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This paper discusses various deformations of free associative algebras and of their conatgjetivas. Our main
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1 Introduction

This article is devoted to the investigation of certain deformations of frexcegie (or tensor) algebras
and of their convolution algebras. Typically, the deformations we are interestéepend on one or
several parameters and are trivial in the sense of the deformation thiealigebras. That is, for generic
values of these parameters there exists a conjugating isomorphism

uov = f(FH () (v)

between the deformed produetand the original one. However, for specific values of the parameters,
the deformed product degenerates in a non-trivial way, a situation whimhisafor the representation of
complicated algebras as limiting cases of well-understood ones.
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The motivation for this investigation was provided by examples of direct sum decdiopeof the
free associative algebr&(A), regarded as the universal enveloping algebra of the free Lie algédna

K(A)y =P, 1)
A

analogous to the PoinarBirkhoff-Witt decomposition, i.e.A runs through the set of all partitions,
Uy=K andU1 = L(A)

In these examples, eactodulel, is the image of the homogeneous compornElt),, of degreen
of K(A) by a certain idempotent, of the group algebra of the symmetric groipe&,,], acting on the
rightby (z1z2 - 2,) - 0 = To(1)T0(2) - - To(n) (Wherez; € A).

In the case of the Poinaa¢Birkhoff—Witt decomposition, coming from the identification/of A) with
the symmetric algebré( 7 (A4)), U, is the subspace spanned by symmetrized products of Lie polynomials

1
(PlaPQa"'aPT):F Z Po'(l)Po'(z)"'Po-(,")

‘eSS,

such that eacl?; is homogeneous of degrae The corresponding idempotents, introduced by Garsia and
Reutenauer [1], are refinements of the so called Eulerian idempotentsdaferfawer [2]), which arise,
for example, in the computation of the Hausdorff series [3], or in the study of the Hochschild olagym

of commutative algebras [4, 5].

The Garsia—Reutenauer idempotentsform, taking all partitions of a givem, a complete set of
orthogonal idempotents of a remarkable subalg&braf K[&,,], discovered by Solomon [6] and called
the descent algebralt has been shown [7] that such complete sets can be constructed foradhtles
algebras from any sequen¢e,) of Lie idempotentsf ¥,,, i.e. idempotents projecting (A),, onto
Ln(A). In particular, using the deformation theory of noncommutative symmetric functionszasme
obtain interesting sequences of Lie idempotents, depending on one or more parametatsypoldiing
in a natural way between all known examples [8, 7]. This leads to variousrdefions of the Garsia—
Reutenauer idempotents and of the Eulerian idempotents, and the firibgussertainly to explicit
the moduled’, onto which they project. The deformation technique presented in Sect. 3 provides the
following answer (Sect. 7, Prop. 7.4):

There exists for each a vectorp = (pr) indexed by compositions of, satisfying} ", p; =
1, such that/, is spanned by the weighted symmetrized products

(P, Pay.o ., Pr)p = Z Pro oy Po(2y  Porr)

oES,
whereX = (A, ..., \;) and each?; € L,,(A).

The weightsp; are explicited for several interesting examples.

The only recorded example of decomposition (1) which does not coned sequence of Lie idempo-
tents in descent algebras is the so-catldtiogonal decompositioftf. Duchamp [9]). It has been shown
by Ree [10] that if one endows {A) with the scalar product for which words form an othonormal basis,
the orthogonal complement éf( 4) is the space spanned by proper shuffiésy, «, v # 1. The orthog-
onal Lie idempotentr,, is the orthogonal projector frofy' (A4),, onto L, (A). This idempotent is not in
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the descent algebra, and it would be of interest to understand its structure. The orthogomaladébon
of the K(A) can be refined into a decomposition of type (1), whikeis now spanned by shuffles of
homogeneous Lie elements

PP WP,

with eachP; of degree);. The relationship between the projectars= ¢(,,) of this decomposition and
the other projectors, is somewhat analogous to that encountered in the case of the descent algebra, but
considerably more intricate.

