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We present a characteristic-free algorithm for computing minimal generating sets of invariant rings of permutation
groups. We circumvent the main weaknesses of the usual approaches (using classical Grobner basis inside the full
polynomial ring, or pure linear algebra inside the invariant ring) by relying on the theory of SAGBI-Gribner basis.
This theory takes, in this special case, a strongly combinatorial flavor, which makes it particularly effective.

Our algorithm does not require the computation of a Hironaka decomposition, nor even the computation of a system
of parameters, and could be parallelized. Our implementation, as part of the library PerMuVAR for MUPAD, is in
many cases much more efficient than the other existing software.
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1 Introduction

Invariant rings of permutation groups arise regularly in discrete mathematics. For example, the study of
an algebraic version of Ulam’s reconstruction conjecture proposed by Pouzet [Pou77, PT0O0] led us to
consider the invariant ring Iy over graphs [Thi00] on N nodes, and to try to construct generating sets of
In, as they form complete sets of invariants for weighted graphs.

There is a substantial body of literature on invariant theory which provides both general results [Sta79,
Smi95] and algorithms [Stu93]. In [GS84], combinatorial constructions of Hironaka decompositions of
invariant rings of certain permutation groups are described; SAGBI basis for invariant rings of permutation
groups are investigated in [G6b98]. There is also a strong trend of development of computational invariant
theory [Kem93, Kem98, DK97].

Nevertheless, there is a combinatorial explosion and even the computation of a minimal generating
system for I requires, so far, specially hand crafted code [Thi00, Kem0O]. Our impression is that the
usefulness of invariant theory in discrete mathematics strongly depends on the improvement of the exist-
ing computational tools, in particular for calculating minimal generating sets in the case of permutation
groups.
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In this article, we present a new characteristic-free algorithm for computing minimal generating sets
of invariant rings of permutation groups. For many groups, our implementation is much more efficient
in practice than the other existing software. In particular, it allows for computations (or at least partial
computations) with some groups which were out of reach.

We review in Section 2 the basic properties of invariant rings of permutation groups, as well as the usual
algorithms for computing minimal generating sets. Most of them rely on the computation of a suitable
Grbner basis; however, this computation can be impractical even for relatively small invariant rings like
Is (group of size 6! = 720 acting on 15 variables). The fundamental reason is that Grobner basis break all
symmetries, and lead to costly calculations inside the full polynomial ring.

In order to keep the symmetries, our approach is to use SAGBI-Grdbner basis instead: following
the introduction of SAGBI basis (Subalgebra Analogs of Grobner Basis for Ideals) by Robbiano and
Sweedler [RS90] and Kapur and Madlener [KM89], the theory of SAGBI-Grdbner basis has been devel-
oped by Miller [Mil98] for ideals of subalgebras of polynomial rings. SAGBI basis of invariant rings of
permutation groups have been extensively studied by Goebel [G6b98] but, to the best of our knowledge,
SAGBI Grobner basis had never been used before in this context. To focus on combinatorial aspects,
we only present in Section 3 SAGBI-Grobner basis in the special case of invariant rings of permutation
groups; we call them invariant Grobner basis to emphasize that they do not break the symmetries. The
fundamental objects are the initial monomials, which play the same role for invariant polynomials as in-
teger partitions do for symmetric polynomials. We provide a Buchberger-like criterion to skip a priori the
computation of unnecessary S-pairs, and give an algorithm for computing Hironaka decompositions.

In Section 4, we concentrate on our main goal: computing minimal generating sets of invariant rings of
permutation groups. We derive from the computation of a suitable invariant Grobner basis an algorithm
to compute directly the elements of degree d of a minimal generating set. This algorithm only requires a
precomputation of a partial SAGBI basis up to degree d whose cost is, in practice, negligible compared to
full cost of the computation. This algorithm is characteristic free, could be parallelized, and its complexity
is well constrained. It also does not require the computation of a system of parameters, though knowing
the existence of such a system with low degrees can help by improving the a priori degree bound. An
implementation is available as part of the library Per MuVAR for the computer algebra system MuPAD.

We conclude in Sections 5 and 6 with a comparative benchmark, and some remarks for further devel-
opment.

2 The ring of invariants of a permutation group

This section describes the basic properties of the invariant ring of a permutation group. For a more
general introduction, with a strong computational flavor, see [Kem98]. Whenever possible, notations
follow [CLO97, Stu93, G5h98].

