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This paper discusses various deformations of free associative algebras and of their convolution algebras. Our main
examples are deformations of noncommutative symmetric functions related to families of idempotents in descent
algebras, and a simpleq-analogue of the shuffle product, which has unexpected connections with quantum groups,
hyperplane arrangements, and certain questions in mathematical physics (the quon algebra, generalized Brownian
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1 Introduction
This article is devoted to the investigation of certain deformations of free associative (or tensor) algebras
and of their convolution algebras. Typically, the deformations we are interested independ on one or
several parameters and are trivial in the sense of the deformation theoryof algebras. That is, for generic
values of these parameters there exists a conjugating isomorphism

u� v = f(f�1(u)f�1(v))

between the deformed product� and the original one. However, for specific values of the parameters,
the deformed product degenerates in a non-trivial way, a situation which allows for the representation of
complicated algebras as limiting cases of well-understood ones.
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The motivation for this investigation was provided by examples of direct sum decompositions of the
free associative algebraKhAi, regarded as the universal enveloping algebra of the free Lie algebraL(A)

KhAi =
M
�

U� (1)

analogous to the Poincar´e–Birkhoff–Witt decomposition, i.e.� runs through the set of all partitions,
U0 = K andU1 = L(A).

In these examples, each moduleU� is the image of the homogeneous componentKhAin of degreen
of KhAi by a certain idempotente� of the group algebra of the symmetric groupK[Sn], acting on the
right by (x1x2 � � �xn) � � = x�(1)x�(2) � � �x�(n) (wherexi 2 A).

In the case of the Poincar´e–Birkhoff–Witt decomposition, coming from the identification ofKhAi with
the symmetric algebraS(L(A)), U� is the subspace spanned by symmetrized products of Lie polynomials

(P1; P2; : : : ; Pr) =
1

r!

X
�2Sr

P�(1)P�(2) � � �P�(r)

such that eachPi is homogeneous of degree�i. The corresponding idempotents, introduced by Garsia and
Reutenauer [1], are refinements of the so called Eulerian idempotents (cf. Reutenauer [2]), which arise,
for example, in the computation of the Hausdorff series [3], or in the study of the Hochschild cohomology
of commutative algebras [4, 5].

The Garsia–Reutenauer idempotentse� form, taking all partitions of a givenn, a complete set of
orthogonal idempotents of a remarkable subalgebra�n of K[Sn], discovered by Solomon [6] and called
the descent algebra. It has been shown [7] that such complete sets can be constructed for all descent
algebras from any sequence(en) of Lie idempotentsof �n, i.e. idempotents projectingKhAin onto
Ln(A). In particular, using the deformation theory of noncommutative symmetric functions, onecan
obtain interesting sequences of Lie idempotents, depending on one or more parameters, and interpolating
in a natural way between all known examples [8, 7]. This leads to various deformations of the Garsia–
Reutenauer idempotents and of the Eulerian idempotents, and the first question is certainly to explicit
the modulesU� onto which they project. The deformation technique presented in Sect. 3 provides the
following answer (Sect. 7, Prop. 7.4):

There exists for eachn a vectorp = (pI) indexed by compositions ofn, satisfying
P

I pI =
1, such thatU� is spanned by the weighted symmetrized products

(P1; P2; : : : ; Pr)p =
X
�2Sr

p���P�(1)P�(2) � � �P�(r)

where� = (�1; : : : ; �r) and eachPi 2 L�i
(A).

The weightspI are explicited for several interesting examples.
The only recorded example of decomposition (1) which does not come from a sequence of Lie idempo-

tents in descent algebras is the so-calledorthogonal decomposition(cf. Duchamp [9]). It has been shown
by Ree [10] that if one endowsKhAi with the scalar product for which words form an othonormal basis,
the orthogonal complement ofL(A) is the space spanned by proper shufflesu v, u; v 6= 1. The orthog-
onal Lie idempotent�n is the orthogonal projector fromKhAin ontoLn(A). This idempotent is not in
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the descent algebra, and it would be of interest to understand its structure. The orthogonal decomposition
of theKhAi can be refined into a decomposition of type (1), whereU� is now spanned by shuffles of
homogeneous Lie elements

P1 P2 � � � Pr

with eachPi of degree�i. The relationship between the projectors�n = e(n) of this decomposition and
the other projectorse� is somewhat analogous to that encountered in the case of the descent algebra, but
considerably more intricate.

To understand this analogy, we were led to introduce aq-analogue of the shuffle product, which strictly
speaking, is rather a deformation of the concatenation product (obtained forq = 0), recursively defined
by

au�q bv = a(u �q bv) + qjaujb(au�q v) (2)

wherea; b 2 A andu; v 2 A�. This product degenerates at roots of unity, and in particular gives the
standard (commutative) shuffle product forq = 1. We conjecture that its convolution algebra degenerates
for q ! 1 into a commutative algebra which is associated with a Ree type decomposition

KhAi = K � L � L L� � � �

whereL is a subspace which has the same Hilbert series as the free Lie algebra (this subspace can be
explicited). A challenging problem would be to find a good deformation of the shuffle product giving the
convolution algebra relevant to the case of the orthogonal idempotent as a degenerate case.

It turns out that theq-shuffle, as well as the elementsUn(q) =
P

�2Sn
q`(�)�, which are naturally

associated with it, have already occured in the literature in several apparently unrelated contexts.
First, theq-shuffle algebra is the simplest non-trivial case of a very general construction due to Rosso,

obtained in the context of the theory of quantum groups. Moreover, theq-shuffle algebra is isomorphic to
the free associative algebra iffUn(q) is invertible for alln. The computation of the determinant ofUn(q)
(regarded as an operator of the regular representation ofSn) already occured in a problem of physics
(the Hilbert space representability of the quon algebra, describing hypothetical particles violating Bose
or Fermi statistics [11]), and was solved by Zagier, who also computedUn(q)

�1 by means of certain
factorization formulas. The same problem was also solved independently by Bożejko andSpeicher [12]
who encountered it in the investigation of a generalization of Brownian motion. Surprisingly enough,
Zagier’s formula fordetUn(q) turns out to be a special case of a recent formula of Varchenko [13], giving
the determinant of what he calls the quantum bilinear form of a hyperplane arrangement. To complete
the picture, we mention that theq-shuffle also has a natural interpretation whithin the representation
theory of the0-Hecke algebras of typeA [15]. These aspects of theq-shuffle are reviewed, and the
various connections are exploited in order to give generalizations or simplifications ofknown results
when possible. For example, we will see that one can construct a quantum shuffle from any solution of the
Yang–Baxter equation (without spectral parameters), and that the Hall–Littlewood symmetric functions
or theq-Fock spaces of Kashiwara, Miwa and Stern [16] can be regarded as examples ofthis construction.
Also, we generalize Zagier’s factorizations to identities in the algebra of the infinite braidgroup, and give
some applications (some similar results were obtained independently by Meljanac and Svrtan [17]).

This paper is structured as follows. We first recall the basic definitions concerning noncommutative
symmetric functions [18], which provide the convenient formalism for computing in convolution algebras
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(Sect. 2). Next, we present a general deformation pattern and give some simple properties (Sect. 3). In
Sect. 4 we introduce theq-shuffle and derive its fundamental properties. We review the quon algebra,
the work of Zagier, and give some details on the interpretation in terms ofthe0-Hecke algebra. In Sect.
5, we study theq-shuffle algebra as a Hopf algebra, and present our conjecture concerning the limit
q ! 1 of its convolution algebra. In Sect. 6, we discuss Rosso’s quantum shuffles and exhibit some
new examples. Next, we generalize to the braid group some of the formulas which occured inthe study
of theq-shuffle, explain the connection with Varchenko’s construction, and illustrate the general results
on an example constructed from the standard Hecke-type solution of the Yang–Baxter equation. Finally,
Sect. 7 is devoted to the description of the decompositions of the free associative algebra obtained from
deformations of the Garsia–Reutenauer idempotents.

2 Noncommutative Symmetric Functions
2.1 Definitions
The algebra ofnoncommutative symmetric functions, defined in Gelfandet al. [18], is the free associative
algebraSym = QhS1; S2; : : :i generated by an infinite sequence of noncommutative indeterminatesSk,
called thecompletesymmetric functions. We set for convenienceS0 = 1. Let t be another variable
commuting with all theSk. Introducing the generating series

�(t) :=

1X
k=0

Sk t
k

one defines other families of noncommutative symmetric functions by the following relations:

�(t) = �(�t)�1

d

dt
�(t) = �(t) (t) ; �(t) = exp(�(t))

where�(t),  (t) and�(t) are the generating series

�(t) :=

1X
k=0

�k t
k

 (t) :=

1X
k=1

	k t
k�1 ; �(t) :=

1X
k=1

�k

k
tk

The noncommutative symmetric functions�k are calledelementary functions, and	k and�k are respec-
tively calledpower sumsof first andsecond kind.

The algebraSym is graded by the weight functionw defined byw(Sk) = k. Its homogeneous com-
ponent of weightn is denoted bySymn. If (Fn) is a sequence of noncommutative symmetric functions
with Fn 2 Symn for n � 1, we set for a compositionI = (i1; : : : ; ir)

F I = Fi1 Fi2 : : : Fir

The families(SI ), (�I), (	I) and(�I) are homogeneous bases ofSym.
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The algebraSym can also be endowed with a Hopf algebra structure. Its coproduct� is defined by
any of the following equivalent formulas:

�(Sn) =

nX
k=0

Sk 
 Sn�k �(�n) =

nX
k=0

�k 
 �n�k

�(	n) = 1
	n + 	n 
 1 �(�n) = 1
 �n + �n 
 1

The free Lie algebraL = L(�) generated by the family(�n)n�1 is then the Lie algebra of primitive
elements for�.

The set of all compositions of a given integern is equipped with thereverse refinement order, denoted
�. For instance, the compositionsJ of 4 such thatJ � (1; 2; 1) are exactly(1; 2; 1), (3; 1), (1; 3) and
(4). Theribbon Schur functions(RI), originally defined in terms of quasi-determinants (cf. Gelfand and
Retakh [19, 20]), can also be defined by one of the two equivalent relations:

SI =
X
J�I

RI RI =
X
J�I

(�1)`(I)�`(J) SJ

where`(I) denotes thelengthof the compositionI. One can easily check that the family(RI) is a
homogenous basis ofSym.

The commutative image of a noncommutative symmetric functionF is the (commutative) symmetric
function f obtained by applying toF the algebra morphism which mapsSn ontohn (using here the
notations of Macdonald [21]). The commutative image of�n is en and the power sums	n and�n are
both mapped topn. Finally,RI is sent to an ordinary ribbon Schur function, which will be denoted byrI .

2.2 Relations with Solomon’s Descent Algebra
There is a noncommutative analog of the well known correspondence between symmetric functions and
characters of symmetric groups, where the character ring of a symmetric group is replaced by the descent
algebra, in the sense of Solomon [6]. Recall that an integeri 2 [1; n � 1] is said to be adescentof a
permutation� 2 Sn iff �(i) > �(i + 1). Thedescent setof a permutation� 2 Sn is the subset of
[1; n� 1] consisting of all descents of�. If I = (i1; : : : ; ir) is a composition ofn, one associates with
it the subsetD(I) = f d1; : : : ; dr�1 g of [1; n � 1] defined bydk = i1 + � � � + ik. Let DI be the sum
in Z[Sn] of all permutations with descent setD(I). Solomon showed that theDI form a basis of a
subalgebra ofZ[Sn] which is called thedescent algebraofSn and denoted by�n [6]. One can define
an isomorphism of graded vector spaces:

� : Sym =

1M
n=0

Symn �! � =

1M
n=0

�n

by
�(RI) = DI

The direct sum� can be endowed with an algebra structure by extending the natural product of its com-
ponents�n, settingxy = 0 for x 2 �p andy 2 �q whenp 6= q. Theinternal product� onSym is then
defined by requiring that� be ananti-isomorphism, i.e. by

F �G = ��1(�(G) � �(F ))
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for F;G 2 Sym. The fundamental property for computing with the internal product is the following
formula:

Proposition 2.1 [18] LetF1; F2; : : : ; Fr; G be noncommutative symmetric functions. Then,

(F1F2 : : : Fr) �G = �r [(F1 
 F2 
 � � � 
 Fr) ��
r(G)]

where in the right-hand side,�r denotes ther-fold ordinary multiplication and� stands for the operation
induced onSym
n by�.

2.3 Quasi-symmetric Functions
As shown by Malvenuto and Reutenauer [22], the algebra of noncommutative symmetric functions is in
natural duality with the algebra of quasi-symmetric functions, introduced by Gessel [23].

Let X = fx1; x2; : : : ; xn : : :g be a totally ordered infinite alphabet. An elementf 2 C[X] is said
to be aquasi-symmetric functioniff for any compositionK = (k1; : : : ; km) andxi; yj 2 X such that
y1 < y2 < � � � < ym andz1 < z2 < � � � < zm, one has

(f j yk11 yk22 : : : ykmm ) = (f j zk11 zk22 : : : zkmm )

where(f; jxK) denotes the coefficient of the monomialxK in f . The quasi-symmetric functions form a
subalgebra ofC[X] denoted byQSym.

One associates to a compositionI = (i1; i2; : : : ; im) thequasi-monomial functionMI defined by

MI =
X

y1<y2<���<ym

yi11 yi22 : : : yimm

The family of quasi-monomial functions is clearly a basis ofQSym. Another important basis ofQSym
is formed by thequasi-ribbon functions, defined by

FI =
X
J�I

MJ

where� is the refinement order (i.e.J � I iff D(J) � D(I)). For example,F122 = M122 +M1112 +
M1211+M11111.

The duality betweenSym andQSym is realized by the pairing

hSI ;MJ i = �I;J or hRI ; FJi = �I;J

The Hopf algebraQSym can then be identified with the (graded) Hopf algebra dual ofSym.

2.4 Differences and Products of Alphabets
We recall here some basic definitions concerning transformations of alphabets. We refer elsewhere [7]
for more details. The basic idea is to embed noncommutative symmetric functions in anoncommutative
polynomial algebra (for example, by defining�(A; t) =

Q
i�1(1 � tai)

�1 for some noncommutative
alphabetA), and then to regard the images of the generatorsSn(A) by an algebra morphism as being the
symmetric functionsSn(A0) of another alphabetA0, which can sometimes be explicit, but may also be



Noncommutative symmetric functions III 165

virtual. For example, the formal difference of two genuine alphabetsA andB is generally only a virtual
alphabet, having nevertheless well-defined symmetric functions, expressible in terms of those ofA and
B.

We first recall the definition of the product of a totally ordered alphabet by a noncommutative alphabet.

Definition 2.2 LetX be a totally ordered commutative alphabet and letA be a noncommutativealphabet.
The complete symmetric functionsSn(XA) of the alphabetXA are defined by the generating series

�(XA; t) =
X
n�0

Sn(XA) tn :=
Y
x2X

�(A;xt)

the product being taken according to the total ordering ofX.

