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We introduce the Larger than Life family of two-dimensional two-state cellular automata that generalize certain
nearest neighbor outer totalistic cellular automaton rules to large neighborhoods. We describe linear and quadratic
rescalings of John Conway’s celebrated Game of Life to these large neighborhood cellular automaton rules and present
corresponding generalizations of Life’s famous gliders and spaceships. We show that, as is becoming well known for
nearest neighbor cellular automaton rules, these “digital creatures” are ubiquitous for certain parameter values.
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1 Introduction
John Conway’s Game of Life (Life) is the most famous example of a cellular automaton (CA), due in part
to the fact that its update rule is very simple yet it generates extremely complicated dynamics [BCG82],
[Gar70], [GG98]. For Life, as is the case with most CA rules, the initial state has an enormous impact
on the resulting dynamics. When Life is started from a random initial state with an appropriate density of
occupied cells, complex structures emerge. For example, gliders appear and their trajectories take them
across the infinite lattice (see Figure 3 on page 180). If not stopped by some other Life pattern, they will
walk on forever.

The gliders are an essential ingredient for the well known result that Life is computation universal
[BCG82]. They were also the inspiration for the Larger than Life (LtL) family of cellular automata. We
set out to determine whether “digital creatures” analogous to Life’s gliders would emerge from random
initial states if we used larger neighborhoods and rescaled Life’s update rule appropriately. The answer
was affirmative; in fact, we found numerous rules which support digital creatures. In addition, the LtL
family introduced a rich collection of two dimensional CA dynamics [Eva96].

In this paper we introduce the LtL family of rules and its digital creatures, which are called bugs. We
describe strategies for locating rules that support bugs in two distinct regions of parameter space and
give empirical evidence which suggests that the regions are connected. That is, going from one region in
parameter space to the other by varying rule parameters leads us through a set of rules that also support
bugs.
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In addition to being interesting in their own right, some of the LtL rules we describe exhibit nonlinear
population dynamics that are prototypes for various spatial models used in fields such as biology, physics,
and population ecology. As one example, they might provide insights into the design of models to study
the extent to which spatial variation in ecological systems influences the ability of a species to survive.

2 Larger than Life: Definition and Notation
Let us define the LtL rules. For a broader context and an account of the origins of the questions we study
see [Gri94].

Each site of the two-dimensional lattice Z2 is in one of two states, live (1) or dead (0). This is the initial
configuration of the system. The neighborhood N of a site consists of the � 2ρ � 1 ����� 2ρ � 1 � sites in the
box surrounding and including it. That is, the neighborhood of the origin is N ��� y 	 Z2 : 
�
 y 
�
 ∞ 
 ρ �
(ρ a natural number), so that its translate N x � x � N is the neighborhood of site x 	 Z2. N is called
the generalized Moore or “range ρ” box neighborhood. Each time step, all of the sites update (meaning
change states or not) simultaneously according to the deterministic LtL rule, which in words is:

� Birth: A site that is dead at time t will become live at time t � 1 if and only if the number of live
sites in its neighborhood at time t is in the closed interval � β1 � β2 � , 0 
 β1 
 β2.

� Survival: A site that is live at time t will remain live at time t � 1 if and only if the number of live
sites in its neighborhood (itself included) at time t is in the closed interval � δ1 � δ2 � , 1 
 δ1 
 δ2.

� Death: A site that is dead at time t and does not become live at time t � 1 will remain dead at time
t � 1. A site that is live at time t and does not remain live at time t � 1 will become dead at time
t � 1.

Let us introduce the notation needed for the precise definition of the LtL update rule and the remainder
of the paper.

Let T denote the CA rule. That is, T : � 0 � 1 � Z2 � ��� � 0 � 1 � Z2
.

Let ξt � x ��	�� 0 � 1 � denote the state of the site x 	 Z2 at time t and let ξt represent the state of all sites in
Z2 at time t. As is customary we will often think of the CA as a set-valued process, confounding ξt with� x : ξt � x ��� 1 � . For example, this allows us to use the notation ξΛ

t � T t � Λ ��� Λt to mean that starting
from configuration ξ0 � Λ we arrive at the set Λt of occupied sites after t iterations of rule T .