Let K be a field. Let X1,...,Xn be n variables, and K[x1,...,Xn] be the ring of polynomials in those
variables. Let G be a subgroup of the symmetric group &p, acting on the n variables by 0.X; 1= X4(j).
This action extends naturally to an action of G on K[x1,...,Xn]. An invariant polynomial, or invariant, is
a polynomial f € K[x1,...,xn] suchthat o- f = f for all c € G. The invariant ring I(G) is the set of all
invariants.

Obviously, I(G) is a K-algebra. Its structure is simpler in the non-modular case, that is when the
characteristic of the field does not divide the order of the group (e.g. in characteristic 0). However, more
results extend to the modular case as in the more general case of matrix groups.



Invariant Rings of Permutation Groups 317

The image o.m of a monomial m by any element o of G is a monomial. The automorphism group of m
is the subgroup Aut(m) := {0 € G| o.m =m}. Letm® := 3 yc5.m|oecy M’ be the invariant obtained by
summing the monomials in the orbit of m (note that, in the non-modular case, m® = | Aut(m)|m*, where *
is the usual Reynolds operator). Such invariants are called orbit sums. The set of all orbit sums is a vector
space basis of 1(G), so any invariant can be uniquely written as a linear combination of orbit sums.

The invariant ring 1(G) is a graded algebra, and the finite set of all orbit sums of degree d is a vector
space basis of the homogeneous component 1(G)q4 of degree d of 1(G). The Hilbert series H(1(G),z) :=
5 z9dim1(G)q4 can be computed via a Polya enumeration, since dim1(G)q is the number of monomials of
degree d (i.e. of functions from {1,...,n} into N) enumerated up to an isomorphism [Sta79].

2.1 Generating sets

The famous theorem of Hilbert states that 1(G) is finitely generated: there exists a finite set of invariants
S such that any invariant can be expressed as a polynomial combination of invariants in S. We call S a
generating set. If no proper subset of S is generating, S is a minimal generating set. Since 1(G) is finitely
generated, there exists a degree bound d such that 1(G) is generated by the set of all invariants of degree
at most d. We denote by B(1(G)) the smallest degree bound.

Given an integer d > 1, let K[1(G)«q] be the subalgebra of 1(G) generated by the invariants of degree
< d, and K[I(G)«q]q its homogeneous component of degree d. Invariants of K[I1(G)<q]q are called de-
composable, since they can be expressed as sums and products of invariants of strictly smaller degree.
K[1(G)«d]a will be referred as the space of decomposable invariants of degree d. Set so(1(G)) := 0 and
sa(1(G)) = dimI(G)q — dimK[I(G)<q]q. The generating series s(1(G),2) := T&_o2%4(I(G)) is a poly-
nomial of degree B(1(G)).

A set S is homogeneous if its elements are homogeneous. The following lemma, valid for any graded
connected algebra A (graded algebra such that Ag = K) summarizes some general properties of generating
sets.

Lemma 1. LetS be a generating set of 1(G).

(i) I(G) has a homogeneous minimal generating set composed of at most |S|B(1(G)) invariants of degree
at most B(1(G)).

(if) Assume S is homogeneous, and let Sy be the set of all invariants of S with degree d. Then, Sis a
minimal homogeneous generating set if, and only if, for all d, Sy is a vector space basis of a direct factor
of K[I(G)<d]g in 1(G)g. In particular, |Sq| = sq(1(G)).

Proof. (i) For each p € S and d, let pg be the homogeneous component of degree d of p. Since I(G) is
graded, it is generated by the set {pq | p€ S,1 < d < B(I(G))}.
(ii) Use the grading and basic linear algebra. O

From (i), it is not very restrictive to only consider homogeneous generating sets, since non-homogeneous
generating sets are not much smaller than homogeneous ones.

2.2 Classical algorithms for computing minimal generating sets

The basic principle of the classical algorithms is to construct generating sets degree by degree, from 1
up to the best degree bound known so far. Since the complexity of the computations involved increases
quickly with the degree, the quality of the a priori degree bound is crucial. In the non-modular case,
Noether’s degree bound B(I1(G)) < |G| hold [Smi95, Fle00] (see also [Sch89, DHOO] for refinements).
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In all characteristic we also have B(1(G)) < () [GS84, Gob96]. Finally, when I(G) is Cohen-Macaulay,
typically in the non-modular case, better a priori degree bounds can often be obtained from the knowledge
of a system of parameter.