Example 2.3 LetXq = 1=(1� q) denote the totally ordered alphabetXq = f � � �< qn < � � � < q < 1 g.
The complete symmetric functions of the alphabetA=(1� q) are

�

�
A

1� q
; t

�
=
X
n�0

Sn

�
A

1� q

�
tn :=

 Y
n�0

�(A; qn t)

We recall the following important property [7]:

Proposition 2.4 LetX;Y be two totally ordered commutative alphabets and letA be a noncommutative
alphabet. Then, for anyFn ofSymn,

Fn((X � Y )A) = Fn(XA) � Sn(Y A)

whereX � Y denotes the direct product of the two alphabetsX andY endowed with the lexicographic
ordering.

This property suggests the notationSn(A=X) for the�-inverse ofSn(XA) in Symn.
Finally, here is the definition of the difference of two noncommutative alphabets.

Definition 2.5 LetA;B be two noncommutative alphabets. The complete symmetric functionsSn(A�B)
of the alphabetA� B are defined by the generating series

�(A �B; t) =
X
n�0

Sn(A� B) tn := �(B; t)�1 �(A; t) = �(B;�t)�(A; t)

The notation(1� q)A = A� qA therefore denotes the alphabet whose complete symmetric functions
are

�((1� q)A; t) =
X
n�0

Sn((1� q)A) tn := �(A;�qt)�(A; t)

These notations are coherent since it can be checked thatSn((1�q)A) is actually the inverse ofSn(A=(1�
q)) in Symn for the internal product.

3 Deformations of Cauchy and Convolution Products
In the sequel,K will denote a field of characteristic0, andA will always be an infinite alphabet whose
letters are indexed byN�, i.e.A = f a1; a2; : : : ; an; : : :g.
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3.1 The General Case
Consider, for alln � 1, an invertible element

�n =
X
�2Sn

b(n)� � 2 K[Sn]

We require that�1 = IdS1 . This data defines a linear operator� onKhAi by

�(ai1 : : : ain) = ai1 : : : ain � �n =
X
�2Sn

b(n)� ai�(1) : : : ai�(n)

whereai1 ; : : : ; ain 2 A.
This allows us to equipKhAi with a new product�� , defined by

u�� v = �(��1(u) � ��1(v)) (3)

for u; v of A�. In other terms, this product is defined in such a way that� becomes an isomorphism of
algebras betweenKhAi equipped with its usual concatenation (or Cauchy) product andKhAi equipped
with the new product�� .

Thus,(KhAi;��) is a free associative algebra on�(A) = �1(A) = A. It is therefore endowed with a
canonical comultiplicationc� , defined by

c�(a) = 1
 a+ a
 1

for a 2 A, and by the requirement thatc� is an algebra morphism for�� .
Let C�(A) be the convolution algebra of the Hopf algebra(KhAi;�� ; c�), i.e. C�(A) = End grKhAi

endowed with the convolution product

f ��� g = �� � (f 
 g) � c� (4)

where�� : u
 v 7! u�� v is the multiplication. When� = I, it is well known that the direct sum of the
group algebras of all symmetric groups

K[S] =
M
n�0

K[Sn] (5)

is a subalgebra of the convolution algebra (cf. Reutenauer [2]). This is also true for the�-deformed
products.

Proposition 3.1 The�-convolution algebra(K[S];���) is isomorphic to the usual convolution algebra
(K[S];��) (which corresponds to the case where� is the identity).

Proof Let c be the comultiplication ofKhAi (for its usual Cauchy structure) making letters primitive. By
definition of�� ,

�(a1 : : : an) = a1 �� � � � �� an

for ai of A. Using this property, it is easy to see that the following diagram is commutative:
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KhAi 
KhAi KhAi 
KhAi-
� 
 �

KhAi KhAi-�

?

c

?

c�

In other words,c� = (� 
 �) � c � ��1, so that

� ��� � = �� � (� 
 � ) � c�

= � � � � (��1 
 ��1) � (� 
 � ) � (� 
 �) � c � ��1

= � � � �
�
(��1 � � � �) 
 (��1 � � � �)

�
� c � ��1

where we identify an elementx of K[S] with the endomorphism corresponding to its left actiony �!

x� y onK[S] (� denotes here the usual concatenation product ofKhAi). Consider now the bijectionf�
fromK[S] into itself defined by

f�(�) = �n � � � �
�1
n

for � 2Sn. We have just proved that

f�(� ��� � ) = f�(�) �� f�(� ) (6)

andf� is the required isomorphism. 2

Note 3.2 The definition of� shows that

� � �(� ) = �(� � � )

for any two permutations� and� . This just means that the left and right actions of the symmetric group
commute. One can then easily check that

� ��� � = �(� �� � ) (7)

for permutations� and� of arbitrary orders.

Consider now the subalgebra�� of (K[S];���) which is generated by all the elementsIdn = 12 : : : n

for everyn � 0. When� is the identity ofKhAi, �� is isomorphic to the direct sum� of all descent alge-
bras equipped with the convolution product (cf. Reutenauer [2]), hence to the algebra of noncommutative
symmetric functions (cf. Sect. 2). An explicit isomorphism between thesealgebras is given by

Si1 Si2 : : : Sin �! Idi1 �� Idi2 �� � � � �� Idin

One can deform this isomorphism by constructing a new isomorphism denoted�� from Sym into ��

which maps the complete functionSI (whereI = (i1; : : : ; in) is a composition) to the convolution
product

Idi1 ��� Idi2 ��� � � � ��� Idin
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It is interesting to observe that the isomorphism�� can be seen as a deformation of the classical inter-
pretation� of noncommutative symmetric functions into Solomon’s descent algebra. One can therefore
obtain by this method different interpretations of noncommutative symmetric functions. The following
result gives an explicit expression for the deformed interpretation map��:

Proposition 3.3 For Fn 2 Symn,

��(Fn) = ��1
n � �(Fn) � �n (8)

Proof With the same notations as in the proof of Proposition 3.1, one has

f�(��(S
I )) = f�(Idi1 ��� � � � ��� Idin) = f�(Idi1) �� � � � �� f�(Idin) = �(SI)

according to (6), and to the fact thatf�(Idk) = Idk for everyk � 0. Hence,f�(��(SI )) = �(SI ). That
is,��(SI ) = ��1

n � �(SI ) � �n. 2

As an immediate consequence, we can state:

Corollary 3.4 The convolution algebra�� is a subalgebra ofK[S] equiped with the usual composition
product.

Proof Let x andy be two homogenous elements of the same ordern of ��. By construction, there exists
two elementsf andg of Symn such thatx = ��(f) andy = ��(g). It follows then from Proposition
3.3 that

x � y = (��1
n � �(f) � �n) � (�

�1
n � �(g) � �n)

= ��1
n � �(f) � �(g) � �n

= ��1
n � �(g � f) � �n

= ��(g � f) 2 ��

2

Note 3.5 The proof of the corollary shows that

��(F ) � ��(G) = ��(G � F )

for homogenous elementsF;G of the same weight ofSym. It follows in particular that the image by��
of a homogenous idempotent ofSym (for the internal product) is still an idempotent in��.

Example 3.6 Let us explicit the interpretation of the image by�� of the Eulerian idempotent�n (which
is the image by� of the element�n=n of Symn). Let L denote the image of the free Lie algebraL(A)
by�. Transporting by� the Poincar´e-Birkhoff-Witt decomposition ofKhAi, we obtain

KhAi = K � L � (L;L)� � : : : � (L; : : : ;L| {z }
n terms

)� � : : :

where

(x1; : : : ; xn)� =
1

n!

� X
�2Sn

x�(1) �� � � � �� x�(n)

�
forx1; : : : ; xn 2 KhAi. Then,��(�n=n) = �n��n��n is the idempotent corresponding to the projection
of the homogenous component of degreen of L with respect to the above direct sum decomposition of
KhAi.
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Note 3.7 In many interesting cases, the elements�n = �n(q) depend on some parameterq and are
invertible for generic values ofq. In such situations, the convolution algebra��(q) degenerates when
q takes a valueq0 for which � = �(q) is not an isomorphism. We will, however, still use the notation
��(q0) to denote the limit of��(q) for q ! q0 whenever it exists. Several interesting problems arise in
the investigation of these degenerate convolution algebras.

Note 3.8 The framework presented here can be easily generalized to some other situations. Among them
is the case of the so-calledorthogonal Lie idempotent[9, 2]. The orthogonal Lie idempotent�n is the
idempotent ofQ[Sn] which corresponds to the orthogonal projection fromKhAi (endowed with its
standard scalar product for which words form an orthonormal basis) onto the homogenous component
L(A)n of ordern of the free Lie algebraL(A). �n is also the projection ontoL(A)n with respect to the
decomposition ofKhAi given by Ree’s theorem, i.e.

KhAi = K � L(A) � L(A) L(A) � : : : � L(A) : : : L(A)| {z }
n terms

� : : :

where denotes the usual shuffle product onQhAi.
Let B be any linear basis ofL(A). The shuffle algebra(QhAi; ) is a free commutative algebra with

B as generating family (cf. Reutenauer [2]). This property allows us to define a comultiplicationc on
QhAi by

1. c (L) = 1
 L + L 
 1 for every Lie elementL 2 L(A);

2. c (P Q) = c (P ) ( 
 ) c (Q) for every polynomialsP;Q 2 QhAi.

One can then consider the associated convolution product�� onQ[S], defined by

� �� � = � (� 
 � ) � c (1 2 : : : n+m)

for � 2 Sn and � 2 Sm. The commutativity of the shuffle product implies the cocommutativity
of c . Hence the convolution algebra(Q[S];�� ) is here commutative. It follows that its subalgebra
� generated by the identity elements of all symmetric groups is also commutative. Consider now the
morphism fromSym into� defined as in the general case by

� (S(i1 ;:::;in)) = Idi1 �� � � � �� Idin

This is a degenerate situation in which the image by� of the algebra of noncommutative symmetric
functions is not isomorphic to Solomon’s descent algebra. The generic interpretation of the image by�
of the Eulerian idempotent�n given in Example 3.6 is, however, still valid here. It follows from this
interpretation that Ree’s decomposition is equivalent to

� (�n) = n � �n

It follows that�n belongs to the homogenous component�
(n) of ordern of �. It is easy to see that this

set is a subalgebra ofK[Sn] of dimensionp(n) (the number of partitions ofn). An interesting question
would be to characterize this subalgebra and to give explicit formulas for the images of thestandard
bases ofSym by � . The decomposition of�n on such bases would then be immediately given by
decomposition relations of�n in Sym.
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Example 3.9 Let us describe�(n) for n = 2 andn = 3. In the first case,�(2) is just the descent algebra

�2 = Q[S2]. In the second case,�(3) is the commutative algebra spanned by

� (R3) = 123 ; � (R12) = � (R21) =
1

2

�
132 + 213+ 231+ 312

�
; � (R111) = 321

and the orthogonal projector is

�3 = � (�3) = �

�
R3 �

1

2
R21 �

1

2
R21 + R111

�
= 123�

1

2
(132 + 213+ 231+ 312) + 321

It is also interesting to see that the image by� of the homogenous componentLn(	) of ordern of the
free Lie algebraL(	) � Sym generated by the family(	n)n�1 (or equivalently by the family(�n)n�1)
collapses here onto a line, which is necessarily equal toQ�n.

3.2 Deformations Using Noncommutative Symmetric Functions
Here is an interesting special case of the previous constructions. LetF = (Fn)n�1 be a family of elements
of Symn, with F1 = S1. We assume that everyFn is invertible for the internal product ofSymn. We
can then consider the bijection�n defined by

�n = �(Fn)

where we identify an element ofK[Sn] with the linear morphism defined by its right action. In other
words,�n is given by

�n : x 2 K[Sn] �! x � �(Fn)

Denote by�F the product ofKhAi associated with the family(�n)n�1 by the above construction. We
also denote by��F and�F the corresponding convolution product and interpretation morphism (ofSym

into the convolution algebra�F = ��).
Note first that Proposition 3.3 shows that the image of�F is here exactly Solomon’s descent algebra.

Using��1, we can therefore reinterpret the convolution product��F . Formula (7) shows in particular that
the algebra(�;��F ) is isomorphic to the algebra of noncommutative symmetric functions endowed with
theF -product defined by

U �F V = Fn+m � (UV )

for homogenous elementsU andV of weightn andm, respectively. Identifying again�(U ) with U and
applying Proposition 3.3, one has has

�F (U ) = Fn � U � F �(�1)n

for U 2 Symn, whereF �(�1)n denotes the inverse ofFn for the internal product ofSymn.
We will study in the final section of this paper the situations corresponding to the families given by the

q-bracketing and its inverse, i.e. the casesFn = Sn((1� q)A) andFn = Sn(A=(1� q)).

4 The q-shuffle Product
We present in this section theq-shuffle product which is an interesting deformation of the usual Cauchy
product inKhAi. We first give the formal definition of this product and then show that this deformation
is a special case of the general framework introduced in Sect. 3.
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4.1 Definition
The shuffle product can be recursively defined by the formula

au bv = a(u bv) + b(au v) (9)

wherea; b 2 A andu; v 2 A�. Inserting a power of an indeterminateq in this definition, one obtains an
interesting deformation, which turns out to be a particular case of a construction of Rosso [24].

Definition 4.1 Theq-shuffle product is the bilinear operation�q onN[q]hAi recursively defined by

1�q u = u�q 1 = u (10)

(au)�q (bv) = a (u�q bv) + qjauj b (au�q v) (11)

whereu; v (resp.a; b) are words (resp. letters) ofA� (resp.A)

This operation interpolates between the concatenation product (forq = 0) and the usual shuffle product
(for q = 1) onN[q]hAi. The following property is a particular case of a result proved in Sect. 6.

Proposition 4.2 Theq-shuffle product is associative.

As an exercise, let us check it directly. It is clearly sufficient to prove that

(au�q bv) �q cw = au�q (bv �q cw) (12)

for u; v; w 2 A� anda; b; c 2 A. Applying (11), one finds

(au�q bv) �q cw = a(u�q bv) �q cw + qjauj b(au�q v) �q cw

= a((u�q bv)�q cw) + qjauj+jbvj c(a(u�q bv) �q w)

+qjauj b((au�q v) �q cw) + q2jauj+jbvj c(b(au�q v) �q w)

= a((u�q bv)�q cw) + qjauj b((au�q v) �q cw)

+qjauj+jbvj c
� �

a(u�q bv) + qjauj b(au�q v)
�
�q w

�
so that

(au�q bv) �q cw = a((u�q bv)�q cw)

+qjaujb((au�q v) �q cw) + qjauj+jbvjc((au�q bv)�q w) (13)

On the other hand,

au�q (bv �q cw) = au�q (b(v �q cw) + qjbvj c(bv �q w))

= a(u�q b(v �q cw)) + qjauj b(au�q (v �q cw))

+qjbvj a(u�q c(bv �q w)) + qjauj+jbvj c(au�q (bv �q w))

= a(u�q

�
b(v �q cw) + qjbvj c(bv �q w)

�
)

+qjauj b(au�q (v �q cw)) + qjauj+jbvj c(au �q (bv �q w))
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It follows that

au�q (bv �q cw) = a(u�q (bv �q cw))

+qjauj b(au�q (v �q cw)) + qjauj+jbvj c(au �q (bv �q w)) (14)

which implies the result by induction.