With this notation, the LtL update rule is:

ξt � 1 � x ���
���� ���

1 if ξt � x � � 0 and 
N x ! ξt 
"	�� β1 � β2 �
or
if ξt � x � � 1 and 
N x ! ξt 
"	�� δ1 � δ2 � ;

0 otherwise #
For each fixed range ρ the LtL CA rules form a four-parameter family indexed by the endpoints β1

and β2 of the birth intervals and the endpoints δ1 and δ2 of the survival intervals. We denote each rule
by the 5-tuple � ρ � β1 � β2 � δ1 � δ2 � . In this framework Life has LtL parameters � 1 � 3 � 3 � 3 � 4 � . (Note that a
live site counts itself and so the survival interval is � 3 � 4 � rather than the more standard � 2 � 3 � .) All of the
examples in this paper are from range 5; that is, ρ � 5. The reason for this is that range 5 is big enough
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to give a flavor of the dynamics and local configurations from even larger ranges, yet small enough to be
manageable.

The LtL CAs are totalistic because their update rules depend only on a site’s state and the number of
its occupied neighbors, but not on the arrangement of those neighbors [Wol94].

3 Local Space-Time Objects: Definitions and Examples
LtL’s so-called digital creatures are local configurations. That is, they are sets of sites that are periodic
under some LtL rule but that may be unstable when put on backgrounds other than all 0 � s. Let us define
the local configurations relevant to the remainder of this paper. These definitions arose through the study
of the LtL family of rules, however, they apply to any two-state CA rules and for the most part conform
to the Life terminology described in [BCG82] and [Sil]. For the following, let T be a CA rule from the
LtL family and let Λ � Z2 be a set of sites in state 1. Let Λθ denote the configuration Λ rotated θ radians
in the counterclockwise direction about the center of the smallest rectangle in which Λ can be inscribed.

� A still life is a configuration Λ which is a fixed point for T . That is, T � Λ ��� Λ.

� An oscillator or periodic object is a finite configuration Λ for which there exists a positive, finite
integer n so that T t � Λ ��� T t � n � Λ � for all t � 0. The smallest such n is called the period of Λ. For
example, a still life is an oscillator with period 1.

� A blinker is an oscillator with period 2.

Example 1 The most intriguing oscillator we have found to date has period 166 and is supported by
the LtL rule � 5 � 34 � 45 � 34 � 58 � . One phase of this oscillator, denoted by Λ is depicted in Figure 1. As
the rule updates, the oscillator cycles through its other phases, each of which is translated northeast
along the diagonal until it begins a series of changes which appear to be an explosion. By time 53 the
so-called explosion is in its last phase and results in a new configuration headed southwest. At time
83 the initial configuration Λ appears again, rotated π radians and translated by vector �d � � 0 � 13 � .
That is, T 83 � Λ ��� Λπ � � 0 � 13 � . At time 126 another explosion begins and at time 137 it yields a new
configuration, which is composed of a configuration headed northeast along with a disconnected piece,
known as a spark. At time 166 the initial configuration Λ returns to its initial position on the lattice. That
is, T 166 � Λ ��� Λ. This oscillator is named Bosco and the phases of its trajectory described above are
depicted in Figure 2.

Fig. 1: Bosco: period 166 oscillator supported by LtL rule � 5 � 34 � 45 � 34 � 58 � .

� A bug is a finite configuration Λ for which there exists a finite time, τ, and a nonzero displacement
vector, �d � � d1 � d2 � , such that T τ � Λ � � Λ ���d. The smallest such τ is a bug’s period, mod translation,
in the direction of �d.
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Fig. 2: Bosco’s trajectory along the diagonal: heading northeast, then looping around to the southwest, and looping a
final time to the northeast, to return to its initial position. Times 0 � 25 � 53 � 83 � 107 � and 137 are depicted.

� The speed of a bug is max � 
 d1 
 � 
 d2 
 ��� τ.

� An orthogonal bug is a bug whose displacement vector �d has exactly one component equal to 0.

� A diagonal bug is a bug whose displacement vector satisfies d1 � d2 or d1 � �
d2.� A disoriented bug is a bug that is neither orthogonal nor diagonal.