So, in the non-modular case, the usual approach is to compute such a system of parameters (81, ...,6;)
of the invariant ring, and to take advantage of the existence of a Hironaka decomposition by comput-
ing secondary invariants and, while doing so, selecting the secondary invariants that are irreducible (i.e.
that cannot be expressed as products of lower degree secondary invariants). The irreducible secondary
invariants together with the primary invariants form a minimal generating set (some primary invariants
may need to be removed). We refer to [Kem98] for details, as well as for an extended algorithm for the
modular case.

The critical part of this approach is the computations modulo the ideal (81,...,6,) generated by the
system of parameters in 1(G). Most invariant theory libraries [Kem93, Kem98] do a precomputation of
a Grobner basis B of (81,...,6y), and then use normal form reduction modulo B. However, the precom-
putation of B often fails, even for quite small permutation group. Moreover, this computation breaks the
symmetries, since B is a Grobner basis of the ideal generated by the primary invariants in K[x1,...,Xn],
and not in 1(G). The normal form P& of an invariant is not necessarily an invariant, and cannot be stored
efficiently as linear combination of orbit sums. This induces a high overhead on the remaining linear
algebra operations.

Hence, we looked for analogs of Grdbner basis that would not break the symmetries.

3 Invariant Grobner basis

3.1 Monomial orders and SAGBI basis

We assume that the reader is familiar with the usual definitions of Grdbner basis [CLO97, KR00] and
SAGBI basis [RS90]. Unless explicitly stated, we only consider homogeneous invariants, and homoge-
neous ideals of I(G).

Throughout the rest of this paper, we assume a monomial order < has been fixed. For a polynomial
p, denote respectively by LM(p), LT(p), and Lc(p) the leading monomial, leading term, and leading
coefficient of p with respect to <. Of course, LT(p) = Lc(p)LMm(p). By extension, for any set B of
polynomials, define LM(B) := {Lm(p) | p € B} and LT(B) := {LT(p) | p € B}.

A monomial in LM(I(G)) is called initial. By the properties of monomial orders, the leading term of
a product pq is the product of the leading terms of p and g, and it follows that the product of two initial
monomials is initial. The vector space (LT(I(G))) spanned by the elements of LT(1(G)) is thus an algebra,
called the initial algebra of I(G).

A subset B of I(G) is called a SAGBI basis of G if LT(B) generates (LT(I(G))) as an algebra. As with
usual Grébner basis, there is a general reduction algorithm, as well as Buchberger-like characterization
and algorithm to compute SAGBI basis. However, for invariant rings of permutation groups, there are
a much simpler and purely combinatorial algorithms. This is best described in the context of the initial
poset.

3.2 The initial poset

The set LM(1(G)) is amonoid, and its elements can be ordered by divisibility: given two initial monomials
p and g, p divides g, denoted p < q, if there exists an initial monomial r such that g = pr. The partially
ordered set P® := (LM(I(G)), <) is called the initial poset of I(G).
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This is a generalization of the poset P := (LM(K[X1,...,Xm]),|) of all monomials of K[x1,...,Xm] Or-
dered by divisibility. The poset P plays a fundamental role in the theory of Grobner basis. For example,
the existence of finite Grébner basis is a direct consequence of Dickson’s lemma: any subset of P has a
finite number of minimal elements, i.e. P is a well quasi ordering. The initial poset P plays the same
role for SAGBI-Grobner basis.

Remark 3.1. The following basic operations are comparatively cheap for permutation groups:
1. Testif a monomial m is initial.
2. Return an initial monomial m’ isomorphic to m.
3. Compute the size of the automorphism group of m.
4. Compute the orbit of m.
5. Compute all the initial monomials of a given degree.

Naive algorithms can be obtained by running through the group. In the case of Per MUVAR, they are
implemented as an external optimized C++ library GLI P (http: // gl i p. sour cef or ge. net). It
would be beyond the scope of this article to describe more efficient algorithms based on Shreier-Simms
chains representation of permutation groups [KS98].