4.2 The Operator U(q)

As already observed, theq-shuffle can also be interpreted as a deformation (in the sense of the deformation
theory of algebras) of the concatenation product of a free associative algebra. It is known that these
algebras are rigid, which implies that for genericq theq-shuffle product is necessarily a deformation of
the concatenation product in the sense of Sect. 3. It is easy to exhibit the conjugation isomorphism. Let
U (q) be the endomorphism ofZ(q)hAi defined by

U (q)(a1 a2 : : : an) = a1 �q a2 �q � � � �q an

for w = a1 a2 : : : an of A�. The product�q being multihomogeneous, the restriction ofU (q) to
Z(q)hAi� defines an endomorphismU (q)� of Z(q)hAi� for each multi-degree�, and one can write

U (q) =
M
�

U (q)�

Moreover,U (q) clearly commutes with letter to letter substitutions. This shows that one can recoverU (q)
from its restriction to standard wordsU (q)1n . This endomorphism corresponds to the right action of an
elementUn(q) of Z[q][Sn], which is given by the following formula:

Proposition 4.3

Un(q)(12 : : :n) = 1�q 2�q � � � �q n =
X
�2Sn

q`(�) � (15)

This formula follows by induction from the following one, itself established by induction:

Lemma 4.4

12 : : :n�1 �q n =

n�1X
i=0

qn�1�i (1 : : : i n i+1 : : : n�1) (16)

2

It follows that for a word of lengthn,

U (q)(a1 a2 : : : an) = a1 a2 : : : an � Un(q)

and one sees that theq-shuffle is a deformation of the Cauchy product in the sense of Sect. 3 whenever
Un(q) is a bijection.

Indeed,detUn(q) is an analytic function ofq, andUn(0) being the identity ofZ[Sn], Un(q) is invert-
ible for small complex values ofq, and thus also for genericq (that is, forq an indeterminate, or forq a
complex number avoiding a discrete set of values). It follows thatU (q) itself is also generically invertible,
and hence that theq-shuffle is generically a deformation of the Cauchy product in the sense of Sect. 3.
One can restate this result as follows:
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Proposition 4.5 For genericq, U (q) is an isomorphism between the concatenation algebra(Z(q)hAi; �)
and theq-shuffle algebra(Z(q)hAi;�q).

Equivalently, whenU (q) is invertible,

x�q y = U (q) (U (q)�1(x) � U (q)�1(y) ) (17)

4.3 U(q) in Physics: The Quon Algebra
The problem arises now of finding the values ofq for which Un(q) is actually invertible. It turns out
that this problem has already been solved by Zagier [25] and by Bożeijko andSpeicher [12] in a totally
different contexts. The starting point of Zagier [25] was a problem in physics, relatedto a model of
quantum field theory allowing the existence of particles (‘quons’) displaying small violations of Bose
or Fermi statistics [11]. Classically, bosons and fermions are describedby creation and annihilation
operatorsai; a�j satisfying canonical commutation or anticommutation relations. Here,the problem was
to determine whether it was possible to realize theq-commutator (‘q-mutator’) relations

ai a
�
j � q a�j ai = �i;j (i; j � 1) (18)

by operatorsai; a�j of a Hilbert spaceH, such thata�i be the adjoint ofai, and such that there exists a
distinguished vectorj0i 2 H (the vacuum state) annihilated by all theai

aij0i = 0 for all i (19)

Zagier proved the realizability of this model for�1 < q < 1, and the same result was obtained indepen-
dently by Bożejko and Speicher, who encoutered the same algebra in their analysis ofa generalization of
Brownian motion. Another proof (with a gap) appears in Fivel [26] – see also the erratum [27].

It is easy to see that the realizability problem can be reduced to the case where H is equal to the
vector spaceH(q) generated by the images ofj0i under all products ofak anda�k. This space has a basis
consisting of all states

jKi = a�k1 : : : a
�
kn

j0i

for K = (k1; : : : ; kn) 2 (N�)n. Consider now the infinite matrixA(q) defined by

A(q) =
�
hKjLi

�
K;L2(N�)n;n�0

where the scalar product is defined by the conditionh0j0i = 1. The Hilbert space realizability of relations
(18) is equivalent to the positive definiteness of the matrixA(q). Moreover, one can prove that this
condition is equivalent to the positive definiteness of all submatrices ofA(q) indexed by permutations of
Sn. An easy computation gives

h�j� i = q`(�
�1 �)

which is the matrix ofUn(q) in the regular representation.
Hence, one has to prove that all operatorsUn(q) are positive definite for�1 < q < 1. By continuity,

sinceUn(0) is the identity, it is sufficient to show thatUn(q) is non singular in this range. This reduces
the realizability problem to the invertibility of theq-shuffle operator for�1 < q < 1. This will follow
from the computations of the forthcoming section, as well as the complete determination ofthe values for
whichUn(q) is invertible.
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4.4 Zagier’s Inversion of U(q)

Define

Tn(q) = 12 : : :n�1� n =

n�1X
i=0

qn�1�i (1 : : : i n i+1 : : : n�1) (20)

(by Lemma 4.4). EmbeddingSn�1 inSn, one can write

Un(q) = (1 �q � � � �q n� 1)�q n = Un�1(q)Tn(q)

so thatUn(q) = T2(q)T3(q) � � �Tn(q). Taking reduced decompositions of the factors, we obtain:

Proposition 4.6 For n � 2, one has the factorization

Un(q) = (1 �q 2) (12�q 3) : : : (12 : : :n�1 �q n) (21)

= (1 + q �1) (1 + q �2 + q2 �2�1) : : :

(1 + q �n�1 + q2 �n�1 �n�2 + � � �+ qn�1 �n�1 : : : �1) (22)

Thus,Un(q) will be invertible if and only if all theTi(q) are invertible fori � n. These elements
can themselves be factorized. To this purpose, we need to introduce two elementsGn(q) andDn(q) of
Z(q)[Sn], which are defined by induction. One first sets

G1(q) = D1(q) = 1

Let nown � 2, and suppose thatGn�1(q) andDn�1(q) are defined. Denote bygn�1(q) anddn�1(q) the
images of these elements inZ(q)[Sn] where we identifySn�1 with the stabilizer of1 inSn. That is,

gn�1(q) = �nn�1(Gn�1(q)) and dn�1(q) = �nn�1(Dn�1(q))

where�nn�1 is the group morphism ofSn�1 intoSn defined by

�nn�1(�) = (1 �(1)+1 : : : �(n � 1)+1)

for � 2Sn�1. Then one defines(
Gn(q) = (1� qn n) gn�1(q)

Dn(q) = dn�1(q) (1� qn�1 �n)
�1

where
n = (n�1 1 2 : : : n�2 n) and �n = (n 1 2 : : : n�1)

The complete factorization ofTn(q) is then given by

Proposition 4.7 [25] For all n � 1,

Tn(q) = Gn(q)Dn(q) (23)
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Proof Let n � 2 and suppose by induction and that the formula is valid forTn�1(q). Then,

Gn(q)Dn(q) = (1� qn n) gn�1(q) dn�1(q) (1� qn�1 �n)
�1

= (1� qn n) tn�1(q) (1 � qn�1 �n)
�1

wheretn�1(q) = �nn�1(Tn�1(q)). It suffices therefore to check that

Tn(q) (1� qn�1 �n) = (1� qn n) tn�1(q)

which follows from a straightforward computation. 2

Example 4.8 Forn � 4, this gives

T2(q) = (1� q2) (1� q (21))�1

T3(q) = (1� q3 (213)) (1� q2) (1� q (132))�1 (1� q2 (312))�1

T4(q) = (1� q4 (3124)) (1� q3 (1324)) (1� q2)

(1� q (1243))�1 (1� q2 (1423))�1 (1� q3 (4123))�1

It is now easy to obtain an explicit formula forTn(q)�1 (which is a factorization of this element into
2n � 3 terms). To state it, we need to introduce the elementsG0

n(q) andD0
n(q) defined byG0

1(q) =
D0

1(q) = 1 and by the recursive formulas

(
G0
n(q) = (1� qn�1 n) g

0
n�1(q)

D0
n(q) = d0n�1(q) (1 + qn �n + q2n (�n)

2 + � � �+ q(n�2)n (�n)
n�2)

whereg0n�1(q) = �nn�1(G
0
n�1) andd0n�1(q) = �nn�1(D

0
n�1).

Proposition 4.9 [25] If q is an indeterminate,Tn(q) is invertible, and its inverse is

Tn(q)
�1 =

1

(1� q2) (1� q6) : : : (1� qn(n�1))
D0
n(q)G

0
n(q) (24)

Proof It suffices to find the inverses of the linear factors, which are given by

(1� qn �n)
�1 =

1

1� qn(n�1)
(1 + qn �n + q2n (�n)

2 + � � �+ q(n�2)n (�n)
n�2)

2
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Example 4.10 Forn = 2; 3; 4, one has

T2(q)
�1 =

1

1� q2
(1� q (21)) ;

T3(q)
�1 =

1

(1� q2)(1� q6)
(1� q2 (312)) (1� q (132)) (1 + q3 (213))

T4(q)
�1 =

1

(1� q2)(1� q6)(1� q12)
(1� q3 (4123)) (1� q2 (1423))

(1� q (1243)) (1 + q3 (1324)) (1 + q4 (3124) + q8 (2314))

We can now describe the exact values ofq for which the operatorUn(q) is not invertible.

Corollary 4.11 [25] For everyn � 1, the operatorsUn(q) andTn(q) are invertible iffq is not ak(k�1)-
root of unity for somek 2 [1; n].

Corollary 4.12 [25] The operatorU (q) is invertible whenq is not a root of unity.

We have also the following result of Zagier, which is also a special case of a general formula due to
Varchenko (cf. [13], Theorem 1.1 or Sect. 6.4).

Corollary 4.13 [25, 13]The determinant ofUn(q) considered as an operator for the regular representa-
tion ofSn is

detUn(q) =

nY
k=2

(1� qk(k�1))(n�k+1)n!=(k(k�1))

Proof Using the factorization ofTn(q) and the the fact thatdet (1� q) = (1� ql)n!=l if  is a cycle of
orderl inSn, we obtain

detTi(q) =
iY

k=2

(1 � qk(k�1))n!=(k(k�1))

2

4.5 Representation Theoretical Interpretation of the q-shuffle
The 0-Hecke algebraHn(0) is theC-algebra obtained by specialization of the generic Hecke algebra
Hn(q) at q = 0. It is generated by elementsT1; T2; : : : ; Tn�1 and has the following presentation :

T 2
i = �Ti for i 2 [1; n� 1]

Ti Tj = Tj Ti for ji� jj > 1

Ti Ti+1 Ti = Ti+1 Ti Ti+1 for i 2 [1; n� 2]

For generic values ofq, the Hecke algebra is semi-simple, and isomorphic toCSn. This is not the case
whenq = 0. In particular, the families of irreducible and indecomposableHn(0)-modules are not equal.

The irreducibleHn(0)-modules are1-dimensional, and parametrized by subsets of1; : : : ; n� 1 [14].
To see this, it is sufficient to observe that(TiTi+1�Ti+1Ti)

2 = 0. Thus, all the commutators[Ti; Tj] are in
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the radical. But the quotient ofHn(0) by the ideal generated by these elements is the commutative algebra
generated byn � 1 elementst1; : : : ; tn�1 subject tot2i = �ti. It is easy to check that this algebra has
no nilpotent elements, so that it isHn(0)=(radHn(0)). The irreducible representations are thus obtained
by sending a set of generators to(�1) and its complement to0. For reasons that will become transparent
later, it is better to label these representations by compositions rather than by subsets. LetI = (i1; : : : ; ir)
be a composition ofn and letD(I) the associated subset of[1; n� 1]. The irreducible (1-dimensional)
representation'I of Hn(0) is defined by

'I(Ti) =

�
�1 if i 2 D(I)

0 if i =2 D(I)

and the associatedHn(0)-module will be denoted byCI .
Now letM be an arbitrary finite dimensionalHn(0)-module and consider a composition series ofM ,

i.e. a decreasing sequence

M1 = M �M2 � � � � �Mk � Mk+1 = f0g

of Hn(0)-modules whereeachMi=Mi+1 is irreducible. There exists therefore for eachi 2 [1; k] a
compositionIi of n such thatMi=Mi+1 ' CIi . The Jordan–Hölder theorem ensures that the quasi-
symmetric function

F(M ) =

kX
i=1

FIi

is independent of the choice of the composition series. The quasi-symmetric function associated withM
is called thecharacteristicof M . One can show that it has several properties in common with the usual
Frobenius characteristic of aSn-module [15]. In particular, the characteristic of an induced module

M = CI1 
CI2 
 � � � 
CIr "
Hn1+���+nr

Hn1
Hn2
���
Hnr

is the product of the characteristics of the factors [15]

F(M ) = FI1FI2 � � �FIr (25)

These induced modules are cyclic, with generator the basis vectore = 1 
 1 
 � � � 
 1 of the one-
dimensional spaceCI1 
CI2 
 � � � 
CIr . The length filtration

Hn(0)
(k) =

M
`(w)�k

CTw (26)

of the0-Hecke algebra induces a filtration ofM

M (k) = Hn(0)
(k) e (27)

and this suggest the definition of a graded characteristic (for these particular modules) by

Fq(M ) =
X
k�0

qkF(M (k)=M (k+1)) (28)
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Fig. 1: The inducedH4(0)-moduleM((2);(1;1)).

Example 4.14 TakeI = (2), J = (1; 1) and letM((2);(1;1)) be theH4(0)-module obtained by inducing
theH2(0)
H2(0)-moduleC(2)
C(1;1), identifyingH2(0)
H2(0) to the subalgebra ofH4(0) generated
byT1 andT3. Let e = 1
1 be its standard generator, so thatT1e = 0, T3e = �e, andT2e is independent
of e.

The automaton shown in Figure 1 gives a complete description of the induced module. Its states,
which correspond to images ofe under the action of some basis elementTw of H4(0), form a basis of
M((2);(1;1)). An arrow indexed byTi going from the statef to g means thatTi � f = g, and a loop issued
from a statef and labelled byTij� (with � = 0 or � = �1) means thatTi � f = � f .

This automaton is naturally graded by the distanced(f) of a statef to the initial statee as indicated on
the picture, and it is clear that this grading corresponds precisely to the filtration used in the definition of
Fq. To be more explicit, if one associates with each statef of the automaton the compositionI(f) of 4
whose associated subset is

D(f) = f i 2 [1; 3] jTi � f = �f g

one has
Fq(M((2);(1;1))) =

X
f

qd(f) FI(f)
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The graded characteristic ofM((2);(1;1)) is equal to

Fq(M((2);(1;1))) = F31 + q F22 + q2 (F13 + F211) + q3 F121+ q4 F112

For q = 1, this characteristic is the productF2F11, which can be obtained from the shuffle of12 and43
[2]. On the other hand, theq-shuffle of12 and43 is

12�q 43 = 1243+ q1423 + q21432 + q24123 + q34132 + q44312

and taking the descent compositions of the permutations in the right-hand side, one recoversthe graded
characteristic ofM((2);(1;1)).