If an orthogonal, diagonal, or disoriented bug is rotated θ 	�� π � 2 � π � 3π � 2 � radians it comprises a new
set which is also a bug with a trajectory perpendicular to the original or pointed in the opposite direction.

LtL’s bugs are generalizations of Life’s famous spaceships. For the uninitiated:

� A spaceship is any finite pattern that reappears (without additions or losses) after a number of
generations and is displaced by a nonzero distance [Sil].

� A glider is the smallest, most common and first discovered spaceship supported by Life [Sil]
(Figure 3).

Fig. 3: The glider’s trajectory starting in the southwest and moving along the diagonal to the northeast. Times 0, 11,
22, 33,and 44 are shown.

Generally, we consider bugs to be spaceships supported by rules whose neighborhoods are in ranges
2 and higher. We make this distinction because the geometry of the large range bugs is reminiscent of
various insects. In some cases, as we will illustrate in Section 4.2 on page 183, the bugs are composed of
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line segments and appear to have legs. Other bugs, like those in the following examples, are composed of
connected regions of 1 � s with holes in them that look like stomachs.

Example 2 The LtL rule � 5 � 34 � 45 � 34 � 58 � , which supports the oscillator Bosco also supports orthogonal,
diagonal, and disoriented bugs. Examples of such trajectories are depicted in Figures 4, 5, and 6. The
geometries of the bugs’ phases are reminiscent of most of Bosco’s phase geometries. The question thus
arises: What enables the bugs to move forward while Bosco cycles forever?

Fig. 4: Period τ � 12 orthogonal bug with displacement vector
�

d � � 8 � 0 � supported by LtL rule � 5 � 34 � 45 � 34 � 58 � .
From left to right are times 23k � k � 0 � 1 � 2 ������� � 12 of the bug’s trajectory.

Fig. 5: Diagonal bug supported by LtL rule � 5 � 34 � 45 � 34 � 58 � , τ � 10,
�

d � � 6 � 6 � . From the southwest to the northeast
along the diagonal are times 17k � k � 0 � 1 � 2 ������� � 10 of the bug’s trajectory.

The trajectories of the bug examples presented thus far have been along lines in the plane. However,
some bugs, like the one in the next example, have paths that are more sinusoidal. We call such bugs “jitter
bugs.”

Example 3 The configuration Λ that represents this orthogonal jitter bug is depicted in Figure 7 and its
trajectory as it moves through space appears in Figure 8. The bug has period τ � 66 and displacement
vector �d � � 40 � 0 � . Compare its trajectory to the orthogonal, diagonal, and disoriented bug trajectories
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Fig. 6: Disoriented bug supported by LtL rule � 5 � 34 � 45 � 34 � 58 � , τ � 4,
�

d � � 2 � 1 � . From the southwest to the northeast
along the line with slope 1

�
2 are times 23k � k � 0 � 1 � 2 � 3 � 4 of the bug’s trajectory.

Fig. 7: Orthogonal jitter bug supported by LtL rule � 5 � 34 � 44 � 34 � 58 � , τ � 66,
�

d � � 40 � 0 � .

Fig. 8: From left to right are times 23k � k � 0 � 1 � 2 ������� � 16 of the trajectory of the orthogonal jitter bug depicted in
Figure 7.

described in Example 2. The jitter bug’s path may be approximated by a sine wave while the others’ paths
are linear.

The bugs we have seen thus far, including Life’s famous glider, which is a diagonal bug with τ � 4 and
�d � � 4 � 4 � , have many phases in their evolutions as they move across the lattice. Let us define a special
bug variety which has only one phase.� An invariant bug is a bug for which τ � 1, named such because it is invariant mod translation in the

direction of �d.

LtL’s large neighborhoods allow for more bug varieties than Life. For example, Life does not support
invariant spaceships [Bel93] and there are no known disoriented spaceships, however both of these
varieties commonly occur in larger range LtL rules. Due to Life’s universality, disoriented spaceships that
move along lines with any given rational slope could be built in theory [BCG82], however, they would
likely be very large and slow. There are other range 1 CAs which support disoriented spaceships (see
[Epp00a] for examples) and invariant spaceships. However, to date they are less common and come in
fewer varieties than for rules with large ranges. A sample of range 5 LtL examples include disoriented
bugs that move along lines with slopes 3 � 2 � 2 � 3 � 4 and the invariant bugs depicted in Figure 18 on page 189.