Using those operations, invariants can be stored and manipulated as linear combinations of orbit sums
m®, where m € LM(I(G)). This saves memory up to a factor of 1/|G|, especially since most monomials
do not have symmetries. The cost of calculating additions and multiplications of invariants is also reduced
by about the same factor.

We can now state an effective characterization of SAGBI basis. A monomial p € LM(I(G)) is irre-
ducible if p is minimal for <.

Proposition 1. A subset B of I(G) is a SAGBI basis of 1(G) if, and only if, LT(B) contains all the ir-
reducible monomials of LM(I1(G)). The set of all irreducible initial monomials is the unique minimal
reduced SAGBI basis of 1(G).

Using this proposition, and operation 5 of remark 3.1, the unique minimal reduced SAGBI basis can be
computed degree by degree using an Eratosthenes sieve in the initial poset.

Remark 3.2. The leading coefficient of any invariant in the unique minimal reduced SAGBI basis is 1.
It follows that this SAGBI basis is independent of the base field (in the modular case, some non-leading
terms may disappear), and can actually be defined for a base ring instead.

If G is the trivial group, the irreducible elements are the variables X1, ..., Xk, which also form the min-
imal reduced SAGBI basis of I(G). If G is a permutation group, and < is the lexicographic order, the n
monomials X; ...xx with 1 <k < n are irreducible. If G is the symmetric group &y, those are the only
irreducible monomials, and the elementary symmetric polynomials form the minimal reduced SAGBI ba-
sis of 1(Sp). For the alternating group A3 acting on the variables x,y, z, the situation is more complicated,
as any monomial of the form xz*~1 is also irreducible. It follows that there can be an infinite number of
irreducible monomials: Dickson’s lemma does not generalize to the invariant case.

In [G6b98], Gdbel proves that, for the lexicographic order, there is a finite number of irreducible mono-
mials if, and only if, G is a direct product of symmetric groups. Another equivalent condition is that all
irreducible monomials are multilinear (a monomial x‘jl...xﬁ]m is multilinear if di < 1 for all i). He also
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shows that it is enough to compute the irreducible monomials up to degree &2”1) since the irreducible
monomials of higher degree can be obtained by a suitable scaling.

Note that LM(I(G)) is not factorial. For example, if G is the alternating group Az acting on the variables
X,Y,z, and < is the lexicographic order, the monomial m = x3yz can be written in two different ways as
product of irreducible monomials: m = (xyz)(x)(x) or m = (x?z)(xy).

A least common multiple (Lcm) of p and g is an initial monomial r such that p <r, g <r and r is
minimal with this property. Consider again G = A3, and take p = xyz and g = xy. Then, x%yz is a LcM of
p and q, but so are also x*yz? and x3yz3. Actually, any monomial of the form x¥+2yzX with k > 1 isa Lcm
of p and g. Not only is the Lcm of two monomials not necessarily unique, but there may be an infinite
number of them.

Problems 3.3. 1. Generate all the irreducible monomials of a given degree d;
2. Generate all the LcMs of a given degree d of two initial monomials;

3. Determine if two initial monomials have a finite number of LcMs.

So far, Per MuVAR solves problem 1 and 2 by a brute force Eratosthenes sieve. Those steps are not yet
time critical, but there ought to be better algorithms.

3.3 Invariant division algorithm
The key of invariant Grobner basis is a little modification of the usual division algorithm.
Algorithm 3.4 (Invariant division algorithm).

Input: Aninvariant f and a family of invariants F = (f1,..., fi).

Output: An invariant remainder T of f on division by F.
while f #0 do

forge F do
. Lm(f) .
= 5
if mis a monomial and m is initial then

fi=1f— t(é((;; m®g;
restart main loop;
end if
end for
exit main loop;
end while
return(f);

Let’s run the algorithm on a few examples. Consider the ring I(&2) of symmetric polynomials on two
variables x,y, where the monomials are ordered lexicographically with x > y. Take f := x?+y?, and
F = (x+Y). We have LM(f) =x?, LM(x+Y) = X, and m = x. With the usual division algorithm we would
compute f := f —x(x+Y), and get y? — xy which is not invariant. Here, we compute f := f —x®(x+y)
instead, which yields f = x?4y? — (x+y)(x+Y) = —2xy: invariance is preserved! Now, LM(f) = —2xy
and m =y, so running the loop once more would yield f := f —y®(x+y) = —2xy +2(x+Yy)(X+Y) =
2x2 4+ 2xy + 2y°. Notice that the term x2 has been recreated, so we may suspect that the algorithm is going
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to run forever. What is happening here is that the monomial m is not initial, and replacing m by m®
generates extra terms of higher order. To avoid this, there is an extra condition “m is initial” on line 3.
Thus, in the above example, the algorithm stops with the result = —2xy.

