈ L(u)}. Any factor
of S(u) longer thanN has unique preimage inL(u). According to Lemma 16 for anyn > N there is
one-to-one correspondence betweenLn(S(u)) andLn+1(u). Thus,

∆Cu(n+ 1) = ∆CS(u)(n) for all n > N. (16)
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Moreover, there exists noE-palindrome of lengthn > N and thus we have one-to-one correspondence
between the set of allR-palindromes inL(S(u)) of lengthn and the set of allR-palindromes inL(u) of
lengthn+ 1. It gives

PR
u
(n+ 1) = PR

S(u)(n) for all n > N. (17)

Sinceu has language closed under reversal and is almost rich using (5) there exists a constantM such
that

∆Cu(n) + 2 = Pu(n) + Pu(n+ 1) for all n ≥ M.

This equality and equalities (16) and (17) imply

∆CS(u)(n) + 2 = PS(u)(n) + PS(u)(n+ 1) for all n > max{N,M}.

It follows that the wordS(u) is almostR-rich.

Corollary 28. If u is a Sturmian word, thenSk(u) is almostR-rich for all k > 0.

We add two more examples related to images (Example 29) and preimages (Example 30) of words
constructed by iterated operationS. However, we do not give any proofs of their properties and wejust
state them as hypotheses given by computer evidence.

Example 29. As stated in Corollary 25, the wordS(tb,2) isR-rich. Theorem 27 then implies thatSk(tb,2)
is almostR-rich for all k > 0. Our computer experiments suggest that in this case the wordSk(tb,2) is in
factR-rich.

As we have already mentioned, the list of knownH-rich words is very modest: complementary-
symmetric Rote words and generalized binary Thue–Morse wordstb,2. Theorem 24, Proposition 23 and
Corollary 21 give us a recipe for construction of an (almost)H-rich word: take a binary (almost)R-rich
word with property WELLDOC(2) or a binary (almost)R-rich word with suitable structure of palindromes
and find its preimage by the operationS. The complementary-symmetric Rote words were obtained by
this procedure applied to the Sturmian words. The Thue–Morse wordt = t2,2 can be obtained by this
procedure applied to the period doubling word.

Example 30. Let u be a Sturmian word. Letu(k) be an infinite word such thatSk(u(k)) = u for all
k ∈ N. The wordu(1) is a complementary-symmetric Rote word which is, as alreadymentioned,H-rich
andR-rich. According to our computer experiments, so is the wordu

(2). The wordu(3) is notR-rich,
but it is still H-rich. The wordu(k) for k > 3 is notH-rich norR-rich. However, the symmetries ofu(k)

are preserved:u(k) is closed under all elements ofH . This is witnessed by the following difference of its
factor complexity

∆C
u(k)(n) = 2n−1 for 0 < n ≤ k and ∆C

u(k)(n) = 2k for n > k

which is suggested by our experiments.
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5 The mapping S on multiliteral alphabets
In this section we study the mappingS acting on a larger alphabetZm = {0, . . . ,m− 1}. The mapping
S is defined for every wordw = w0 · · ·wn with wi ∈ Zm by

S(w0w1 · · ·wn) = v1 · · · vn, (18)

wherevi = (wi−1 + wi) mod m for everyi ∈ {1, . . . , n}.
The alphabetZm allows many finite groups generated by involutory antimorphisms. We restrict our

attention to groups isomorphic to groups of symmetries of a regular polyhedron. The reason is simple:
we have examples ofG-rich words only for such groups, namely the generalized Thue–Morse words. We
demonstrate that at least for these words the mappingS transforms aG-rich word to an almostG′-rich
word (cf. Theorems 24 and 27 for an analogue on the binary alphabet).

Let us describe the elements of the mentioned group explicitly. For all x ∈ Zm denote byΨx the
antimorphism given by

Ψx(k) = x− k for all k ∈ Zm

and byΠx the morphism given by

Πx(k) = x+ k for all k ∈ Zm.

The groupI2(m) is the union of these antimorphisms and morphisms:

I2(m) = {Ψx : x ∈ Zm} ∪ {Πx : x ∈ Zm}.