4 Navigating LtL Parameter Space in a Fixed Range
Clearly, the set of LtL rules is vast, even for a fixed range. The question thus arises: How do we navigate
parameter space? Specifically, how do we locate regions in which rules support bugs? Before answering
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this question, we need definitions of several kinds of global CA dynamics. That is, limiting dynamics for
the infinite system starting from a random initial state.

4.1 Global Dynamics: Definitions
Let us first present four fairly standard quantitative definitions.

� Global death is almost sure convergence to the limiting state of all 0 � s. That is, limt � ∞ ξt � x ��� 0
for all x 	 Z2, with probability one.� ξt fixates if for each x 	 Z2, ξt � x � eventually has period 1 in t, with probability one. That is,
limt � ∞ ξt � x � exists for all x, so each site changes state only finitely many times.� ξt is periodic if for each x 	 Z2, ξt � x � is eventually periodic in t, with probability one. That is, for
each x, there are positive finite integers n and N such that ξt � x ��� ξt � n � x � for all t

�
N.� ξt generates aperiodic dynamics if for each x 	 Z2, the sequence of 0 � s and 1 � s that occurs at that site

(i.e. � ξt � x � � t � 0 � 1 � 2 � � � � ) never cycles, with probability one. Such rules, though deterministic, behave
like traditional stochastic processes.

The limiting dynamics of a rule can be quite challenging to classify. For example, Life has been studied
for over 30 years, yet its classification remains elusive. Various camps claim that relaxation in Life occurs
at a small exponential rate [BB91] while others argue it is self-organized critical [BCC89]. A third
possibility is that Life supports indestructible local configurations that send out impenetrable streams of
glider-like creatures and thus does not stabilize eventually. Regardless of the final answer, it is clear that
Life is near some sort of “phase boundary” between aperiodic and periodic dynamics. Many of the LtL
rules which support bugs are similarly challenging to classify, while others would likely be classified
as aperiodic or even approaching global death. Eppstein [Epp00b] reports similar findings for nearest
neighbor two-dimensional CAs. That is, he describes various range 1 rules known to support spaceships
but whose global dynamics are not “Life-like.” Additionally, he provides an explanation of why these
findings put into question the usefulness of Wolfram’s famous universality classes [Wol94].

Here we are interested in whether rules are capable of supporting bugs and thus introduce the following
definition.

� Let SBug be the set of LtL rules that support at least one bug variety, regardless of their limiting
dynamics.

For lack of a quantitative definition we say that a rule is “Life-like” if it supports at least one bug variety
and its evolution from a random initial state is “reminiscent” of Life.

4.2 Bugs for Linear Rule Parameters
Proposition 1 Let ρ � 2. The LtL rule � ρ � 2ρ � 2ρ � 2ρ � 2ρ � is in SBug.

Proof By definition of a bug we need to show that there exists a finite configuration, Λ, of 1 � s, a finite
time τ, and a nonzero displacement vector �d such that T τ � Λ ��� Λ � �d. Let λ1 and λ2 be positive integers
such that λ1 � λ2 � 2ρ � 1 and 2 
 λ1 
 λ2. Let Λ be the configuration consisting of perpendicular
segments, one of length λ1 and the other of length λ2, separated by one site (see Figure 9). Then T 2 � Λ � �
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Fig. 9: Diagonal bug supported by LtL rule � ρ � 2ρ � 2ρ � 2ρ � 2ρ � , ρ � 2, τ � 2,
�

d � � 1 � 1 � , λ1 � λ2 � 2ρ � 1 � 2 � λ1 � λ2.

Λ � � 1 � 1 � . To see this, orient Λ so that the 0 between the two segments of 1 � s sits at the origin. Then the
set that Λ comprises is Λ � � � � 1 � 0 � � � � 2 � 0 � � #�#�# � � λ1 � 0 � � � 0 � � 1 � � � 0 � � 2 � � #�#�# � � 0 � � λ2 � � .