This example illustrates a general fact. The following proposition shows that the graded characteristic
of an induced module as above is always given by theq-shuffle. As it is an associative operation, one
obtains in this way aq-deformation of the ring of quasi-symmetric functions.

We denote here byC(�) the composition ofn associated with the descent set of a permutation� of
Sn.

Proposition 4.15 LetI; J be compositions ofn andm. Let also� and� be respectively two permutations
ofS[1;m] andS[m+1;m+n] such thatC(�) = I andC(� ) = J . Then, the graded characteristic of the
Hn+m(0)-module obtained by inducing theHn(0)
Hm(0)-moduleCI
CJ (identifyingHn(0)
Hm(0)
to the subalgebra ofHn+m(0) generated byT1; : : : ; Tn�1; Tn+1; : : : ; Tn+m�1) is given by

Fq(CI 
CJ "
Hn+m(0)

Hn(0)
Hm(0)
) =

X
�2Sn+m

qd(�) FC(�)

where one has
� �q � =

X
�2Sn+m

qd(�) �

Proof LetMI;J be the inducedHn+m(0)-module considered in the proposition. This module is generated
by ae = 1
 1 on whichT1,: : : ,Tn�1,Tn+1,: : : , Tn+m�1 act by

Ti � e =

(
�1 if i 2 D(I) or i 2 n+D(J)

0 if i =2 D(I) or i =2 n+D(J)

A basis ofMI;J is given by elements of the standard basisT� of Hn(0) indexed by permutations� 2Sn

whose descent setD(�) is contained infng, i.e.

Bn = fT� � e j� 2Sn+m andD(�) � fng g

LetRn;m be the permutation

Rn;m = m+1 m+2 : : : m+n 1 2 : : : m

ofSn+m. The following lemma gives a simple characterization of the permutations indexingthe elements
of the basisBn:
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Lemma 4.16 The setDn = f� 2 Sn+m jD(�) � fng g is equal to the interval[id;Rn;m] in the
permutohedron ofSn+m.

We are now in position to prove Proposition 4.15. We first suppose thatI = (n) andJ = (m). In this
case,Ti � e = 0 wheni 6= n. It follows that the action of the generators ofHn(0) on the basisBn of
M((n);(m)) is

Ti � (T� � e) =

8<
:

0 ifD(�i�) 6� fng

�T� � e if i 2 D(��1)
T�i� � e if i =2 D(��1) andD(�i�) = fng

for i 2 [1; n + m � 1] and� 2 Dn. Let Jn;m be the linear subspace ofC[Sn+m] spanned by all
permutations� such thatD(�) 6� fng, and consider the left action ofHn+m(0) onC[Sn+m]=Jn;m

defined by

Ti � � =

�
�� if �(i) < �(i+ 1)

��i if �(i) > �(i+ 1)
(29)

and let'n;m be the map fromM((n);(m)) intoC[Sn+m]=Jn;m sendingT� � e to the permutation��1.
Thus,'n;m is an isomorphism betweenM((n);(m)) and theHn+m(0)-module generated by the identity
permutation for the action (29). On the other hand,X

�2Dn

��1 = (1 2 : : : n) (n+1 n+2 : : : n+m)

As an example, in Figure 2 we show an image of the moduleM((2);(2)) under'2;2.
As in Example 4.14, the graded characteristic ofM((n);(m)) can be read on the permutations indexing

the states of the automaton, which are given by the formula

Fq(M((n);(m))) = Fq('n;m(M((n);(m)))) =
X
�2Dn

q`(�) FC(��1)

To get the proposition, it suffices therefore to prove that

(1 2 : : : n)�q (n+1 n+2 : : : n+m) =
X
�2Dn

q`(�) ��1

or equivalently that

(1 2 : : : n)�q (n+1 n+2 : : : n+m) =
X

�2(1 2 :::m) (n+1n+2 ::: n+m)

q`(�) �

which is clearly true. This proves therefore the proposition in special caseI = (n) andJ = (m). The
general case follows from a similar argument. 2

Using the formula expressing the product of two quasi-ribbon functions in terms of the shuffle product
[23, 2] and takingq = 1, we recover (25).
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�
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Fig. 2: The image ofM((2);(2)) under'2;2.

5 The q-shuffle Hopf Algebra and its Convolution Algebra
This section is devoted to the study of theq-shuffle algebra as a Hopf algebra. We describe the primitive
elements, and discuss the degeneration of the convolution algebra forq ! 1.

5.1 The q-shuffle Hopf Algebra
Let A be an alphabet and let(KhAi;�q) be the correspondingq-shuffle algebra. As shown in Sect. 3,
one can associate with it the coproductcq defined by the following properties:

� 8 a 2 A; cq(a) = 1
 a+ a 
 1;

� 8 P;Q 2 KhAi; cq(P �q Q) = cq(P )�q cq(Q).

Recall(from the proof of Proposition 3.1) that

cq = (U (q) 
 U (q)) � c � U (q)�1 (30)

wherec = c0 is the usual coproduct ofKhAi. That is,

cq(12 : : :n) = c(Un(q)
�1) � (Un(q)
 Un(q))
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and it suffices to apply the substitutioni! ai to this formula to getcq(a1 a2 : : : an).
Let ! be the involution sending a wordw to (�1)jwj ew and let� be the constant term homomorphism.

Proposition 5.1 (KhAi;�q ; cq) is a Hopf algebra with antipode! and counit�.

Proof It suffices to check that! is the antipode, with� as counit. Note first thatU (q) and! commute
since

Un(q) � !n = !n � Un(q)

(where!n denotes the maximal permutation ofSn). The property follows then from (30), since! is also
the antipode for the usual coproductc. 2

The combinatorial structure of the coproductcq is, however, not clear at all. We tabulatedcq(1 2 : : : n)
up ton = 6, and no simple formula seems to emerge. We list below the results forn � 3.

Example 5.2 Forn = 2 andn = 3, one has

cq(12) = 12
 ;+
1

1 + q
(1
 2 + 2
 1) + ; 
 12

cq(123) = 123
 ; �
q2

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(1
 32 + 32
 1 + 3
 21 + 21
 3)

+
1 + q4

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(2
 13 + 13
 2)

+
q + q3

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(2
 31 + 31
 2)

+
1 + q + q2 + q3 + q4

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(1
 23 + 23
 1 + 12
 3 + 3
 12) + ; 
 123

Based on these computations, we propose the following conjecture, which would imply in particular
that the convolution algebra associated with theq-shuffle algebra degenerates into a commutative algebra
whenq! 1 (see Sect. 5.3).

Conjecture 5.1 There exists a family(f�;� (q)) of rational functions inZ(q) which do not have1 as zero
nor as pole, such that for alln � 1,

cq(12 : : :n) =
X
�;�

12:::n2� �

f�;� (q)� 
 �

Note 5.3 The dual Hopf algebra of theq-shuffle algebra is the algebra(KhAi;2q ;�q) with product2q

and coproduct�q defined by

(u 2q vjw) = (u
 vjcq(w)) and (�(w)ju
 v) = (wju�q v)
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for u; v; w 2 A�. The product2q dual to the coproductcq is not easily described. On the other hand, one
can completely describe the coproduct�q by the following formula:

�q(12 : : :n) =
X

12:::n2� �

ql(���) � 
 �

where� � � denotes here the permutation obtained by concatenating� and� considered as words.

5.2 Primitive Elements for cq
We shall now have a look at the setPrimq of primitive elements forcq. These elements occur in several
decompositions of the free associative algebra and in the description of the associated convolution algebra.
According to the general theory,Primq is just the image underU (q) of the set of primitive elements for
the shuffle coproductc, i.e. of the free Lie algebraL(A). That is,

Primq = U (q)(L(A)) =
M
n�1

Ln(A) �Un(q)

This shows that a basis of the standard component ofPrimq is, for instance,(� � �n � Un(q))�2Sn;n�1

where�n is the Dynkin idempotent. Hence any explicit formula for�n � Un(q) gives us an explicit
description ofPrimq .

To obtain a description of�n �Un(q), let us introduce the leftt-bracketing operator�n(t) which is the
element ofZ[t][Sn] defined by

�n(t) = [[: : : [[1; 2]t; 3]t; : : : ]t; n]t

where[P;Q]t = P Q� tQP .

Proposition 5.4

�n(t) � Un(q) =
X

�2Sn

P�(t; q)� (31)

whereP�(t; q) is the polynomial ofZ[t; q] recursively defined by

P1 = 1 and P�(t; q) =

(
qi�1 (qn�2i+1 � t)P� (t; q) if 1 � i � [n+12 ]

qn�i (1� t q2i�n�1)P� (t; q) if [n+1
2

] � i � n
(32)

wherei = ��1(n) and where� is the permutation ofSn�1 obtained from� by deletingn.

Proof This is proved by induction using Lemma 4.4 and the well-known factorization of �n(t) given by

�n(t) = (1� t g2) (1� t g3) : : : (1 � t gn)

wheregi denotes here the cycle(i 1 : : : i � 1) ofSi. 2
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Example 5.5 Let � = 23541 2S5. Then,

P23541(t; q) = q2 (1� t)P2341(t; q)

= (q2 (1� t)) q (1� t q)P231(t; q)

= (q3 (1� t) (1� t q)) q (1 � t)P21(t; q)

= (q4 (1� t)2 (1� t q)) (q � t)P1(t; q)

= q4 (q � t) (1� t)2 (1� t q)

Specializingt = 1 in the proposition leads to an explicit formula for�n �Un(q). To state precisely this
result, we need to introduce the elements�n(q) of Z(q)[Sn] defined according to the parity ofn by

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�2n(q) =

nX
i=1

qi�1
[2n� 2i+ 1]q

[2n� 1]q
(12 : : : 2n�i 2n 2n�i+1 : : : 2n� 1)

�

nX
i=1

qn�i
[2i� 1]q

[2n� 1]q
(12 : : : n�i 2n n�i+1 : : : 2n� 1)

�2n+1(q) =

nX
i=1

qi�1
[2n� 2i+ 2]q

[2n]q
(12 : : : 2n�i+1 2n+1 2n�i+2 : : : 2n)

�

nX
i=1

qn�i
[2i]q

[2n]q
(12 : : : n�i 2n+1 n�i+1 : : : 2n)

As a consequence of Proposition 5.4, we can give a factorization formula for�n � Un(q).

Corollary 5.6 For all n � 2,

�n � Un(q) = (1� q) (1� q2) : : : (1� qn�1) �2(q) �3(q) : : : �n(q) (33)

Example 5.7 Forn = 4; 5, we have

�4 � U4(q) = (1 � q)(1� q2)(1� q3) (1234� 2134) (1234� 3124)

(1234 +
q

1 + q + q2
1243�

q

1 + q + q2
1423� 4123)

�5 � U5(q) = (1� q)(1 � q2)(1� q3)(1� q4) (12345� 21345) (12345� 31245)

(12345 +
q

1 + q + q2
12435�

q

1 + q + q2
14235� 41235)

(12345 +
q

1 + q2
12354�

q

1 + q2
15234� 51234)

Let us now introduce the element�n(q) of Z(q)[Sn] defined by

�n(q) = [(n� 1)]q! �2(q) �3(q) : : : �n(q)
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so that

�n � Un(q) = (1� q)n�1 �n(q) (34)

The image of the operatorw ! w � �n(q) (wherew runs through words of lengthn) is exactly the set of
homogeneous primitive elements of ordern for cq . In other words, one has the following description:

Primq =
M
n�1

K(q)<A>n � �n(q)

5.3 The Convolution Algebra
According to the general theory, the convolution algebra�n(q) associated with theq-shuffle Hopf algebra
is equal to

�n(q) =
M
jIj=n

K Un(q)
�1 �DI � Un(q)

whereDI is the sum of all permutations with descent setD(I). Unfortunately, due to the intricate structure
of Un(q), it does not seem possible to give a simple description of�n(q) for n � 4 (for n = 2 andn = 3,
one can check that�n(q) is in fact equal to the usual descent algebra�n).

The following conjecture, basically due to Zagier [25], would give some indications onthe structure of
Un(q)

�1:

Conjecture 5.2 y Let!n denote the maximal permutation ofSn. For all n � 1, the inverse ofUn(q) has
the form

Un(q)
�1 =

1

(1� q2) : : : (1 � qn(n�1))

 X
�2Dn

(�1)jD(�)j p�(q)�

!
(1 + (�1)n�1 qn(n�1)=2!n)

wherep�(q) is a polynomial inN[q] and whereDn is a subset ofSn whose cardinality is equal to the
number of planar trees withn leaves.

Zagier’s conjecture would give a description of the limit of the convolution algebra�n(q) whenq! 1
whenever this degenerate limit existsz. Indeed, a basis of�n(q) is given by

�q(	
I ) = (Ui1 (q)

�1 � �i1 � Ui1 (q)) ��q � � � ��q (Uir (q)
�1 � �ir � Uir (q))

for jIj = n. The conjecture would imply, taking into account (34), that

lim
q!1

Un(q)
�1 � �n � Un(q) =

1

n!

 X
�2Dn

(�1)jD(�)j p�(1)�

!
(1 + (�1)n�1 !n) �n(1)

These elements would therefore generate the limit convolution algebra�n(1), if it exists.

y Added in proof: This conjecture has been recently disproved by Meljanac and Svrtan [17], who found a counterexample for
n = 8. These authors also give a precise description ofUn(q)

�1.
z The existence of a limit convolution algebra�n(1)would be a consequence of Conjecture 5.1.
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The expression ofUn(q)�1 given by Zagier’s Conjecture can be interpreted as the decomposition on
the family (��n(1)) of the idempotent corresponding to the projection on the homogeneous component
of ordern of

L =
M
n�1

KhAin � �n(1)

with respect to the decomposition

KhAi = K �L� L L� � � � � L : : : L| {z }
n times

� : : :

of the free associative algebraKhAi.

6 Some Generalizations of the Shuffle Operator
The aim of this section is to present interesting generalizations of the shuffleoperator of which theq-
shuffle product is the simplest case.

6.1 Rosso’s Quantum Shuffles
Rosso showed, by expliciting their multiplication, that certain Hopf algebras obtained by very general con-
structions can be interpreted as generalizations of the shuffle algebra [24]. These algebras are constructed
as follows.

LetH be a Hopf algebra over a fieldK. A Hopf bimoduleM overH is aK-vector space endowed with
compatible structures ofH-bimodule andH-bicomodule [29]. In other words, a Hopf bimodule overH

is aH-bimoduleM equipped with left and right coactions�L : M ! H 
M and�R : M ! M 
H

commuting with each other (i.e. such that(id 
 �R) �L = (�L 
 id) �R) and which are morphisms of
H-bimodules.