The definition of the generalized Thue–Morse words is recalled in Preliminaries. It is known that the word
tb,m is a fixed point of the morphismϕb,m : Z∗

m → Z
∗
m defined by

ϕb,m : a 7→ a(a+ 1)(a+ 2) · · · (a+ b− 1) for all a ∈ Zm.

Let us stress that all operations on letters in this section are taken modulom. As shown in Starosta (2012),
the wordtb,m is closed under all elements ofI2(m) and moreovertb,m is I2(m)-rich. We will focus on
images oftb,m by S with parametersb ≥ 3 andm ≥ 3. Let I ′2(m) denote the group generated by
antimorphisms{Ψ2y : y ∈ Zm}; it can be easily seen that

I ′2(m) = {Ψ2x : x ∈ Zm} ∪ {Π2x : x ∈ Zm}. (19)

If m is odd, thenI ′2(m) = I2(m), if m is even, thenI ′2(m) is isomorphic toI2(m2 ).

The aim of this section is to prove the following theorem.

Theorem 31. Letm, b ∈ Z such thatm ≥ 3 andb ≥ 3.

1. The wordS(tb,m) is almostI ′2(m)-rich.

2. If m or b is odd, the wordS(tb,m) is I ′2(m)-rich.

The first part of Theorem 31 is a direct consequence of Proposition 34, the second part follows from
Lemma 35 and the description of factors ofS(tb,m) up to the length 3 presented at the end of this section.
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Example 32. Let us consider the wordt4,4. It starts with 0 and it is a fixed point of the morphism

ϕ4,4 : 0 7→ 0123, 1 7→ 1230, 2 7→ 2301 and 3 7→ 3012.

Thus t4,4 = 01231230230130121230230130120123230130120123 . . .
and S(t4,4) = 1310313213103133313213103132131113103132131 . . .

Now we consider the wordt3,4. Its fixing morphism is

ϕ3,4 : 0 7→ 012, 1 7→ 123, 2 7→ 230 and 3 7→ 301.

Thus t3,4 = 01212323012323030123030101212323030123030101 . . .
and S(t3,4) = 13331113131113331313331113331113331313331113 . . . .

We start with a list of observations concerning properties of the mappingS. To deduce some of the
observations we exploit a peculiar property of generalizedThue–Morse words. The form of morphism
ϕb,m forces the language ofu = tb,m to have the following property

u0u1u2u3 ∈ L(u) ⇒ ui − ui−1 = 1 for at least two indicesi ∈ {1, 2, 3}. (20)

(A) SΨy = Ψ2yS for anyy ∈ Zm. If m is even, thenSΨy = SΨy+m
2

for anyy ∈ Zm.

(B) If S(u0 · · ·un) = S(v0 · · · vn) with ui, vj ∈ Zm, then there existsx ∈ Zm such that

v0 · · · vn = (u0 + x)(u1 − x) · · · (un + (−1)nx).

(C) Let u be closed under all elements ofI2(m) and satisfy (20). Considerw = S(v) for somev =
v0v1 · · · vn ∈ L(u) with n ≥ 3.

If m is odd, thenv is the only preimage ofw by S in u.

If m is even, thenw has exactly two preimages byS in u, namelyv0v1 · · · vn and(v0 + m
2 )(v1 +

m
2 ) · · · (vn + m

2 ).

Proof: Let S(u) = S(v) for a factoru = u0u1 · · ·un ∈ L(u). As n ≥ 3, property (20) implies
that there existsj ∈ {1, 2, 3} such thatuj − uj−1 = vj − vj−1 = 1. From Property (B), we obtain
vj−vj−1 = uj−uj−1+(−1)j2x, thus2x = 0. If m is odd, then necessarilyx = 0. If m is even, then
alsox = m

2 satisfies2x = 0. As the morphismΨ0Ψm
2

mapsa to a+ m
2 , the language ofu is closed

under addition ofm2 to all letters of any factor ofu, i.e.,(v0+ m
2 )(v1+

m
2 ) · · · (vn+

m
2 ) ∈ L(u).

(D) Letu be closed under all elements ofI2(m) and satisfy (20). Consideru ∈ L(u).

(a) If u is aΨy-palindrome, thenS(u) is aΨ2y-palindrome.