We check by hand to see that after one update the image of Λ under the CA rule T will comprise the set
that is the reflection of the above set about the 45 degree line and translated by the vector �u � � λ2

� ρ � ρ �
λ2 � 1 � . That is, it will comprise the set � � 0 � � 1 � � � 0 � � 2 � � #�#�# � � 0 � � λ1 � � � � 1 � 0 � � � � 2 � 0 � � #�#�# � � � λ2 � 0 � � � �u.

The checking we already did for Λ shows that after one update the image of the above set will comprise
the set � � � 1 � 0 � � � � 2 � 0 � � #�#�# � � � λ1 � 0 � � � 0 � � 1 � � � 0 � � 2 � � #�#�# � � 0 � � λ2 � � � �u � �w where �w � � ρ � λ2 � 1 � λ2

� ρ �
and this is Λ � � 1 � 1 � .
Proposition 2 Let ρ � 3. The LtL rule � ρ � 2ρ � 1 � 2ρ � 1 � 2ρ � 1 � 2ρ � 1 � is in SBug.

In [Evab] we prove Proposition 2 and describe additional bug geometry generalizations to arbitrarily
large ranges.

Based on empirical investigation we make the following:

Conjecture 1 Let ρ � 2k, k � 3 � 4 � 5 � #�#�# . If γ 	 � 2ρ � k � 1 � 2ρ � k � 1 � #�#�# � 2ρ � 2 � then the LtL rule� ρ � γ � γ � γ � γ � is in SBug.

Conjecture 2 Let ρ � 2k � 1, k � 2 � 3 � 4 � #�#�# . If γ 	 � 2ρ � k � 2ρ � k � 2 � #�#�# � 2ρ � 2 � then the LtL rule� ρ � γ � γ � γ � γ � is in SBug.

According to the propositions and conjectures, as the range increases so does the number of SBug rules.
These SBug rules with parameters that are linear in the range may be considered large range versions

of Life. That is, Life may be interpreted as the LtL rule � ρ � 2ρ � 1 � 2ρ � 1 � 2ρ � 1 � 2ρ � 2 � for ρ � 1. As
such, the endpoints for Life’s birth and survival intervals are linear functions of the range.

In general, there are many more rules near those described in the propositions and conjectures which
are known to support bugs. For example, in range 5 the following (nonexhaustive) set of rules are in
SBug: � 5 � 8 � 8 � 8 � j � , j � 9 � #�#�# � 14; � 5 � 9 � 9 � 9 � k � , k � 10 � 11 � #�#�# � 19; � 5 � 9 � 9 � l � l � , l � 3 � 4 � #�#�# � 23 � 25 � 26 � 28 � 29 � ,#�#�# � 121; � 5 � 9 � 9 � 29 � m � , m � 30 � #�#�# � 121; and � 5 � 10 � 10 � 10 � 11 � .

Let us look at the range 5 rule from Proposition 2.

Example 4 The LtL rule � 5 � 9 � 9 � 9 � 9 � supports a variety of orthogonal and diagonal bugs that emerge
from an initial state composed of Bernoulli product measure with density 1 � 10 (i.e. each site is occupied
independently with probability 1 � 10). If the density is much larger than 1 � 10 the rule will die out immedi-
ately on a small lattice. The rule’s evolution after 9 and 55 time steps is depicted in Figure 10. As seen in
the figure, at time 9 bugs are beginning to emerge from disordered regions. By time 55 self-organization
has taken place and only 1 diagonal and 5 orthogonal bugs remain. As the rule continues to update two
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of the bugs collide and annihilate due to periodic boundary conditions (i.e. opposite edges of the lattice
are identified). In the limit, 4 orthogonal bugs coexist without colliding due to their relative positions on
the lattice.

Fig. 10: Time 9 of LtL rule � 5 � 9 � 9 � 9 � 9 � run on a 200 � 200 lattice with periodic boundary conditions starting from
product measure with density 1

�
10 is on the left. Time 55 is on the right.