The following proposition is a particular case of a result of Woronowicz:

Proposition 6.1 [28] LetM be a HopfH-bimodule. There exists a uniqueH-bimodule endomorphism
�M ofM 
H M such that

8 m;n 2M; �L(m) = 1
m; �R(n) = n
 1 =) �M (m 
 n) = n
m

Moreover,�M is invertible and satisfies to the braid equation

(IdM 
 �M) (�M 
 IdM ) (IdM 
 �M) = (�M 
 IdM ) (IdM 
 �M ) (�M 
 IdM )

Recall that the braid groupBn is the (infinite) group generated byn � 1 elements(si)i=1;n�1 subject
to the relations

si sj = sj si for ji� jj > 1

si si+1 si = si+1 si si+1 for i 2 [1; n� 2]

For each permutation� 2Sn, one can define an elementT� of Bn byT� = si1 : : : sir where�i1 : : : �ir
is an arbitrary reduced decomposition of�.
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Let M be a HopfH-bimodule and letML = fm 2 M; �L(m) = 1 
 m g be the submodule of left
coinvariants. The proposition allows us to define a right action of the braid groupBn on(ML)
n by

x1 
 � � � 
 xn � si = (Id

(i�1)

ML 
 �M 
 Id

(n�i�1)

ML ) (x1 
 � � � 
 xn) (35)

for everyx1; : : : ; xn 2ML.
On the other hand, it can be shown thatT (ML) is isomorphic to the space of left coinvariants of

the cotensor coalgebraT c
H (M ), which is known by a result of Nichols [29] to be a Hopf algebra. This

isomorphism therefore endowsT (ML) with a new product�, and Rosso shows that it can be explicited
as follows, in terms of the braid group action onT (ML):

Proposition 6.2

(x1 
 � � � 
 xp) � (xp+1 
 � � � 
 xn) =
X

� 2 12:::p p+1p+2:::n

(x1 
 � � � 
 xn) � T�

where� denotes the right action ofBn on (ML)
n defined by (35).

For our purposes, one can consider the following reversed presentation. LetV be any vector space, and
R 2 End (V 
 V ) be a solution of the Yang–Baxter equation

R12R13R23 = R23R13R12 (36)

where as usualRi;j is the endomorphism ofV 
 V 
 V acting asR on thei-th andj-th factors. Also, let
�R = PR, whereP (u
 v) = v 
 u, so that�R satisfies the braid relation

�R12
�R23

�R12 = �R23
�R12

�R23 (37)

One defines then as usual a right action ofBn onV 
n by

v1 
 v2 
 � � � 
 vn � si = �Ri;i+1(v1 
 v2 
 � � � 
 vn) (38)

The fundamental observation (also known to Rosso [30]) is the following

Lemma 6.3 Define a multiplication� onT (V ) by

(x1 
 � � � 
 xp) � (xp+1 
 � � � 
 xn) =
X

� 2 12:::p p+1p+2:::n

(x1 
 � � � 
 xn) � T�

for x1; : : : ; xn 2 V . Then,� is associative.

Proof Consider first the case whereR is the identity ofV 
 V . Then� is the ordinary shuffle product,
which is indeed associative. Let� be the representation ofB1 defined byR, and let

sh (p; q) =
X

�212:::p p+1:::p+q

T�

The associativity of� is equivalent to the validity of the identities

�(sh (p; q)sh (p+ q; r)) = �(sh (q; r)sh (p; q + r)) (39)
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in the given representation. But taking reduced decompositions of both sides and expanding the products,
one obtains only reduced words. The identity being true for the symmetric group, it is valid in the algebra
of the braid group, and therefore in any representation. 2

Example 6.4 (1) Theq-shuffle�q is the particular case obtained by takingR = q � I, whereI is the
identity ofV 
 V (andV is

L
a2AK a).

(2) Let (ei) be a basis ofV . Diagonal matricesR(ei 
 ej) = qijei 
 ej satisfy the Yang–Baxter
equation. IfA = (aij) is a symmetrizable Cartan matrix and if(di) are relatively prime positive integers
such that(diaij) is symmetric, Rosso shows that the triangular part of the quantized enveloping algebra
associated toA is a subalgebra of the corresponding quantum shuffle algebra.

(3) TakeV = K[x], whereK = C(q), and identifyV 
n with K[x1; x2; : : : ; xn]. The standard action
of the Hecke algebraHn(q) onK[x1; : : : ; xn] by symmetrizing operators [31]

Ti = (q � 1)�i + �i (40)

where�i is the isobaric divided difference operator

�i(P ) =
xiP � xi+1�i(P )

xi � xi+1

gives a solution of the Yang–Baxter equation and induces as above an action of the braid group onV 
n.
The subspace ofV 
n spanned by� products of elements ofV can be identified with the space of symmet-
ric polynomials inx1; : : : ; xn, and the factorization formula for the total symmetrizerS(n) =

P
�2Sn

T�
given in [31], Theorem 3.1, implies that for a partition� = (�1 � �2 � : : : � �n > 0), the product

x�1 � x�2 � � � � � x�n

is equal, up to a scalar factor, to the Hall–Littlewood polynomialQ�(x1; : : : ; xn ; 1=q).
(4) Other families of symmetric functions can be obtained by considering degenerate actions, for ex-

ample, the Schur functions or the augmented monomial functions
(5) Theq-wedge product introduced by Stern [32] and Kashiwara–Miwa–Stern [16] can also be re-

garded as a special case of this construction, obtained from an action ofthe affine Hecke algebra commut-
ing withUq(bsln).
6.2 Twisted Derivations and Multi-parameter Deformations of the Shuffle Prod-

uct
This section explains how the consideration of twisted derivations allows oneto recover in a natural way
the multi-parameter deformations of the shuffle product associated to diagonal solutions of the Yang–
Baxter equation.

Definition 6.5 A twisted derivationfor aK-algebra structure(KhAi;+;�) constructed overKhAi is a
linear map@ fromKhAi intoKhAi which satisfies for wordsu; v 2 A� to the Leibnitz rule

@(u � v) = @(u)� v + �(u)u� @(v)

where� is a monoid morphism fromA� intoK.
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Example 6.6 Let (qa)a2A (resp. (@(a))a2A) be an arbitrary family of elements ofK (resp. ofKhAi).
One can define a derivation@ on the free associative algebra(KhAi;+; �) by

@(w) =
X

uav=w

qu u @(a) v

where foru = a1 � � �an 2 A�, qu denotes the elementqa1 : : : qan .

Consider now the classical twisted derivations(@a)a2A onKhAi, defined for each lettera 2 A by

@a(w) =

�
u if w = a u

0 if w =2 aA�

for w 2 A�. These operators are widely used in automata theory, e.g. for defining the algebra of rational
series (cf. [33]). They are also twisted derivations for theq-shuffle algebra, since by definition

@a(u�q v) = @a(u)�q v + qjuj u�q @a(v)

foru; v 2 A�. One can then ask whether there are other products for which all operators@a are still twisted
derivations. The following proposition answers this question in the case where the twisting morphism�

is given by means of a matrix of commutation factors.

Proposition 6.7 LetM = (qa;b)a;b2A be anA� A-matrix of indeterminates, and set

q(u; v) =
Y
i;j

qai;bj

for all wordsu = a1 : : :an andv = b1 : : : bm. There exists then a unique graded product�M onKhAi

such that
8 u 2 A�; u�M 1 = 1�M u = u

8 u; v 2 A�; @a(u�M v) = @a(u)�M v + q(a; u)u�M @a(v)

for everya 2 A. This product can be computed by the following recursive formulas

u�M 1 = 1�M u = u

(au)�M (bv) = a(u�M bv) + q(b; au) b(au�M v)

whereu; v 2 A� anda; b 2 A.

Proof A straightforward calculation, which is left to the reader. 2

The product�M defined in the proposition is associative. One can therefore consider the algebra
(KhAi;+;�M ). Observe that this algebra reduces to theq-shuffle algebra when all indeterminatesqa;b
are equal toq. In the general case, the product�M is still a special case of the construction of Sect. 3.
Indeed,

a1 �M a2 �M � � � �M an = a1 a2 : : : an � Un(M )
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for ai 2 A, and where

Un(M ) =
X
�2Sn

0
BBBBB@

Y
1�i<j�n

�(i)>�(j)

qa�(i);a�(j)

1
CCCCCA �

Thus,(KhAi;+;�M ) is shuffle Hopf algebra associated to the diagonal solutionR(x
 y) = qx;y(x
y)
of the Yang–Baxter equation.

Note 6.8 If one forgets about the first condition in the proposition, there are other interesting solutions,
such as theT -operation of Schützenberger [34], also called ‘chronological product’ [35].

Note 6.9 When the matrixM is skew-symmetric in the multiplicative sense, i.e. whenqa;b = q�1b;a for
everya; b 2 A, one recovers the bicharacters introduced by Ree [10]. Let us recall that abicharacter� is
a bilinear mapping fromN(A) �N(A) into (K;�), i.e. a mapping such that

�(x; y + z) = �(x; y)�(x; z) and �(x+ y; z) = �(x; z)�(y; z)

hold for everyx; y; z 2 N(A). Let now ("a)a2A be the basis ofN(A) defined by"a(b) = �a;b for
a; b 2 A. The mapping which associates to a skew-symmetric matrixM = (qa;b)a;b2A the bicharacter
�("a; "b) = qa;b is then clearly a one-to-one correspondence between bicharacters and skew-symmetric
A�A-matrices.

It is also interesting to observe thatEnd gr(KhAi) can be equipped in this case with a structure of Lie
superalgebra defined by

[f; g] = fg � �(deg (f); deg (g)) gf

The space of graded twisted derivations over(KhAi;+;�M ) becomes then a super Lie subalgebra of this
superalgebra. Moreover it can be shown that the derivations(@a)a2A generates the free Lie superalgebra
L�(A).

6.3 Shuffle Operators in the Braid Group Algebra
Rosso’s construction suggests that the combinatorics of generalized shuffles has to be uderstood at the
level of the braid group algebra. This point of view leads to a uniform presentation of severalfactorization
results, and reveals a connection between quantum shuffles and Varchenko’s construction ofa quantum
bilinear form associated to a hyperplane arrangement.

6.3.1 A Shuffle Element in the Braid Group Algebra
Let B1 denote the infinite braid group, generated by elements(si)i�1 satisfying to the relationssi sj =
sj si for ji � jj > 1 andsi si+1 si = si+1 si si+1. Since every braid groupBn can be embedded inB1,
the notationT� will be still used in this context.

One can define a shuffle elementUn in K[B1] by

Un =
X
�2Sn

T�

Theq-shuffle operator is the image ofUn under the representationsi ! q �i. Thus any factorization of
Un will also hold in particular for theq-shuffle operatorUn(q).
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6.3.2 Factorizations
More generally, any factorization ofUn will provide similar decompositions in any homomorphic im-
age of the braid group. We will first give a decomposition formula forUn which can be viewed as the
generalization of Zagier’s factorization of theq-shuffle operator.

Consider the elementTn of the algebra ofB1 defined by

Tn = 1 + sn�1 + sn�1 sn�2 + � � �+ (sn�1 sn�2 : : : s1)

One can then give the following factorization ofUn inN[B1]:

Proposition 6.10 For everyn � 2, one has

Un = T2 T3 : : : Tn

Proof The formula is true in the representationsi 7! �i, and expanding the product yields only reduced
words. 2

The elementsTn can themselves be factorized, and we obtain in this way a factorization ofUn in
Z[[B1]], which projects onto Zagier’s factorization undersi ! q�i.

Proposition 6.11 For n � 2, one has inZ[[B1]] :

Tn = (1� s2n�1 sn�2 : : : s1) (1� s2n�1 sn�2 : : : s2) : : : (1� s2n�1)

(1� sn�1)
�1 (1� sn�1 sn�2)

�1 : : : (1� sn�1 sn�2 : : : s1)
�1

Proof The proposition follows from the following lemma, whose proof is left to the reader.

Lemma 6.12 For n � 3, one has

Tn (1� sn�1 sn�2 : : : s1) = (1 � s2n�1 sn�2 : : : s1) tn�1

wheretn�1 denotes the image ofTn�1 under the algebra morphism� ofN[B1] defined by�(si) = si+1
for all i � 1.

Example 6.13 Forn = 2; 3; 4,
T2 = (1� s21) (1� s1)

T3 = (1� s22 s1) (1 � s22) (1� s2)
�1 (1� s2 s1)

�1

T4 = (1� s23 s2 s1) (1 � s23 s2) (1� s23) (1� s3)
�1 (1� s3 s2)

�1 (1� s3 s2 s1)
�1

Specializing these results in a homorphic image of the braid group, we get the followinguseful corol-
lary:

Corollary 6.14 For any representation� ofBn, one has

�(Un) = �(T2) �(T3) : : : �(Tn)

and if the inverses are defined,

�(Tn) =

!Y
1�i�n�1

(1� �(s2n�1 sn�2 : : : si))

 Y
1�i�n�1

(1� �(sn�1 sn�2 : : : si))
�1
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Note 6.15 Typical examples where the inverses are well defined are the representationssi �! qsi in
C[Sn] or the Hecke algebraHn(t) where the factors of the elements�(Ti) satisfy polynomial equations
with non-zero constant terms and hence are invertible. For example for the symmetricgroup, withX =
�(sn�1 sn�2 : : : si) (resp.Y = �(s2n�1 sn�2 : : : si)) one has

Xn�i+1 = q(n�i+1)(n�i); (1 �X)

0
@n�iX

j=0

Xj

1
A = 1� q(n�i+1)(n�i)

Hence

(1 �X)�1 = (1� q(n�i+1)(n�i))�1

0
@n�iX

j=0

Xj

1
A

similarly

Y n�i�1 = q(n�i+1)(n�i); (1 � Y )

0
@n�i�2X

j=0

Y j

1
A = 1� q(n�i+1)(n�i)

and then

(1� Y )�1 = (1� q(n�i+1)(n�i))�1

0
@n�i�2X

j=0

Y j

1
A

so that the denominator of Zagier’s formula can be lowered to

nY
m=2

m�1Y
i=1

(1 � q(m�i+1)(m�i)) =

n�1Y
k=1

(1� qk(k+1))n�k

6.3.3 Action of the Braid Group on Words
LetM = (qa;b)a;b2A be a matrix of indeterminates. The diagonal solutions to the Yang–Baxter equation
discussed in Example 6.4 can be described as the right action� of Bn on words defined by

(a1 a2 : : : an) � si = qai;ai+1 (a1 : : : ai�1 ai+1 ai ai+2 : : : an)

for ai 2 A.

Example 6.16 The matrices ofT2 andT3 considered as operators on the spaceK a1a1a2 �K a1a2a1 �

K a2a1a1 with respect to this action are given by

T2 =

2
41 + qa1;a1 0 0

0 1 qa1;a2
0 qa2;a1 1

3
5

T3 =

2
4 1 qa1;a2 q2a1;a2
qa2;a1 + qa1;a1qa2;a1 1 0

0 qa2;a1qa1;a1 1 + qa1;a1

3
5
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This subsection will be devoted to the study of the determinant ofUn considered as an operator acting
on words of fixed multihomogeneity. According to the results of Sect. 6.3.2, one can compute this
determinant if one knows the values of

det( 1� s2n sn�1 : : : sm ) and det( 1� sn sn�1 : : : sm )

for all m < n. But for the representation under consideration,

det( 1� s2n sn�1 : : : sm ) = det( 1� s2n�m+1 sn�m : : : s1)

det( 1� sn sn�1 : : : sm ) = det( 1� sn�m+1 sn�m : : : s1)

for 1 � m � n � 1. Hence it is sufficient to compute the determinants of1 � sn�1 sn�2 : : : s1 and
1 � s2n�1 sn�2 : : : s1. The following proposition gives an answer to this question by providing explicit
formulas for the characteristic polynomialsdet (1 � x s) of the elementss = sn sn�1 : : : s1 ands =
s2n sn�1 : : : s1.