(b) If S(u) is aΨ2y-palindrome with|S(u)| ≥ 3 andm is odd, thenu is aΨy-palindrome.

(c) If S(u) is aΨ2y-palindrome with|S(u)| ≥ 3 andm is even, thenu is aΨ-palindrome for
Ψ = Ψy andΨ = Ψy+m

2
.
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Proof: (Da): ApplyingS to u = Ψy(u) and using (A), one hasS(u) = S(Ψy(u)) = Ψ2y(S(u)),
i.e.,S(u) is aΨ2y-palindrome.

(Db) and (Dc): Using Property (A), we obtainS(u) = Ψ2y(S(u)) = S(Ψy(u)). As |S(u)| ≥ 3
implies |u| ≥ 4 and (20) is satisfied, we may apply Property (C). For oddm, it impliesΨy(u) = u
as we want to show. For evenm, we have also the second possibilityu = Ψy(Ψ0Ψm

2
(u)). It is easy

to check thatΨyΨ0Ψm
2
= Ψy+m

2
.

To prove Theorem 31 we use the notion of completeG-return word of an orbit, as introduced in Pelan-
tová and Starosta (2014). Let us recall that the orbit[w] of a factorw ∈ L(u) is defined by (11).

A factorv ∈ L(u) is acompleteG-return word of[w] in u if

• |v| > |w|,

• a prefix and a suffix ofv belong to[w], and

• v contains no other elements of[w].

Theorem 33(Pelantová and Starosta (2014)). If u is an infinite word closed under all elements ofG, then

1. u isG-rich if and only if for allw ∈ L(u) every completeG-return word of[w] is aG-palindrome.

2. u is almostG-rich if and only if there exists and integerN such that for allw ∈ L(u) longer than
N every completeG-return word of[w] is aG-palindrome.

Using the previous theorem, we can easily prove the proposition which directly implies the validity of
the first part of Theorem 31 because the generalized Thue–Morse words satisfy its assumption.

Proposition 34. LetA = Zm and letu ∈ AN be closed under all elements ofI2(m). If L(u) satisfies
(20)andu is I2(m)-rich, then the wordS(u) is almostI ′2(m)-rich.

Proof: To ease the notation putG = I2(m) andG′ = I ′2(m). If m is odd thenG = G′. Otherwise,
#G = 2#G′.

Asu satisfies (20), we can apply Property (D) to each palindromeS(u) in S(u) with length|S(u)| ≥ 3.
Property (D) implies thatu ∈ L(u) is aG-palindrome if and only ifS(u) is aG′-palindrome inL(S(u)).
Let S(u) be aG′-palindrome inS(u) andS(v) be a completeG′-return word of[S(u)] in S(u). Thenv
is a completeG-return word inu of [u]. The wordu is G-rich and due to Theorem 33, the factorv is a
G-palindrome. According to Property (D), the completeG′-return wordS(v) is aG′-palindrome. Thus
S(u) is almostG′-rich.

In the remaining part of this section we focus onG′-richness ofS(tb,m) in the case whenm or b is odd.

Lemma 35. LetG′ = I ′2(m) andv = S(tb,m). If for n = 1 andn = 2 the equality

∆Cv(n) + #G′ =
∑

Ψ∈G′

Ψ is an antimorphism

(

PΨ
v
(n) + PΨ

v
(n+ 1)

)

(21)

holds, thenv = S(tb,m) isG′-rich.
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Proof: We combine the results of Pelantová and Starosta (2014).
It is easy to see thatΨ2x(a) 6= Ψ2y(a) for anya ∈ Zm and any pair of distinct antimorphismsΨ2x and

Ψ2y from G′. This property guarantees that the number1 is G′-distinguishing in the sense of Definition
7 of Pelantová and Starosta (2014). In the proof of Proposition 34 we verify that any completeG′-return
word of [w] in v is aG′-palindrome for eachG′-palindromew ∈ L(v) of length at least3. As 1 is
G′-distinguishing, Lemma 28 of Pelantová and Starosta (2014) says that this fact implies equality (21)
for all n ≥ 3. According to Proposition 42 of Pelantová and Starosta (2014) the wordv is G′-rich if the
equality in (21) holds for eachn ∈ N, n ≥ 1.