Let us look more closely at the bug varieties supported by this rule, which are depicted along with their
periods and displacement vectors in Figure 11. All of these bugs are representative of others supported
by rules in this region, where the rule parameters are linear functions of the range. That is, the bugs are
composed of line segments and look like various insects. As seen in the figure, this rule supports at least
three distinct orthogonal bugs and six distinct diagonal bugs. The bugs can be used to construct various
rakes, which are objects that emit streams of bugs and are periodic mod translation in the direction of a
nonzero vector �d. Some of these rakes are described in [Evaa].

1; (0,1)             2; (0,8)              2; (0,8)               4; (4,4)             4; ( 4,4)             4; (4,4)             4; (4,4)             2; (2,2)             2; ( 2,2)

Fig. 11: Family of bugs supported by LtL rule � 5 � 9 � 9 � 9 � 9 � . Below each bug are τ and
�

d � � d1 � d2 � , the bug’s period
and displacement vector, respectively.

Example 5 The LtL rule � 5 � 9 � 9 � 9 � 17 � is also in SBug, however, its limiting state is quite different from
the previous example. If started from a random initial state with a suitably chosen density, it eventually
fixates into a maze-like pattern. To illustrate that it both supports bugs and fixates in the limit we have
depicted in Figure 12 its evolution from an initially ordered state.

All of the rules � 5 � 9 � 9 � 9 � k � � k � 10 � 11 � #�#�# � 16 between Examples 4 and 5 are in SBug and their global
dynamics would likely be described as Life-like for k � 10 � 11 � 12 � 13 � 14, and aperiodic for k � 15 � 16.
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Fig. 12: Times 89 and 231 of � 5 � 9 � 9 � 9 � 17 � started from the initially ordered state of two of the rule’s period 4
orthogonal bugs and two small sets of 1

�
s on a 200 � 200 lattice. The bugs are assimilated by time 231 into the fixed

maze-like pattern of the limiting state.

The reader is encouraged to experiment with these rules using the software described in Section 5 on
page 190. A bug-searching tip: as the range increases so must the lattice size, while the density of the
initial state’s product measure must decrease.

4.3 Bugs for Quadratic Rule Parameters
In the previous section we interpreted Life’s parameters as linear functions of the range and described a
region of LtL space that contains linear Life generalizations. Let us now present a strategy to find a region
of LtL space that contains quadratic Life generalizations. That is, Life-like rules whose parameters are
quadratic functions of the range.

The strategy requires the following mapping from range ρ̄ LtL rules to range ρ LtL rules:

� � ρ̄ � β1 � β2 � δ1 � δ2 � � ��� � ρ � � � β1
�

1 � 2 � γ � ��� � β2 � 1 � 2 � γ � � � � δ1
�

1 � 2 � γ � ��� � δ2 � 1 � 2 � γ � � ,
where γ ��� � 2ρ � 1 � � � 2ρ̄ � 1 � � 2.

The mapping scales the range ρ̄ LtL rule parameters by γ, which is quadratic in ρ. The following is a
procedure for finding range ρ LtL rules that are in SBug:

� Fix a range ρ � 2.

� Map Life to a rule in range ρ. That is, � 1 � 3 � 3 � 3 � 4 � � ��� � ρ � � 2 # 5γ � ��� 3 # 5γ � � � 2 # 5γ � ��� 4 # 5γ � � , where
γ � � 2ρ � 1 � 2 � 9.

� Explore this and nearby rules.

Example 6 The mapping from Life to range 5 yields the LtL rule � 5 � 34 � 47 � 34 � 60 � . Starting from product
measure with density 1 � 2 on a 400 � 400 lattice, this rule yields various still lifes, oscillators, and invari-
ant bugs by time 10. However, these local structures are surrounded by aperiodic dynamics which quickly
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Fig. 13: The left half of the figure is time 10 of LtL rule � 5 � 34 � 47 � 34 � 60 � run on a 400 � 400 lattice with periodic
boundary conditions starting from product measure with density 1

�
2. The right half depicts time 200.

Fig. 14: Local structures supported by LtL rule � 5 � 34 � 47 � 34 � 60 � . From left to right: a still life, one phase of a blinker,
one phase of a period 8 oscillator, and an invariant bug with

�

d � � 1 � 0 � .