For I 2 N(A), letKhAiI be the multihomogenous component of multidegreeI of KhAi. Every braid
s 2 BjIj�1 stabilizesKhAiI . We can therefore considers as an operator ofKhAiI . The characteristic
polynomial of this operator will be denoted byPI(s;x). Finally, let us set

q(I; J) =
Y

a;b2A

qIa�Jba;b and q(I) =
Y
a2A

qIaa;a

for I = (Ia)a2A andJ = (Ja)a2A ofN(A).

Proposition 6.17 For n � 1 andI 2N(A) of weightjIj = n, one has

PI(sn�1 sn�2 : : : s1;x) =
Y
I=kJ

k2N

�
xjJj �

q(J; J)k

q(J)

�lJ

PI(s
2
n�1 sn�2 : : : s1;x) =

Y
I=kJ+"a

k2N;a2A

�
xjJj �

q(J; J)k q(J; "a) q("a; J)

q(J)

�lJ

where("a) = �a;b and wherelJ denotes the dimension of the multihomogeneous component of multiho-
mogeneityJ of the free Lie algebraL(A).

Proof These formulas are obtained by expliciting the eigenvectors of the powersof s. 2

Example 6.18 Consider the multidegreeI = (2; 2; 0; 0; : : :). In this case, the matrix of the operator
s3 s2 s1 in the basisfa1a1a2a2, a1a2a1a2, a1a2a2a1, a2a1a1a2, a2a1a2a1, a2a2a1a1g of KhAiI is

Ms3s2s1 =

0
BBBBBB@

0 0 q11q
2
21 0 0 0

0 0 0 0 q11q
2
21 0

0 0 0 0 0 q11q
2
21

q212q22 0 0 0 0 0
0 q212q22 0 0 0 0
0 0 0 q212q22 0 0

1
CCCCCCA
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where we write for convenienceqi;j in place ofqai;aj . Then,

PI(s3s2s1;x) = (x4 � q421q
4
12q

2
11q

2
22) (x

2 � q221q
2
12q11q22)

according to the first formula of the proposition.

As an illustration, we can give an expression of the characteristic polynomial of the permutation
�n�1 : : : �1 in an irreducible representationV� ofSn.

Corollary 6.19 Let� be a partition ofn. The characteristic polynomial of the permutation�n�1 : : : �1
in the irreducible representationV� ofSn is

PV�(�n�1 : : : �1;x) =
Y
�

0
@ Y

�=kI;k2N

(xjIj � 1)lI

1
A

hs�;m�i

wheres� =
P

�hs�;m�ih� denotes the decomposition of the Schur functions� on the basis of complete
symmetric functions.

Proof For aK[Sn]-moduleV and fors 2Sn, denote byPV (s;x) the characteristic polynomial ofs in
the representationV . The corollary follows from the property

PV+W (s;x) = PV (s;x)PW (s;x)

and from the fact that the characteristic polynomial of�n�1 : : : �1 in the permutation representationS�

ofSn whose Frobenius characteristic ish� is given by

PS� (�n�1 : : : �1;x) =
Y

�=kI;k2N

(xjIj � 1)lI

according to Proposition 6.17. 2

This gives the characteristic polynomial of any permutation�i�1 �i�2 : : : �1 in the regular representa-
tion ofSn,

PSn
(�i�1 : : : �1;x) = PSi

(�i�1 : : : �1;x)
n!=i!

Example 6.20 The characteristic polynomial of�n�1 : : : �1 in any irreducible representation ofSn is
a product of cyclotomic polynomials. Table 1 shows these polynomials forn � 6.
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Representation Vharacteristic polynomial
2 x� 1

11 x+ 1

3 x� 1

21 1 + x+ x2

111 x� 1

4 x� 1

31 (x� 1)(x2 + 1)

22 x2 � 1

211 x3 + x2 + x+ 1

1111 x+ 1

5 x� 1

41 x4 + x3 + x2 + x+ 1

32 x5 � 1

311 (x5 � 1)(x� 1)

221 x5 � 1

2111 x4 + x3 + x2 + x+ 1

11111 x� 1

6 x� 1

51 x5 � x4 + x3 � x2 + x� 1

42 (x6 � 1)(x3 + 1)

411 (x+ 1)(x6 � 1)(x3 � 1)

33 (x3 � 1)(x2 � 1)

321 (x4 + x2 + 1)3(x2 � 1)2

3111 (x� 1)(x6 � 1)(x3 + 1)

222 (x3 + 1)(x2 � 1)

2211 (x6 � 1)(x3 � 1)

21111 x5 + x4 + x3 + x2 + x+ 1

111111 x+ 1

6.4 Diagonal Hyperplane Arrangements

6.4.1 The Quantum Bilinear form Bn

Varchenko associated to every real configurationC of hyperplanesx a bilinear formBC , called thequan-
tum bilinear formof C, which is defined as follows. One first associates to eachhyperplaneH of C a
weightaH in some fixed commutative ring. Anedgeof C is any nonempty intersection of some subset
of the hyperplanes ofC. The weightaE of an edgeE is defined as the product of the weights of all the
hyperplanes containingE. The set of all edges ofC is denoted byEC.

The connected components of the complement of the hyperplanes ofC are calleddomains. Denote
byDC the set of all domains ofC. Let alsoAC be the ring of polynomials in the commutative variables
(aH)H2C . The quantum bilinear formBC associated withC is the bilinear form on the spaceMC of the
AC-linear combinations of the domains ofDC which is defined by

BC(P;Q) =
Y

aH

the product being taken over all hyperplanesH 2 C separating the domainsP andQ. Varchenko showed
that the determinant of the formBC is given by the following formula

detBC =
Y
E2EC

(1 � a2E)
m(E) (41)

x A configuration of hyperplanes is anyfiniteset of hyperplanes in some affine or projective space.
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wherem(E) is an integer, called the multiplicity of the edgeE (see Sect. 2 of [13] for more details).
Consider now the configurationDn of diagonal hyperplanes: it consists of the hyperplanesHij of Rn

defined byxi = xj for 1 � i < j � n. Let aji be the weight of the hyperplaneHij. Here, the domains
are the conesP� defined by

P� = f (x1; : : : ; xn) 2 R
n; x�(1) < x�(2) < � � � < x�(n)g

for all permutations� ofSn. The quantum bilinear formBDn = Bn associated withDn can therefore
be considered as a bilinear form onZ[aji][Sn]. The matrix ofBn is given by

Bn(�; � ) =
Y

(��1(i)���1(j))(��1(i)���1(j))<0

1�i<j�n

aji (42)

for �; � 2Sn. In other words, the entry of order(�; � ) of Bn is obtained by taking the products of allaji
for which the pairji does not appear in the same order in� and�, i.e. for which� = : : : i : : : j : : : and
� = : : : j : : : i : : : (or the converse). The bilinear formBn can also be interpreted as the contravariant
form of a suitable quantum group (cf. Schechtman [36]).

Varchenko’s formula (41) reduces here to

detBn =
Y
Ik

0
@1�

Y
(j;i)2Ik

a2ji

1
A

nk

(43)

whereIk runs through all subsets ofk(k � 1)=2 elements off (j; i); 1 � i < j � n g for k 2 [2; n] and
wherenk denotes the integer(k � 2)!(n� k + 1)!.

Finally, relation (42) shows thatBn is the matrix of an element ofZ[aji][Sn] (considered as an operator
in the regular representation ofSn) iff aji = akl for all j > i andk > l. If we call q this common
value, we see thatBn = Un(q). Thus,Un(q) has the same matrix as the quantum bilinear form associated
with the diagonal hyperplane arrangement when every hyperplane as the same weightq and one sees that
Corollary 4.13 can be also obtained by specializing formula (43).

Example 6.21 The matrix of the quantum bilinear formB3 is

123 132 213 231 312 321

‘

123
132
213
231
312
321

0
BBBBBBB@

1 a32 a21 a21a31 a31a32 a21a31a32

a32 1 a21a32 a21a31a32 a31 a21a31

a21 a21a32 1 a31 a21a31a32 a31a32

a21a31 a21a31a32 a31 1 a21a32 a32

a31a32 a31 a21a31a32 a21a32 1 a21

a21a31a32 a21a31 a31a32 a32 a21 1

1
CCCCCCCA

In this case,
detB3 = (1� a221)

2 (1� a231)
2 (1� a232)

2 (1� (a21a31a32)
2)

B3 is the matrix of an element ofZ[a21; a31; a32][S3] iff a21 = a31 = a32.
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6.4.2 A decomposition of Bn

We shall now see that one can recover formula (43) from a factorization ofBn which is in fact a special-
ization of Corollary 6.14. We shall therefore define first a representation�n of the braid groupBn. For
n � 2 andi 2 [1; n� 1], consider theSn�Sn matrixS(n)i defined by

S
(n)
i (�; � ) =

( ea�(i)�(i+1) if � = ��i

0 in all other cases
(44)

whereeaij denotesaji if j > i andaij if j < i. These matrices are obtained from the diagonal solutions
R(ei 
 ej) = eaijei 
 ej of the Yang–Baxter equation by restriction of�R to then!-dimensional subspace
of V 
n spanned by multilinear elementse�(1) 
 � � � 
 e�(n), � 2Sn. Thus,

(
S
(n)
i S

(n)
j = S

(n)
j S

(n)
i if ji� jj > 1

S
(n)
i S

(n)
i+1 S

(n)
i = S

(n)
i+1 S

(n)
i S

(n)
i+1 if i 2 [1; n�2]

so that

�n(si) = S
(n)
i

defines a representation ofBn. The matrix of Varchenko’s quantum bilinear form is then

Bn = �n(Un) =
X

�2Sn

�n(T�) (45)

the results of Sect. 6.3 can be applied. The imagesT
(n)
k = �n(Tk) are theSn�Sn matrices

T
(n)
k = I + S

(n)
k�1 + S

(n)
k�1 S

(n)
k�2 + � � �+ S

(n)
k�1 S

(n)
k�2 : : : S

(n)
1 (46)

whose elements are

T
(n)
k (�; � ) =

8>>>><
>>>>:

1 if � = �

k�1Y
i=l

ea�(k)�(l) if � = ��k�1 : : :�l with l = 1; k� 1

0 in all other cases

In other words,T (n)
k is the matrix obtained fromBn by taking all entries indexed by a pair of the form

(�; � �k�1 : : : �l) with somel 2 [1; n] and by replacing all other entries by0. The first formula of
Corollary 6.14 reduces then to the following:

Proposition 6.22

Bn = T
(n)
2 : : : T (n)

n (47)



198 Gérard Duchamp et al.

Example 6.23 Forn = 3, one hasB3 = T
(3)
2 T

(3)
3 , with

123 132 213 231 312 321

T
(3)
2 =

123
132
213
231
312
321

0
BBBBBBB@

1 0 a21 0 0 0

0 1 0 0 a31 0

a21 0 1 0 0 0

0 0 0 1 0 a32

0 a31 0 0 1 0

0 0 0 a32 0 1

1
CCCCCCCA

123 132 213 231 312 321

T
(3)
3 =

123
132
213
231
312
321

0
BBBBBBB@

1 a32 0 0 a31a32 0

a32 1 a21a32 0 0 0

0 0 1 a31 0 a31a32

a21a31 0 a31 1 0 0

0 0 0 a21a32 1 a21

0 a21a31 0 0 a21 1

1
CCCCCCCA

The second formula of Corollary 6.14 applied to Varchenko’s quantum bilinear form will give us a
factorization of the matrixT (n)

k which reduces to the decomposition (23) when all theaji are specialized

to q. As in theTn(q) case, it will give us a closed formula for the inverse ofT
(n)
k (and hence ofBn) and

for its determinant.

Forn � 2, k 2 [2; n], i 2 [2; k] andj 2 [1; k� 1], we defineSn�Sn-matrices�(n;k)i;k and�
(n;k)

0
j;k

by

�(n;k)i;k
(�; � ) =

8><
>:
ea2�(k�1)�(k)

k�2Y
l=k�i+1

ea�(k�1)�(l) if � = �i;k

0 in all other cases

�
(n;k)

0
j;k

(�; � ) =

8><
>:

k�1Y
l=k�j

ea�(k)�(l) if � = �0j;k

0 in all other cases

where
i;k = (1 : : : k�i k�1 k�i+1 : : : k�2 k : : : n)

0j;k = (1 : : : k�j�1 k k�j : : : k�1 k+1 : : : n)

The specialization of the second identity of Corollary 6.14 gives here the following factorization.

Proposition 6.24 For n � 2 andk 2 [2; n],

T
(n)
k = (I � �(n;k)k;k

) : : : (I � �(n;k)2;k
) (I � �

(n;k)

01;k
)�1 : : : (I � �

(n;k)

0
k�1;k

)�1 : (48)
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Example 6.25 Fork = 3 andn = 3, the different matrices involved in (48) are given below:

123 132 213 231 312 321

I � �
(3;3)

(213) =

0
BBBBBBB@

1 0 �a232a21 0 0 0

0 1 0 0 �a232a31 0

�a231a21 0 1 0 0 0

0 0 0 1 0 �a231a32

0 �a221a31 0 0 1 0

0 0 0 �a221a32 0 1

1
CCCCCCCA

123 132 213 231 312 321

I � �
(3;3)

(123)
=

0
BBBBBBB@

1� a232 0 0 0 0 0

0 1� a232 0 0 0 0

0 0 1� a231 0 0 0

0 0 0 1� a231 0 0

0 0 0 0 1� a221 0

0 0 0 0 0 1� a221

1
CCCCCCCA

123 132 213 231 312 321

I � �
(3;3)

(132) =

0
BBBBBBB@

1 �a32 0 0 0 0

�a32 1 0 0 0 0

0 0 1 �a31 0 0

0 0 �a31 1 0 0

0 0 0 0 1 �a21

0 0 0 0 �a21 1

1
CCCCCCCA

123 132 213 231 312 321

I � �
(3;3)

(312) =

0
BBBBBBB@

1 0 0 0 �a31a32 0

0 1 �a21a32 0 0 0

0 0 1 0 0 �a31a32

�a21a31 0 0 1 0 0

0 0 0 �a21a32 1 0

0 �a21a31 0 0 0 1

1
CCCCCCCA

In this case, (48) reduces to

T
(3)
3 = (I � �

(3;3)

(213)
) (I � �

(3;3)

(123)
) (I � �

(3;3)

(132))
�1 (I � �

(3;3)

(312))
�1
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and
T
(3)
2 = (I � �

(3;2)

(123)
) (I � �

(3;2)

(213))
�1

Note 6.26 One can check that

(I � �(n;k)
i;k

)

 
i�2X
l=0

(�(n;k)
i;k

)l

!
= �

(n;k)
i (49)

where�(n;k)
i is the diagonal matrix

�
(n;k)
i (�; � ) =

8<
:

1�
Y

k�i+1�r<s�k

ea2�(r)�(s) if � = �

0 if � 6= �

One has�(n;n)
n = (1�

Q
1�i<j�n a2ji) I and

(I � �
(n;k)

0

j;k
)

 
jX

l=0

(�
(n;k)

0

j;k
)l

!
= �

(n;k)
j+1 (50)

Formulas (49) and (50) both give a more explicit version of decomposition (48) and a closed form for the
inverse ofT (n)

k (and hence also for the inverse ofBn).