With those points in mind, it is obvious that the algorithm always terminates, that the remainder TFof f
on division by F is invariant, and that TF_tfe (F). However, uniqueness of the result is not guaranteed;
for example, the rest of f := x2+y? on division by (x?> 4+ y?,x+Y) can be either 0 or —2xy, depending
on whether the algorithm starts with g := x?+y? or g := x +Yy. Worst, the rest of f := xy on division by
F = (x> 4+y%,x+Y) alway yields T = xy, whereas xy belongs to the ideal generated by (x2 +y2,x +Y).
On the other hand, there are systems such as F := (xy,x+ y), for which the result is always unique, and
for which T™ =0 if, and only if, f is in the ideal generated by F. As with the usual division algorithm,
this motivates the introduction of Grébner basis.

3.4 Invariant Grobner basis

Let I be an ideal of I(G). For the sake of simplicity, we assume that | is homogeneous. The extension
to the non-homogeneous case raises no difficulty. The vector space (LT(l)) spanned by LT(l) is actually
an ideal of (LT(1(G))), and is called the initial ideal of LT(l). A subset B of | is an invariant Grobner
basis of the ideal | if LT(B) generates the initial ideal (LT(1)) as an ideal over (LT(I(G))). It is a partial
invariant Grobner Basis up to degree d of | if LM(B) generates {LT(l)) up to the degree d. A family
F = (f1,..., fk) of invariants is an invariant Grdbner basis if it is an invariant Grobner basis of the ideal
I :=(fq,..., fk) it generates.

For example, let’s check that B := (xy,x+Y) is an invariant Grobner basis of the maximal ideal 1(&2)
of symmetric polynomials of positive degree. Take p € 1(&5),.. Its leading term is of the form x*y', with
k>landk > 1. If 1 =0, LT(p)/LT(x+Yy) = x*"1 is initial, and if | > 0, LT(p)/LT(xy) = x*~1y'~1 is
also initial. So LT(B) indeed generates (LT(1(&2)+)). Itis also a SAGBI basis of 1(&>), which is not a
coincidence. In general, B is a SAGBI basis of 1(G) if, and only if, B is an invariant Grobner basis of the
maximal ideal 1(G).

A monomial m of (LT(1(G))) is standard if m & (LT(1)). The orbit sum m® of a standard monomial m
is called a standard invariant. As usual, 1(G) is the direct sum of | and of the vector space spanned hy
the standard invariants. More precisely, for all d, the homogeneous component I(G)g is the direct sum
of Iy and of the vector space spanned by the standard invariants of degree d. It follows that a remainder
F® of an invariant f on invariant division by B is necessarily the unique linear combination of standard
invariants such that f — T € I. The invariant T is called the normal form of f, and is 0 if, and only if,

f € I. If moreover f is homogeneous, f and T° have the same degree.
Finally, the definition of the unique reduced invariant Grobner basis of | is straightforward.

3.5 Invariant Buchberger characterization and algorithm

The next step is to obtain a Buchberger like characterization. Let g; and g» be two invariants, and let r be a
Lcm of LM(g1) and LM(ga). Let py i= e, P2 = oy and $(91,02,1) = LC(G2)91PT — LC(91)92p5 -
Clearly, the leading monomial cancels in S(g1, 92, r), which creates a new leading monomial. The invari-

ant S(g1,92,r) is called a S-pair of g; and g».

Proposition 2 (Invariant Buchberger’s characterization). Let | := (fy,..., f) be anideal of I1(G), and
let B be a subset of | containing fi, ..., fx. Then, B is a Grobner basis of | if, and only if, for any S-pair s
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of two invariants of B, the remainder of s on division by B is zero.

This characterization is not effective. Indeed, given two invariants g1 and g, of B, there may be an
infinite number of LcMs and thus of S-pairs.

Algorithm 3.5 (Invariant Buchberger’s algorithm).