Fig. 15: The left half of the figure is time 10 of LtL rule � 5 � 34 � 45 � 34 � 58 � run on a 400 � 400 lattice with periodic
boundary conditions starting from product measure with density 1

�
2. The right half depicts time 200.

destroys them. This evolution continues with stable local structures emerging and being destroyed. Times
10 and 200 are depicted in Figure 13. The rule’s invariant bug is depicted in Figure 14 along with a still
life, one phase of a blinker, and one phase of a period 8 oscillator.
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1; (0,1)            2; (0,2)               6; (0,5)   ��������� 	�
 � 2, (0,8)              13; (0,7)

10; (6,6)          42; (23,23)            16; (8,8)   	���� 
�� ��


Fig. 16: Family of bugs supported by LtL rule � 5 � 34 � 45 � 34 � 58 � . Below each bug are τ and
�

d � � d1 � d2 � , the bug’s
period and displacement vector, respectively.

Fig. 17: Time 134 of LtL rule � 5 � 34 � 41 � 34 � 58 � appears on the left. Its period 4 disoriented bug (
�

d � ��� 4 ��� 1 � ) and
period 11 diagonal bug (

�

d � ��� 6 ��� 6 � ) are in the northeast corner, headed for the large growing region. By time 537,
on the right, the pattern composed of approximations to vertical and horizontal stripes has assimilated the bugs and
all sites of the 200 � 200 lattice.

Example 7 The LtL rule � 5 � 34 � 45 � 34 � 58 � supports a variety of orthogonal, diagonal, and disoriented
bugs that emerge from an initial state composed of product measure with density 1 � 2. The rule’s evolution
is depicted in Figure 15. As illustrated, self-organization has already taken place by time 10 and by time
200 the number of aperiodic regions has decreased. The time slices show that this rule is quite different
from the nearby rule � 5 � 34 � 47 � 34 � 60 � from Example 6. Both started from product measure with density
1 � 2 on a 400 � 400 lattice with periodic boundary conditions and both support bugs and other local
structures, yet this one settles down over time, while the other would likely be classified as aperiodic.

Several of the bug varieties supported by this rule were described in Example 2 on page 181. More are
depicted in Figure 16 along with their periods and displacement vectors. The rule’s period 166 oscillator
named Bosco, which was described in Example 1 on page 179 can be used to construct various bug guns,
which are stationary patterns that emit bugs forever [Sil]. Many of these are described in [Evaa].

Example 8 The rule � 5 � 34 � 41 � 34 � 58 � is in SBug and its limiting dynamics fixates in a pattern composed
of approximations to vertical and horizontal stripes. Figure 17 depicts times 134 and 537 started from an



Larger than Life: Digital Creatures in a Family of Two-Dimensional Cellular Automata 189

initially ordered state that included a period 6 disoriented bug ( �d � � � 4 � � 1 � ) and a period 11 diagonal
bug ( �d � � � 6 � � 6 � ). As illustrated in the figure, the bugs are still viable at time 134, but by time 537 they
have been assimilated into the fixed pattern of the limiting state.

There are many more rules near � 5 � 34 � 47 � 34 � 60 � that are in SBug. For example, restricting our at-
tention to rules of the form � 5 � 34 � β2 � 34 � δ2 � , the following is a (nonexhaustive) set of � β2 � δ2 � values
for which the rules are in SBug: � j � 60 � , j � 45 � 46; � k � 59 � , k � 42 � 43 � #�#�# � 51; � l � 58 � , l � 41 � 42 � #�#�# � 53;� m � 57 � , m � 40 � 41 � #�#�# � 47; � n � 56 � , n � 39 � 40 � #�#�# � 45.