In the casem or b odd andn = 1 andn = 2, we will confirm the equality (21) in the next lemma. To
ease the notation we put

F (n) =
∑

Ψ∈G′

Ψ is an antimorphism

PΨ
v
(n)

andρ : Zm → Zm denotes the permutation

ρ(k) = k + b − 1 = Πb−1(k).

We will use the following statements from Starosta (2012). Let q denote the order ofρ, i. e., the least
positive integerq such thatq(b − 1) ≡ 0 (mod m). The factors of length2 of tb,m are

L2(tb,m) = {ρk(r − 1)r : r ∈ Zm, 0 ≤ k ≤ q − 1}

and of length3

L3(tb,m) = {ρk(r−1)r(r+1): r ∈ Zm, 0 ≤ k ≤ q−1}∪{(r−1)rρ−k(r+1): r ∈ Zm, 0 ≤ k ≤ q−1}.

It is easy to deduce the set of all factors of length4:

L4(tb,m) ={ρk(r − 1)r(r + 1)(r + 2): r ∈ Zm, 0 ≤ k ≤ q − 1}

∪ {(r − 2)(r − 1)rρ−k(r + 1): r ∈ Zm, 0 ≤ k ≤ q − 1}

∪ {(r − 1)rρ−k(r + 1)(ρ−k(r + 1) + 1): r ∈ Zm, 0 ≤ k ≤ q − 1}.

Lemma 36. Letv = S(tb,m). The numbers of factors ofv of lengthn satisfy the following:

n m odd m even,b odd m even,b even

1 m m
2 m

2 qm qm

2
3qm
4

3 3qm− 2m 3qm
2 −m 3qm

2 −m

Proof: n = 1
It follows from the form ofL2(tb,m) thatL1(v) = {ρk(r − 1) + r : r ∈ Zm, 0 ≤ k ≤ q − 1}. We have
ρk(r − 1) + r = r − 1 + k(b− 1) + r = 2r − 1 + k(b− 1)

If m is odd, then we have directly thatL1(v) = Zm (for k = 0).
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If m is even andb is odd, then2r − 1 + k(b− 1) is odd for everyr andk, and thusL1(v) = {2i+ 1 :
0 ≤ i < m

2 }.
If m is even andb is even, then fork = 0 the number2r − 1 is odd, and fork = 1 the number

2r − 1 + (b− 1) is even, and we haveL1(v) = Zm.

n = 2
The structure ofL3(tb,m) implies that the factors ofv of length2 are of the following forms:

1. (ρk(r − 1) + r)(2r + 1) = (2r − 1 + k(b− 1))(2r + 1) for r ∈ Zm and0 ≤ k < q, and

2. (2r′ − 1)(ρk
′

(r′ + 1) + r′) = (2r′ − 1)(2r′ + 1 + k′(b− 1)) for r′ ∈ Zm and0 ≤ k′ < q.

First, let us see the number of factors of type 1. Fixr ∈ Zm. Suppose2r + 1 = 2r̃ + 1 for somer̃.
This equation has1 solution form odd and2 solutions form even. It is easy to see that ifm is odd, there
areqm distinct factors of type 1 and ifm is even their number isqm2 . The counts for the second type are
exactly the same.

Let us now look how the two types of factors overlap. Fixr andk and suppose

2r − 1 + k(b− 1) = 2r′ − 1,

2r + 1 = 2r′ + 1 + k′(b − 1).

It follows that2r′ = 2r+k(b−1)which may not have a solution only ifm is even andb is even, otherwise
it has a solution and the two types overlap completely. Ifm is even andb is even, the two types overlap
only if k is even. Thus, they overlap inqm4 cases.

n = 3
It follows fromL4(tb,m) that there are the following3 types of factors of length3:

1. (ρk(r − 1) + r)(2r + 1)(2r + 3) for r ∈ Zm, 0 ≤ k < q;

2. (2r′ − 3)(2r′ − 1)(r′ + ρ−k′

(r′ + 1)) for r′ ∈ Zm, 0 ≤ k′ < q;

3. (2r′′ − 1)(r′′ + ρ−k′′

(r′′ + 1))(ρ−k′′

(r′′ + 1) + ρ−k′′

(r′′ + 1) + 1)) for r′′ ∈ Zm, 0 ≤ k′′ < q.