Input: asetof invariants F = (fq,..., fx).
Output: a Grdbner basis B of | = (F), with F C B.
B:=F;
repeat
B':=B;
for all S-pair s := S(b1, by, r) of any two elements {bs,b.} of B’ do
5:=5B;
if s # 0 then
B:=BU{s};
end if
end for
until B=B’
return(B);

The proof of partial correctness raises no difficulties. However, this algorithm may not terminate, since
there are ideals of 1(G) without finite invariant Grébner basis. Moreover, even if at some point a finite
Grobner basis B is obtained, the implicit Buchberger’s characterization test may not terminate.

On the other hand, the algorithm can be modified to effectively produce a partial invariant Grobner
basis up to a given degree using the following algorithm to augment a partial invariant Grébner basis up
to degree d — 1 into a partial invariant Grdbner basis up to degree d.

Algorithm 3.6 (Augmentation of a partial invariant Grobner basis).

augment GBasi s := proc(B,d)

Input: aninteger d > 1 and a partial invariant Grobner basis B of an ideal I{F) up to degree d — 1, with
F= (fl,...,fn) C B.

Output: an invariant Grobner basis B of | = (F) up to degree d, with F C B and the list of the standard
monomials of degree d.
standard:=[];
M:=[initial monomials of degree d of I(G), sorted decreasingly w.r.t. <J;

for allme M do
S:={beB|L1(b) <m};
if |S| =0 then

st andar d := st andar duU {m}; {m is a standard monomial}
elseif |S| =1 then

{mis already in (LT(B))}
else

{m gives rise to some S-pairs}

Let by be an element of S.
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for all b € S—{bs1} do
S:= S(bl,bg,m)B;
if s# 0 then
B:=BU{s};
end if
end for
end if
end for
return(B,st andar d);

As for usual Grobner basis computations, it is critical to improve Buchberger’s characterization to skip
as much as possible the computation of S-pairs which reduce to zero. The following proposition is an
adaptation of Buchberger’s first and second criteria.

Proposition 3. Let m and S be as defined on line 4 of algorithm 3.6. The algorithm is still correct if
S is restricted as follow. Remove any monomial b such that 2deg(b) > deg(m). If S still contains two
monomials b1 < by such that m = bsby, further remove b, (criterion 1). Finally, let p be the relation on S
defined by b1pb, if m is not a LcM of b1 and by; let p* be the transitive closure of p; replace S by a set of
representatives of the equivalence classes of p (criterion 2).

Also as with usual Grobner basis [Fau99], much faster implementations are obtained by replacing the
Buchberger’s step-by-step reductions of S-pairs by Gauss elimination on the matrices My of all syzygies
of each degree d.

3.6 An algorithm for computing secondary invariants

In this subsection, we assume 1(G) is Cohen-Macaulay, which is always true in the non-modular case.
Recall that our goal is to compute secondary invariants and minimal generating systems of 1(G).

Proposition 4. Let 01,...,6, be a system of parameters of I(G), and (81, ...,6y,) be the ideal of I(G) they
generate. Then, the standard invariants w.r.t. {(81,...,8,) form a system of secondary invariants of I(G).

With this proposition, our goal becomes to compute standard invariants, and to have a procedure for
rewriting any invariant as a linear combination of standard invariants. The ideal we consider is graded
and zero-dimensional, with a finite number of standard monomials of degrees es,...,e;. Moreover, any
homogeneous invariant p of degree d > e is rewritten as p' = 0. Therefore, the computation of a partial
Grobner basis up to the degree e; yields the standard monomials, as well as the procedure for rewriting
invariants as linear combination of standard monomials.

Algorithm 3.7 (Computation of secondary invariants).

Input: A system of parameters F = (fq,..., fy) of I(G)
Output: A Grdbner basis B of | = (F) up to degree dmax, with F C B, and the secondary invariants.
B:=F;standard:=[;
ford:=1,...,dnx do
(B,secondari esq) :=augnent GBasi s(B,d);
secondari es :=secondari esUsecondari esgq;
{Insert code here}
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end for
return(B,secondar i es);

Any piece of code can be inserted in algorithm 3.7, for incremental use of the standard invariants and
the Grobner basis. For example, assume that the following lines are inserted:
L :=[];{L will be kept row reduced versus <}
for p product of standard monomials of degree < d do
p:=7
if p is not in the vector space spanned by L then
Insert pinto L;
end if
end for
i rreduci bl es:=irreduci bl esuU{m® misstandardand m & Lm(L)}
Then, the procedure computes all the standard monomials (i.e. the secondary invariants), and produces,
as a by-product,a seti r r educi bl es of irreducible secondary invariants.