4.4 Connecting Linear and Quadratic Life Generalizations

(8,8,10)           (9,9,9)           (10,11,12)           (11,12,15)           (12,14,1��� �����	� ��
	� ��
�� ����
	� ���	� 15)
2; (0,9)           2; (0,8)             2; (0,7)                4; (0,9)              8, (11,11)              4; (6,3)                3; (0,3)

(15,18,18)      (16,20,17)         (17,21,22)           (18,20,23)           (19,25,22) � 
��	� 
�
	� 
 7� � 
	��� 
��	� 
 6)
2; (0,1)          2; (0,5)               2; (0,1)                3; (0,1)                1, (0,2)                 7; (0,5)                2; (0,1)

(22,30,26)       (23,34,28)          (24,35,3
�� � 
��	� ���	� ����� � 
 6,39,34)             (27,32,42)           (28,35,45)
3; (0,1)           6; (0,1)              2; (0,1)               2; (0,1)                4, (0,1)                  4; (0,4)                 4; (0,1)

(29,36,46)       (30,41,47)         (31,43, ����� � ��
	� 
�
	� ��
�� � ���	� 
��	� 56� � ��
	� 
��	� � 7� � ���	� 
 6,63) 
 6; (0,6)          15; (0,11)            1; (0,1)               1; (0,1)                1, (0,1)                  1; (0,1)                 1; (0,1)

11; (0,6)         1; (0,1)               6; (0,6)               1; (0,1)                 1, (0,1)                  1; (0,1)                1; (0,1)
(36,49,64)      (37,53,66)         (38,58,66)          (39,57,70)           (40,60,73)             (41,66,76)          (42,68,76)

Fig. 18: Range 5 bug collection. Below each bug are the parameters � β1 � δ1 � β2 � δ2 � for the LtL rule that supports
the bug. Also depicted are τ and

�

d � � d1 � d2 � , the bug’s period and displacement vector, respectively.

We have seen that SBug rules live in distinct and distant regions of LtL parameter space. That is, there
are range ρ � 2 LtL rules with β1 � δ1 � 2ρ that are in SBug and rules with β1 � δ1 � �

2 # 5γ � where
γ � � 2ρ � 1 � 2 � 9 that are in SBug. There are thus ρ2 � 2 values that β1 � δ1 may take on that lie “between”
the distinct regions. The question thus arises: Are there SBug rules for these intermediate parameter
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values? In [Eva96] we show that there is a path-connected set of SBug rules between and beyond these
regions in range 2 LtL parameter space. Figure 18 is empirical evidence which suggests that there is a
similarly connected set of range 5 SBug rules. For each β1 � δ1 from 8 to 42 the figure depicts one bug
along with the parameter values for its supporting rule, its period, and its displacement vector.

The figure is only a sample of the numerous and varied range 5 bugs and their supporting rules. Using
the linear rule parameters given in Section 4.2 on page 183 it is relatively easy to find SBug rules for
β1 � δ1 � 8 � 9 � 10. The rule supporting the β1 � δ1 � 9 bug in the figure was discussed in detail in
Example 4 on page 184. Similarly, using the procedure described in Section 4.3 on page 186, it is relatively
easy to find SBug rules for β1 � δ1 � 27 � 28 � #�#�# � 36. The β1 � δ1 � 34 bug in the figure is supported by
several rules, including � 5 � 34 � 45 � 34 � 58 � , which was discussed in several examples. However, finding
SBug rules for β1 � δ1 � 11 � 12 � #�#�# � 26 and β1 � δ1 � 37 � 38 � #�#�# � 42 is a more challenging endeavor.

A “phase transition” in bug geometries occurs in the fourth row of the figure and another occurs in
the bottom row. A transition in rule parameter values occurs in the third row. We have yet to explore in
depth the reasons for these transitions, but such a project would benefit greatly from an automated search.
To this end, we plan to modify one or more of the many programs that search for spaceships supported
by rules with Moore neighborhoods [Epp00b]. These sophisticated search programs might shed light
on some of these questions and along the way discover new bug varieties and local configurations as yet
unimagined.

5 Technology
All of the experimental work described in this paper was done using Bob Fisch and David Griffeath’s
WinCA or Mirek Wójtowicz’s MCell, both of which are CA modeling environments for the PC and avail-
able as freeware from [Gri]. Though WinCA is the older program whose editing capabilities are modest
(interaction with a paint program is necessary for creating detailed initial states) it is still superior for
running large experiments from random initial states and for running LtL rules with ranges greater than
10. MCell is excellent for editing on the fly and working with small configurations. In addition a java
applet is available and MCell’s capabilities continue to improve.
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