Analogously to the previous casen = 2, it can be shown that there areqm distinct factors of each type
if m is odd, andqm2 distinct factors of each type ifm is even.

When investigating the common factors of each type, one can show that each pair hasm common
factors ifm is odd, andm2 common factors otherwise. Overall, we find that#L3(v) = 3qm− 2m if m
is odd and#L3(v) =

3qm
2 −m if m is even.

Lemma 37. LetG′ = I ′2(m) andv = S(tb,m). The values ofF (n) for n ∈ {1, 2, 3} are as follows:

n m odd m even,b odd m even,b even

1 m m
2 m

2 qm qm

2
qm

4

3 qm qm

2
qm

2
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Proof: n = 1:
It is not hard to show that every factor of length1 is aΨ-palindrome for a uniqueΨ ∈ G′.

n = 2:
Suppose that the first type of factor of length2 from the proof of Lemma 36 is aΨℓ-palindrome. We have

2r − 1 + k(b− 1) = Ψℓ(2r + 1) = ℓ− 2r − 1,

which leads toℓ = 4r − 2 + k(b − 1), i.e., every factor of length2 is aΨ-palindrome for someΨ ∈ G′

except for the case ofm even andb even where one may find suchℓ only if k is even. As one can see in
the proof of Lemma 36, the case ofk even is when the two types of factors of length2 overlap, thus the
total number ofG′-palindromes isqm4 in this case.
n = 3:

We will refer to the3 types of factors of length3 as given in the proof of Lemma 36 above. The first
two types can be aΨ-palindrome for someΨ ∈ I2(m) if and only if k = 0 or k′ = 0. This case is also
included in the third type fork′′ = 0, so we need just to check this type.

Suppose that a factor of the third type is aΨℓ-palindrome:

2r′′ − 1 = Ψℓ(ρ
−k′′

(r′′ + 1) + ρ−k′′

(r′′ + 1) + 1)) = ℓ− (2r′′ + 3− 2k′′(b− 1)),

r′′ + ρ−k′′

(r′′ + 1) = 2r′′ + 1− k′′(b− 1) = Ψℓ(r
′′ + ρ−k′′

(r′′ + 1)) = ℓ− (2r′′ + 1− k′′(b− 1)).

Both equalities yieldℓ = 4r′′ + 2− 2k′′(b− 1). Thus, every factor of type3 is aΨ-palindrome for some
Ψ ∈ I2(m). According to the proof of Lemma 36, there areqm such factors ifm is odd, andqm2 such
factors otherwise.

Proof of the second part of Theorem 31:Results of Lemmas 36 and 37 can be summarized into the
following table:

m odd m even,b odd m even,b even

∆Cv(1) (q − 1)m (q − 1)m2
3qm
4 −m

F (1) + F (2) (q + 1)m (q+1)m
2

qm

4 +m

∆Cv(2) 2qm− 2m qm−m 3qm
4 −m

F (2) + F (3) 2qm qm 3qm
4

#G′ 2m m m

Therefore the assumption of Lemma 35 is satisfied in the case whenm or b is odd. Consequently,
S(tb,m) isG′-rich.

Corollary 38. Let b ∈ N, b ≥ 1 andS be the operation defined by(18) for the alphabetZ4. We have

• S(t2b+1,4) is an infinite word over the binary alphabet{1, 3} and it isH-rich (hereH stands for
the group generated by the both involutory antimorphisms over the binary alphabet{1,3}).

• S2(t2b+1,4) is an infinite word over the binary alphabet{0, 2} and it isR-rich (R stands for the
reversal mapping over the binary alphabet{0, 2}).
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• Sk(t2b+1,4) is an infinite word over the binary alphabet{0, 2} and it is almostR-rich for any
k ∈ N, k ≥ 2.

Proof: The fact that the alphabet ofS(t2b+1,4) is {1, 3} is shown in the proof of Lemma 36, whereL1(v)
is described for any generalized Thue–Morse wordv. According to the second part of Theorem 31, the
wordS(t2b+1,4) is I ′2(4)-rich. The groupI ′2(4) defined by (19) is isomorphic toH .