Note 6.27 It can also be checked that

det(I � �(n;k)
i;k

) =

0
BBBBB@

Y
I�[1;n]

jIj=i

0
BBBBB@1�

Y
r;s2I

r<s

a2sr

1
CCCCCA

1
CCCCCA

mn;i

(51)

where

mn;i =
i n!

2
�
i
2

��
n
i

� = (n� i)! i!

i� 1

On the other hand,

det(I � �
(n;k)

0

j;k
) =

0
BBBBB@

Y
I�[1;n]

jIj=j+1

0
BBBBB@1�

Y
r;s2I

r<s

a2rs

1
CCCCCA

1
CCCCCA

m0

n;j

(52)

with

m0
n;j =

j n!

2
�
j+1
2

��
n

j+1

� = (n� j � 1)! j! :

It is interesting to observe that (51) and (52) show that the determinants of I � �
(n;k)
i;k andI � �

(n;k)

0

j;k
are

independent ofk.
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6.5 The t-shuffle Operator in the Hecke Algebra
The representations of the braid group considered in the foregoing sections were all obtained fromtrivial
(diagonal) solutions of the Yang–Baxter equation. The simplest non-trivial solutions are those which
factorize through the Hecke algebraHn(q). It is therefore of interest to consider the element

Vn(t) =
X
�2Sn

t`(�) T�

of Hn(q) 
 C[t], i.e. the image ofUn under the morphism from the braid groupBn into Hn(q) defined
by si ! t Ti. All the factorizations of Sect. 6.3.2 are valid forVn(t), and we shall also obtain an explicit
formula for the determinant of this operator, which can be regarded as aq-analogue of the determinant
formula forUn(t).

According to the results of Sect. 6.3.2, it is sufficient to compute the determinants of the elements

1� Tn�1 : : : T1 and 1� T 2
n�1 : : : T1

considered considered as operators of the (left or right) regular representation ofHn(q). But one has

det(1� Tn�1 : : : T1) =

 Y
�`n

PV�(Tn�1 : : : T1;x)
f�

!�����
x=1

det(1� T 2
n�1 : : : T1) =

 Y
�`n

PV�(T
2
n�1 : : : T1;x)

f�

!�����
x=1

wheref� is the number of standard Young tableaux of shape� and wherePV�(s;x) is the characteristic
polynomialdet (1 � x s) of s 2 Hn(q) in the irreducible representation ofHn(q) indexed by� (see, for
example, [31]).

Let K�;� = hs�; h�i be the Kostka numbers. The following proposition expresses the characteristic
polynomial ofTn�1 � � �T1 in theq-Specht moduleV�(q) in terms of the corresponding polynomial for
the symmetric group, as computed in Sect. 6.3.3.

Proposition 6.28 Let� be a partition ofn andV�(q) be the corresponding irreducible representation of
Hn(q). Then, the characteristic polynomial ofTn�1 Tn�2 : : : T1 in V�(q) is

PV�(q)(Tn�1 Tn�2 : : : T1;x) = PV�(1)(�n�1�n�2 : : : �1; q
(n�1)�� x)

whereV�(1) is the Specht module for the symmetric group, and�� = K�;21n�2=K�;1n.

Proof The existence of a homogeneity factor between the characteristic polynomials ofTn�1 : : : T1 and
�n�1 : : : �1 can be seen on the Kazhdan-Lusztig model of the irreducibleHn(q)-moduleV�, and this
factor is determined by the equality

det V� (Tn�1 : : : T1) = (det V� T1)
n�1 = q(n�1)K�;21n�2

which is easily checked. 2
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Corollary 6.29 The characteristic polynomial ofT 2
n�1 Tn�2 : : : T1 in the irreducibleHn(q)-module

V�(q) is equal up to a homogeneity factor to the characteristic polynomial of the corresponding per-
mutation in the irreducibleSn-moduleV�(1), i.e.

PV�(T
2
n�1 Tn�2 : : : T1;x) = PW�

(�n�2 : : : �1; q
n�� x)

where�� = K�;21n�2=K�;1n .

Example 6.30 For j�j � 4, these polynomials are

� PV�(Tn�1 : : : T1;x) PV�(T
2
n�1 Tn�2 : : : T1;x)

2 1� xq 1� xq2

11 1 + x 1� x

3 1� xq2 1� xq3

21 1 + xq + x2q2 1� q3x2

111 1� x 1 + x

4 1� xq3 1� q4x

31 1� xq + x2q2 � x3q3 1� x3q4

22 1� x2q3 1 + xq2 + x2q4

2111 1 + xq2 + x2q4 + x3q6 1� q8x3

1111 1 + x 1� x

Note 6.31 Consider the elements3i(t) of Hn(q) defined by

3i(t) = 1 + t Ti

for i 2 [1; n� 1]. These elements interpolate between two interesting elements ofHn(q)

3i(1) = 2i = 1 + Ti ; 3i(�1=q) =
�1

q
ri =

�1

q
(Ti � q)

(see [31] for more details). The operators3i(t) satisfy Yang–Baxter type relations

3i(t)

�
3i+1(t) �

1 + t(q � 1)

2 + t(q � 1)

�
3i(t) = 3i+1(t)

�
3i(t) �

1 + t(q � 1)

2 + t(q � 1)

�
3i+1(t)

and as a special case of a construction of Cherednik, one can associate withthe maximal permutation!n
ofSn the element

�!n = 31 ( (32 � f13)31 ) : : : ( (3n�1 � f1n) : : : (32 � f13)31 )

of Hn(q)
C(t), where

f1k = [1]t;q
[1]n�1t;q � 1

[1]nt;q � 1

with [1]t;q = 1 + t(q � 1). It would be interesting to clarify the relation between3!n andVn(t). These
elements are clearly related in the two extreme casest = 1 andt = �1=q but we do not know if such
relations still exist in the general case.
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7 Deformations of the Algebra of Noncommutative Symmetric Func-
tions

7.1 Deformations and Lie Idempotents
This section is devoted to a special case of the deformations of the usual Cauchy and convolution products
of KhAi obtained by means of noncommutative symmetric functions (cf. Sect. 3.2). We are here inter-
ested in the case where the set of primitive elements of the deformed algebra is still the free Lie algebra
L(A). This case is of some importance, since it leads to a complete understanding of a class of interesting
decompositions of the free associative algebra.

We use the notations of Sect. 3.2. We will restrict the familiesF = (Fn)n�1 used to construct the
deformations to those satifying for alln

Fn �	n = kFn 	n

wherekFn is a constant. These equations have of course many solutions. An interesting classis given
by Fn = Sn(XA), whereX is a totally ordered alphabet (which can be virtual, i.e. defined by the
specialization of a transcendance basis ofQSym). Indeed, the following result shows that such a family
satisfies to the desired property:

Proposition 7.1 LetX be a totally ordered commutative alphabet, letA be a noncommutative alphabet
and let�n be a homogenous element of weightn in L(	). Then,

Sn(X A) � �n(A) =  n(X) �n(A)

for all n � 1, where n(X) is the usual power sum symmetric function.

Proof Using Proposition 2.1, we can write

�(X A; t) � �n(A) = �1

 � O
x2X

�(A;xt)
�
� �1(�n)

!

= �1

 � O
x2X

�(A;xt)
�
�
X

1
 � � � 
 1
 �n 
 1 : : :

!

from which it follows that

�(X A; t) � �n(A) =
X
x2X

(Sn � �n) x
n tn =

� X
x2X

xn
�
�n t

n =  n(X) �n t
n

2

Let nowX denote a fixed totally ordered commutative alphabet. According to Sect. 3, one can deform
the ordinary Cauchy product ofKhAi by means of the family(�(Sn(XA))n�1. The product�X obtained
by this method is here given by

u�X v =
�
(u � �(Sn(XA))

��1)(v � �(Sm(XA))
��1)

�
� �(Sn+m(XA))
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for wordsu andv of respective lengthsn andm. The associated convolution algebra is still equal here
to Solomon’s descent algebra. It can be interpreted as theK-vector spaceSym of noncommutative
symmetric functions endowed with the new product�X defined by

U �X V = Sn+m(XA) � (UV )

for U 2 Symn andV 2 Symm (cf. Sect. 3.2). The deformed interpretation morphism�X is here

�X(U ) = Sn(XA) � U � Sn

�
1

X
A

�
= Sn(XA) � U

�
1

X
A

�
;

and in particular the interpretation of the Eulerian Lie idempotent�n is

�X(�n) = Sn(XA) ��n

�
1

X
A

�
=  n(X) �n

�
1

X
A

�
=

�n(
1
X
A)

 n(
1
X
)

according to Proposition 7.1. This situation is interesting since the forthcoming proposition shows that
every Lie idempotent of Solomon’s descent algebra can be described in this way.

Proposition 7.2 LetA be a noncommutative alphabet and let�n be an arbitrary homogeneous Lie idem-
potent of ordern in L(	). The following properties are equivalent:

1. �n is a homogenous Lie idempotent of ordern in L(	).

2. There exists a virtual totally ordered commutative alphabetX such that

�n =
�n(X A)

 n(X)

where n is the usual power sum symmetric function.

Proof (2 =) 1) follows essentially from Proposition 7.1. Indeed, this allows us to write

�n � �n =
1

 n(X)
�n(XA) � �n =

1

 n(X)
�n � Sn(XA) � �n = �n � �n = �n

On the other hand,

�n ��n =
1

 n(X)
�n � �n(XA) =

1

 n(X)
�n � �n � Sn(XA) =

1

 n(X)
�n � Sn(XA) = �n

so that�n � �n = �n and�n � �n = �n for all n � 1, which implies that�n is a Lie idempotent of
L(	).

(1 =) 2) Consider a totally ordered commutative alphabetX. Let ([�L])L2Ly be the Lyndon basis
of the free Lie algebraL(	) associated with the generating family(�n)n�1 (whereLy denotes the set
of Lyndon words over the alphabetN). From the case�n = 	n, one can see that there exists a family
(pL(X)(n))L2Lyn of quasi-symetric functions such that

�n(X A) =
X
L2Lyn

pL(X) [�L] (53)
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whereLyn denotes the set of Lyndon words overN of weightn. The coefficientp(n)(X) of �n in this
expansion is equal to n(X), since

p(n)(X)�n = �(X A) � �n = �n � Sn(X A) � �n =  n(X)�n � �n =  n(X)�n

according to Proposition 7.1.
We shall now prove that the family(pL(X))L2Lyn ;n�1 is a transcendance basis for the algebraQSym

of quasi-symmetric functions overX (which is a free commutative algebra according to a result of
Malvenuto and Reutenauer [22]). Let(��I ) be the dual basis of(�I ). As shown in [22], the family
(��L)L2Lyn;n�1 is a transcendance basis ofQsym. On the other hand, using the Cauchy formula, one can
write

Sn(XA) =
X
I`n

��I (X)�I

ExpandingSn(A) on the basis(�I) and applying (53), one obtains another expression ofSn(XA) on the
(�I) basis. Identifying the coefficients, one finds

��L = kL pL +
X

L1;:::;Lk

k�2

pL1
: : : pLk

for any Lyndon wordL of weightn, the sum being taken over Lyndon wordsL1; : : : ; Lk of length strictly
less thanjLj (and whose total length is equal tojLj). Also, the constantkL must be non-zero, as fol-
lows from using a simple argument on the cardinality of finite transcendance bases. This shows that
(pL)L2Lyn;n�1 is a transcendance basis ofQSym, as required.

Let now�n be an arbitrary Lie idempotent inL(	). One can expand it on the Lyndon basis associated
with the family(�n), i.e.

�n =
X

L2Lyn

qL [�
L]

where theqL are scalars. According to the previous discussion, one can now define a totally ordered
commutative (virtual) alphabetX by settingpL(X) = qL for everyL 2 Ly. Sinceq(n) is here necessarily
equal to1, it follows that

�n(XA)

 n(X)
=
�n(XA)

p(n)(X)
=
�n(XA)

q(n)
= �n(XA) = �n

as required. 2

Recall now that the Lie (quasi) idempotent

�X(�n) = �n

( 1
X
A)

 n(
1
X
)

is the element ofSymn corresponding to projection onto the free Lie algebra with respect to the decom-
position

KhAi = K � L(A) � (L(A); L(A))�X � : : : � (L(A); : : : ; L(A)| {z }
n terms

)�X � : : : (54)
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where(L(A); : : : ; L(A))�X is the submodule ofKhAi spanned by the�X -symmetrized products

(P1; : : : ; Pn)�X =
1

n!

X
�2SGn

P�(1) �X � � � �X P�(n)

of Lie polynomials. Hence it follows from Proposition 7.2 that all Lie idempotents of the descent algebra
are the Lie projectors associated to some deformation of the canonical decomposition ofKhAi given by
(54).

Note 7.3 Interesting specializations are obtained by takingX = 1 � q andX = 1=(1� q). In the latter
case, the associated interpretation�q is

�q(F ) = Sn

�
1

1� q
A

�
� F ((1� q)A)

In particular,

�q(�
I) = Sn

�
1

1� q
A

�
� �n((1� q)A)

for every family(�n)n�1 of homogeneous Lie idempotents. On the other hand [37],

Sn

�
1

1� q
A

�
� �I =

X
�2Sr

qmaj
I
(�)

(1� qi�(1) )(1� qi�(1)+i�(2) ) : : : (1� qi�(1)+���+i�(r))
���I

Hence,

�q(�
I) =

X
�2Sr

qmaj
I
(�)

(1� qi�(1) )(1� qi�(1)+i�(2) ) : : : (1� qi�(1)+���+i�(r))
�((1 � q)A)��I

But it has been shown [7] that the limit forq! 1 of of �n((1� q)A)=(1� qn) is always equal to	n=n.
Thus,

lim
q!1

�q(�
I) =

X
�2Sr

1

i�(1)
(i�(1) + i�(2)) : : : (i�(1) + � � �+ i�(r))	

��I = E�(I)(	)

where�(I) denotes the partition obtained by sortingI. Hence the convolution algebra associated with the
deformed Cauchy product corresponding toSn(A=(1�q)) degenerates whenq ! 1 into the commutative
algebra generated by the elements(E�(	))�`n. One should observe that these elements form a family of
orthogonal idempotents, similar to those of Garsia and Reutenauer ([1] – see also Krobet al. [7]).