4 Direct computation of minimal generating sets

The key idea for directly computing the elements of degree d of a minimal generating set is fairly simple.
Let I be the ideal generated by invariants of positive degree < d. The homogeneous component of degree
d of I coincides with the vector space K[I(G)q]q of decomposable invariants of degree d. Let S be the
set of irreducible monomials of 1(G) of positive degree < d. Then, S generates |, and is a partial invariant
Grobner basis of | up to degree d — 1. Hence, augnent GBasi s(S,d) yields a partial invariant Grobner
basis of | up to degree d, and the standard invariants form a minimal generating set at degree d.

The only prerequisite is the computation of the structure of the initial poset up to degree d, i.e. the
partial minimal reduced SAGBI basis up to degree d.

This yields the desired algorithm:

Algorithm 4.1 (Computation of a minimal generating set).

Input: dmax € N: an a priori degree bound for 1(G)
Output: a minimal generating set S of 1(G)
s:=]; B:=J;
ford:=1,...,dnx do
augnent GBasi s(B,d);
S := SuU{standardmonomials};
B :=BUSAGBI (d);
end for
return(S);

5 Comparative benchmark

We ran systematic computations of minimal generating sets of invariant rings of permutation groups with
both Per MuVARand Magra [BCP97] (command Fundanent al | nvar i ant s)on Intel Bi-PlIl1 1 GHz
PC’s running GNU/Linux. We used as test-bed all the transitive permutation groups on a small number
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Fig. 1: Computation time for the transitive groups on 1,2,3,... variables

of variables, as provided by GAP [GAP99]. Non-transitive permutation groups have sharper a priori
degree bounds, and are usually much easier to compute. Starting from 8 variables many groups are out of
reasonable reach; our choice of a 500 Mb memory limit and a 2 days time limit was essentially guided by
the availability of computation resources.

Figure 1 summarizes the computation times. The corresponding tables, as well as the logs and results
of computations are available on Per MuVAR’s web page. We will keep updating this benchmark with
memory information, tests of other software as well as new results for groups requiring higher memory
and time limits.

Per MuVAR and Magmma appears to be complementary; depending on the group, both can in turn be up
to several orders of magnitude faster than the other. Some further comments are still in order, since their
practical behavior are completely different.

For Magnm, the critical step is the computation of a system of parameters and its Grébner basis, whose
difficulty is relatively unpredictable. The actual computation of a minimal generating system is then fairly
quick. Our benchmark is slightly unfair with Magma: some time could be saved on this second step by
avoiding the computation of secondary invariants above the a priori degree bound.

On the other hand, for Per MUVAR, the difficulty of a computation can be reasonably predicted from
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the a priori degree bound dynax, and the dimensions of the homogeneous components of degree d < dmax-
A very rough estimate of the complexity is given by (%%)3. Practically, and at the time of writing the
limit is around homogeneous components of dimension 20000. In particular, one can guess in advance
when a full computation is out of reach. In this case, the computation still yields useful partial results.
For example, we computed a minimal generating system for the invariant ring over graphs I up to degree
17 for n =5 (10 variables, |G| = 120, dmax = 22), up to degree 12 for n = 6 (15 variables, |G| = 720,
dmax = 45), and up to degree 11 for n =7 (21 variables, |G| = 5040). This computation leads us to

conjecture that B(lg) = 11.

6 Further developments

We expect drastic improvement on the efficiency of our implementation through:
o the use of optimized exact sparse linear algebra routines, e.g. from the ALP library [MPQO];

o the implementation of the basic operations of remark 3.1 in GAP [GAP97] using Shreier-Sims
chains.

For permutation groups, the minimal generating sets obtained by this algorithm only depends on the
characteristic of the field. By running the computation over Z, it will be possible to compute at once
minimal generating sets for all characteristics.

The results of our systematic computations for transitive permutation groups will be collected in a
database (see e.g. [KKM™00]), and extended to any characteristic. We hope that this database will be a
useful tool for, e.g., the systematic study of degree bounds.
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