It is easy to see that the operationS assigns to any wordu ∈ {1, 3}N the word over the alphabet{0, 2}.
The second part of the corollary follows from Theorem 24, thethird one from Theorem 27.

6 Comments and open questions
For infinite words over the binary alphabet{0, 1}, we illustrated that the operationS puts into a broader
context the classical richness (here usually referred to asR-richness) andH-richness. The main open
question is which other operation acting on infinite words behaves analogously. Let us mention here some
open questions connected withS.

• The operationS on {0, 1} applied to an almostR-rich word gives an almostR-rich word, see
Theorem 27. In particular, any iteration ofS applied to a Sturmian wordu gives an almost rich
word, cf. Corollary 28. Is theR-defect ofSk(u) zero as suggested by our computer experiments?

• The operationS on {0, 1} applied to anH-rich word gives anR-rich word. In particular,S(tb,2)
is rich for any generalized Thue–Morse wordtb,2. Our computational experiments suggest that
Sk(tb,2) isR-rich for anyk ∈ N, k ≥ 1, see Example 29. Is it true?

• On the other hand, any preimage byS of each Sturmian wordu is H-rich andR-rich simulta-
neously, in fact it is a complementary-symmetric Rote word.Our computer experiments suggest
that even the second preimageS−2(u) is simultaneouslyH- andR-rich, whereasS−3(u) is only
H-rich, but notR-rich, see Example 30. Is it true?

We have introduced the operationS over the alphabetZm with m ≥ 3 as well. But our results on
multiliteral alphabet are restricted to special groups andwords.

• We have consideredG-richness forG = I2(m) only. Proposition 34 connectsI2(m)-richness of
u andI ′2(m)-richness ofS(u) for wordsu satisfying the assumption (20). Is the proposition valid
without the assumption?

• It would be interesting to study behaviour of ternary episturmian words with respect to operationS
onZ3. For example, which group of symmetriesG has the preimage of the Tribonacci word by S?
Is the preimageG-rich? Are images of the Tribonacci word byS still R-rich?

• Corollary 38 illustrates that the operationS over the alphabetZ4 can produce binary almostR-rich
words as well. What is theR-defect of the wordsSk(t2b+1,4)?

The last comment we want to state here concerns the palindromic closure operator. It is used for
construction of standard episturmian words. The construction is governed by a directive sequence of
letters∆. Any episturmian wordu is closed under reversal andu is rich in the classical sense. In de
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Luca and De Luca (2006), the authors introduced the concept of generalized pseudopalindromic closure
operator, where multiple involutory antimorphisms are used. It means that the construction is governed
by two sequences: a directive sequence of letters∆ and a directive sequence of antimorphismsΘ. Let us
denote the resulting infinite word byu(∆,Θ).

In general,u(∆,Θ) is closed under the groupG generated by the involutory antimorphisms occurring
infinitely many times in the directive sequenceΘ, but the wordu(∆,Θ) need not to beG-rich. Never-
theless, several examples ofG-rich words constructed by generalized pseudopalindromicclosure operator
are already known. De Luca and de Luca showed that the Thue–Morse wordt = t2,2 can be constructed
in this way. In Jajcayová et al. (2014) the generalized Thue–Morse wordstb,m with the same property are
characterized. The concept of generalized pseudopalindromic closure on binary alphabet is systematically
studied by Blondin Massé, Paquin, Tremblay and Vuillon in Blondin Massé et al. (2013). In particular,
they proved that any standard complementary-symmetric Rote word can be constructed by using general-
ized pseudopalindromic closure operator. Nevertheless, the question which pairs(∆,Θ) produceH-rich
words is open and requires a deeper study.
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03538S and the second author acknowledges financial supportfrom the Czech Science Foundation grant
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A. Blondin Massé, S. Brlek, S. Labbé, and L. Vuillon. Palindromic complexity of codings of rotations.
Theor. Comput. Sci., 412(46):6455–6463, 2011. ISSN 03043975. doi: 10.1016/j.tcs.2011.08.007.
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Š. Starosta. Morphic images of episturmian words having finite palindromic defect.Eur. J. Combin., 51:
359–371, 2016. doi: 10.1016/j.ejc.2015.07.001.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version 6.10), 2015.
http://www.sagemath.org.