7.2 Structure of Multihomogeneous Modules Associated with Lie Idempotents
We first recall some results [7]. Let� = (�n)n�1 a family of homogeneous Lie idempotents. One can
decomposeSn on the basis(�I ), say

Sn =
X
I

pI �
I



Noncommutative symmetric functions III 207

wherepI are constants. One associates then with each partition � = (l1; : : : ; lr) of n the noncommutative
symmetric functionE�(�) defined by

E�(�) =
X

�(I)=�

pI �
I

where�(I) denotes the partition obtained by reordering the components ofI. As shown in Krobet al. [7],
these elements form a complete system of orthogonal idempotents. When� is the family(�n) of Eulerian
idempotents, these idempotents reduce to the family described by Garsia and Reutenauer [1]. In this case,
E�(�) is the projector on the module(L(A)l1 ; : : : ; L(A)lr ) in the decomposition

KhAi = K � L(A) � (L(A); L(A)) � : : : � (L(A); : : : ; L(A)| {z }
n terms

) � : : :

In the case of an arbitrary family of Lie idempotents, the structure of the target modules is not immediately
clear. According to previous discussion, one can say thatE�(�) is the projector on(L(A)l1 ; : : : ; L(A)lr )�X
with respect to the decomposition (54) if one interprets the Lie idempotents�n as�n(XA)= n(X) for
some totally ordered alphabetX (which is always possible according to Proposition 7.2). It remains,
however, to give a more explicit description of the images of theE�(�), i.e. of

Im E�(�) = KhAij�j � �(E�(�))

This will be done in the next proposition. Before stating it, we introduce some notations. If� =
(�1; : : : ; �r) is a partition ofn, we denote by� � � thecompositionof n defined by

� � � = (��(1); : : : ; ��(r))

We can now give the main result of this subsection.

Proposition 7.4 Let � = (�n)n�1 be a family of homogeneous Lie idempotents, with�n 2 Symn, let
� = (l1; l2; : : : ; lr) be a partition ofn and let

E�(�) =
X

�(I)=�

pI �
I

be the idempotent associated with� as above. The imageIm E�(�) of this idempotent is then the module
spanned by the polynomials X

�2Sr

p��� Pl�(1) Pl�(2) : : : Pl�(r)

wherePlk is a homogeneous Lie polynomial of degreelk.

Proof The proposition is a special case of the following lemma:

Lemma 7.5 With the same hypotheses, let

E =
X

�(I)=�

pI �
I
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be an arbitrary linear combination of all�I indexed by a permutation of�. The imageIm E = KhAij�j �

�(E) of this element is then spanned by the polynomials

X
�2Sr

p��� Pl�(1) Pl�(2) : : : Pl�(r)

where as above,Plk is a homogeneous Lie polynomial of degreelk.

Proof of the lemmaLetM be the module defined by

M =

( X
�2Sr

p��� Pl�(1) Pl�(2) : : : Pl�(r) j 8 k 2 [1; r]; Plk 2 L(A)lk

)

We first prove thatIm E � M . To get this inclusion, it suffices to show that�(E) 2 M . This follows
from the fact that

�(E) =
X

I=(i1 ;:::;ir)

�(I)=�

pI �i1 �� � � � �� �ir

Going back to the definition of the convolution product, we see that

�(E) = �

0
BBBBB@

X
I=(i1;:::;ir)

�(I)=�

pI #i1 
 � � � 
 #ir

1
CCCCCA � c(12 : : :n)

= �

0
BBBBB@

X
I=(i1;:::;ir)

�(I)=�

pI #i1 
 � � � 
 #ir

1
CCCCCA �

 X
12:::n2u1 ::: ur

u1 
 � � � 
 ur

!

=
X

I=(i1;:::;ir); �(I)=�

12:::n2u1 ::: ur ; jukj=ik

pI (#i1 � u1) : : : (#ir � ur)

where#i = �(	i) is Dynkin’s element and wherec is for the usual coproduct onKhAi. Observe that if
u1 
 � � � 
 ur is in the support ofc(12 : : :n), thenu�(1) 
 � � � 
 u�(r) also belongs to the support of this
coproduct. Taking now a setS of representatives of the orbits ofr-uples(u1; : : : ; ur) of words under the
action ofSr, we obtain

�(E) =
X
�2Sr

(u1;:::;ur)2S

p��� (#l�(1) � u�(1)) : : : (#l�(r) � u�(r))
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This shows that�(E) 2M from which it follows thatIm E � M , as desired.
On the other hand, a simple manipulation of the definition of the convolution product shows that

�(E) � (#l1 : : : #lr ) =
1

m1! : : :mn!

 X
�2Sr

p��� #l�(1) : : : #l�(r)

!

if � = (1m1 ; : : : ; nmn), which implies thatM � Im E. 2

The following corollary is essentially a reformulation of Proposition 7.4.

Corollary 7.6 Let, for all n � 1, �n be a Lie idempotent of degreen and set� = (�n)n�1. For every
partition � = (�1; : : : ; �r), there exists then a probability distributionp� onSr with the following
properties:

� p�(�) = p�(� ) whenever the compositions� � � and� � � are equal. This common value will be
denoted byp�(� � �) in the sequel.

� The image of the projectorE�(�) is the module generated by allp�-symmetrized products

(P1; : : : ; Pr)p� =
X
�2Sr

p�(� � �) P�(1) : : : P�(r)

where eachPi is a homogeneous Lie polynomial of degree�i.

Example 7.7 The family� = (�n)n�1 of Solomon idempotents is characterized by the fact that the
associated probability distributions are uniform.

As another simple consequence of Proposition 7.4, we can also give the structure of the multihomoge-
neous modules associated with Dynkin idempotents.

Corollary 7.8 Let� = (�1; : : : ; �r) be a partition ofn. The image of the projectorE�(	n) is the module
spanned by the elements

(P�1 ; : : : ; P�r)	 =
X
�2Sr

�1 : : :�r

��(1) (��(1) + ��(2)) : : : (��(1) + � � �+ ��(r))
P��(1) : : : P��(r)

whereP�i is a homogeneous Lie polynomial of degree�i.

Another consequence of Lemma 7.5, the following result is of independent interest:

Corollary 7.9 Let (�n)n�1 be a family of Lie idempotents and letI = (in1

1 ; : : : ; inrr ) be any composition
of n (with ik 6= ik+1 for all k). The element�I is then, up to a constant factor, an idempotent whose
image under� is a projector onto the module

(L(A)i1 ; : : : ; L(A)i1| {z }
n1 terms

) (L(A)i2 ; : : : ; L(A)i2| {z }
n2 terms

) : : : (L(A)ir ; : : : ; L(A)ir| {z }
nr terms

)

generated by the products(P (1)
1 ; : : : ; P

(n1)
1 ) : : : (P

(1)
r ; : : : ; P

(nr)
r ) whereP (l)

k is a homogeneous Lie
polynomial of degreeik for k 2 [1; r] and where(�; : : : ; �) denote the usual symmetrized product in
KhAi.
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Proof The only thing to check is the fact that�I is actually quasi-idempotent. This follows from Propo-
sition 2.1 and a simple computation. 2

7.3 Structure of Modules Associated with Deformations of some Classical Lie
Idempotents

We describe here without proof the structure of the multihomogeneous modules associated with the de-
formations of�n and	n defined by the transformations of alphabetsA ! (1�q)A andA! A=(1�q).
All these results can be proved by variants of the arguments of the preceding subsection.

7.3.1 �n((1� q)A)

We need first to introduce aq-analogue of the factorial, connected with the combinatorics of descents and
compositions.

Let r � 1 be an integer and letS be a subset of[1; r]. We associate withS the vectorv(S) =
(v(S)1; : : : ; v(S)r) 2 f0; 1gr wherev(S)i = 1 iff i 2 S. We can then consider a new vectors(S) =
(s(S)1; : : : ; s(S)r) 2N

r defined by

s(S)i = v(S)i + � � �+ v(S)r

for i 2 [1; r].

Example 7.10 Table 2 gives the values of the above vectors and numbers for all subsets of[1; 1], [1; 2]
and[1; 3].

C(S) S v(S) s(S) dS

2 ; (0) (0) 1
11 ; (1) (1) 1

3 ; (0; 0) (0; 0) 1
21 f2g (0; 1) (1; 1) 2
12 f1g (1; 0) (1; 0) 2
111 f1; 2g (1; 1) (2; 1) 1

4 ; (0; 0; 0) (0; 0; 0) 1
31 f3g (0; 0; 1) (1; 0; 0) 3
22 f2g (0; 1; 0) (1; 1; 0) 5
211 f2; 3g (0; 1; 1) (2; 2; 1) 3
13 f1g (1; 0; 0) (1; 0; 0) 3
121 f1; 3g (1; 0; 1) (2; 1; 1) 5
112 f1; 2g (1; 1; 0) (2; 1; 0) 3
1111 f1; 2; 3g (1; 1; 1) (3; 2; 1) 1

2
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Let nowI = (i1; : : : ; ir) be a composition of lengthr. We associate withI theq-analogue of(r + 1)!
defined by

[(r+ 1)!]I;q =
X

S�[1;r]

dS qs(S)1 i1+���+s(S)rir (55)

wheredS = jf� 2Sr+1; D(�) = S gj denotes the number of permutations ofSr+1 whose descent set
is equal toS.

Example 7.11 For r = 1, r = 2 andr = 3, one can read on the table the following formulas:

[2!](i1);q = 1 + qi1

[3!](i1;i2);q = 1 + 2 qi1+i2 + 2 qi1 + q2i1+i2

[4!](i1;i2;i3);q = 1+3 qi1+i2+i3 +5 qi1+i2 +3 q2i1+2i2+i3 +3 qi1 +5 q2i1+i2+i3 +3 q2i1+i2 +q3i1+2i2+i3

2

For a compositionI = (i1; : : : ; ir) of lengthr, set

aI(q) =
[r!](i1;:::;ir�1); q

r!

[i1]q [i2]q : : : [ir]q

[i1]q [i1 + i2]q : : : [i1 + � � �+ ir ]q
(56)

Let now� = (�1; : : : ; �r) be a partition ofn. We can now define aq-deformation of the usual sym-
metrized product by

(x�1 ; : : : ; x�r)�((1�q)A) =
X
�2Sr

a���(q) x��(1) : : : x��(r) (57)

This product clearly reduces to the ordinary symmetrized product forq = 0. Also, the familya =
(a���(q))�2Sr

is a probability distribution overSr, as we will see in the sequel. The following result
provides therefore a complete description, of the multihomogeneous modules associated withthe Lie
idempotents�n((1 � q)A)=(n(1 � qn)).

Proposition 7.12 Let� = (�1; : : : ; �r) be a partition ofn. Then the image of the projectorE�(�n((1�
q)A)=(1� qn)) is the module generated by all products of the form

(P�1 ; : : : ; P�r)�((1�q)A)

whereP�i is an arbitrary homogeneous Lie polynomial of order�i.

Note that the caseq = 1 gives again Corollary 7.8.
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7.3.2 �n(A=(1� q))

For a compositionI = (i1; : : : ; ir), define now

BI (q) =

rX
k=1

�
r � 1

k � 1

�
(�1)k�1 qi1+���+ik�1 [ik]q ;

and set

bI(q) =
BI(q)

(1� q)r�1 r! [i1]q : : : [ir ]q

The relevantq-deformation of the symmetrized product is defined by

(x�1
; : : : ; x�r)�(A=(1�q)) =

X
�2Sr

b��� x��(1) : : :x��(r)

Indeed, we have:

Proposition 7.13 Let� = (�1; : : : ; �r) be a partitionofn. Then the image of the projectorE�(�n(A=(1�
q))=(1� qn)) is the module generated by the products

(P�1 ; : : : ; P�r)�(A=(1�q))

whereP�i is an arbitrary homogeneous Lie polynomial of degree�i.

7.3.3 	n((1� q)A)

Let I = (i1; : : : ; ir; ir+1) be a composition of lengthr + 1. We associate with it the family(S;I)S�[1;r]
ofN2r defined by;;(i1) = 1 for everyi1 � 1 (whenr = 0) and by the inductive rules

8 S � [1; r� 1];

8>><
>>:

S[frg;I =

�
ir�1+ir�1

ir

�
S;(i1;:::;ir�2;ir�1+ir) ;

S;I =

�
i1+���+ir

ir

�
S;(i1;:::;ir�1) �

�
ir�1+ir�1

ir

�
S;(i1 ;:::;ir�2;ir�1+ir)

(whenr � 1). Next, we introduce the polynomialCI(q) 2N[q] defined by

CI(q) =
X

S�[1;r]

S;I q
s(S)1 i1+���+s(S)r ir

Example 7.14 Let us show how to computeC(2;3;1)(q). We need first to compute

f1g;(2;3) =

�
4

3

�
= 4 ; ;;(2;3) =

�
5

3

�
�

�
4

3

�
= 10� 4 = 6 ;

f1g;(2;4) =

�
5

4

�
= 5 ; ;;(2;4) =

�
6

4

�
�

�
5

4

�
= 15� 5 = 10 :
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It follows that

f1;2g;(2;3;1) =

�
3

1

�
f1g;(2;4) = 3� 5 = 15 ; f2g;(2;3;1) =

�
3

1

�
;;(2;4) = 3� 10 = 30 ;

f1g;(2;3;1) =

�
6

1

�
f1g;(2;3) � f1;2g;(2;3;1) = 6� 4� 15 = 9 ;

;;(2;3;1) =

�
6

1

�
;;(2;3) � f2g;(2;3;1) = 6� 6� 30 = 6 :

Hence we finally get

C(2;3;1)(q) = 15 q2�2+1�3+ 30 q1�2+1�3+ 9 q1�2+0�3+ 6 q0�2+0�3

= 15 q7 + 30 q5 + 9 q2 + 6

For a compositionI = (i1; : : : ; ir) of lengthr, let us set

cI(q) =
[i1]q : : : [ir ]q

[i1]q [i1 + i2]q : : : [i1 + � � �+ ir]q

CI(q)�
i1+���+ir

i1;:::;ir

�

Let � = (�1; : : : ; �r) be a partition ofn. Theq- symmetrized product will be in this case

(x1; : : : ; xn)	((1�q)A) =
X
�2Sr

c���(q)x��(1) : : : x��(r)

and we have:

Proposition 7.15 Let� = (�1; : : : ; �r) be a partitionofn. Then the image of the projectorE�(	n(A=(1�
q))=(1� qn)) is the module generated by all products of the form

(P�1; : : : ; P�r)	((1�q)A)

whereP�i is an arbitrary homogeneous Lie polynomial of degree�i.

7.3.4 	n(A=(1� q))

For I = (i1; : : : ; ir), define the polynomialDI (q) by the recurrence relations8><
>:

Di1 = [i1]q

DI (q) =

rX
k=1

Di1;:::;ik�1;ik�1;ik+1;:::;ir (q) +

�
jIj � 1

i1 � 1

�
qi1�1Di2;:::;ir(q) for l(I) � 2

with the convention thatD:::;0;:::(q) = 0. We set

dI(q) =
DI (q)�

jIj
i1;:::;ir

�
[i1]q : : : [ir]q
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Theq-analogue of the symmetrized product will be defined by

(x�1
; : : : ; x�r)	(A=(1�q)) =

X
�2Sr

d��� x��(1) : : :x��(r)

Proposition 7.16 Let� = (�1; : : : ; �r) be a partitionofn. Then the image of the projectorE�(	n(A=(1�
q))=(1� qn)) is the module generated by all products of the form

(P�1
; : : : ; P�r)	(A=(1�q))

whereP�i is an arbitrary homogeneous Lie polynomial of degree�i.
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