To understand this analogy, we were led to introdugeaalogue of the shuffle product, which strictly
speaking, is rather a deformation of the concatenation product (obtaingd=fay), recursively defined

by
au ©q bo = alu ©q bv) + ¢1b(au 4 v) (2)

wherea,b € A andu,v € A*. This product degenerates at roots of unity, and in particular gives the
standard (commutative) shuffle product for 1. We conjecture that its convolution algebra degenerates
for ¢ — 1 into a commutative algebra which is associated with a Ree type decomposition

KA =KeoLepLWLe---

where L is a subspace which has the same Hilbert series as the free Lie aldabrsufispace can be
explicited). A challenging problem would be to find a good deformation of the shuffle product giving the
convolution algebra relevant to the case of the orthogonal idempotent as a degenerate case.

It turns out that they-shuffle, as well as the elements (¢) = > ce. ¢“(“)e, which are naturally
associated with it, have already occured in the literature in several ayplyararelated contexts.

First, theg-shuffle algebra is the simplest non-trivial case of a very general construction due g Ross
obtained in the context of the theory of quantum groups. Moreove,-ineiffle algebra is isomorphic to
the free associative algebralff, (¢) is invertible for alln. The computation of the determinantéf (¢)
(regarded as an operator of the regular representati@s,Qfalready occured in a problem of physics
(the Hilbert space representability of the quon algebra, describing hypothetical particles violating Bose
or Fermi statistics [11]), and was solved by Zagier, who also complitéd) ' by means of certain
factorization formulas. The same problem was also solved independently by BozejEpeictier [12]
who encountered it in the investigation of a generalization of Brownian motion. Sugiginough,
Zagier’s formula forlet U, (¢) turns out to be a special case of a recent formula of Varchenka [13] ggivin
the determinant of what he calls the quantum bilinear form of a hyperplane arrangement. To complete
the picture, we mention that theshuffle also has a natural interpretation whithin the representation
theory of the0-Hecke algebras of typd [15]. These aspects of theshuffle are reviewed, and the
various connections are exploited in order to give generalizations or simplificatidasoai results
when possible. For example, we will see that one can construct a quantum shuffle frootugion ®f the
Yang—Baxter equation (without spectral parameters), and that the Hall-Littlewood symmetric functions
or theg-Fock spaces of Kashiwara, Miwa and Stern [16] can be regarded as exambliscohstruction.
Also, we generalize Zagier’s factorizations to identities in the algebra of the infinitedmeith, and give
some applications (some similar results were obtained independently by Meljanaertamd[$7]).

This paper is structured as follows. We first recall the basic ilieiirs concerning noncommutative
symmetric functions [18], which provide the convenient formalism fimputing in convolution algebras
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(Sect. 2). Next, we present a general deformation pattern and give some girapérties (Sect. 3). In
Sect. 4 we introduce thgshuffle and derive its fundamental properties. We review the quon algebra,
the work of Zagier, and give some details on the interpretation in terrtiteedfHecke algebra. In Sect.

5, we study they-shuffle algebra as a Hopf algebra, and present our conjecture concerning the limit
q — 1 of its convolution algebra. In Sect. 6, we discuss Rosso’s quantum shuffles and exhibit som
new examples. Next, we generalize to the braid group some of the formulas which occtirectndy

of the ¢g-shuffle, explain the connection with Varchenko’s construction, and illustrate the general results
on an example constructed from the standard Hecke-type solution of the Yang—Baxter equattn. Fi
Sect. 7 is devoted to the description of the decompositions of the free assodigéibeazobtained from
deformations of the Garsia—Reutenauer idempotents.

2 Noncommutative Symmetric Functions

2.1 Definitions

The algebra ohoncommutative symmetric functiodsfined in Gelfanét al. [18], is the free associative
algebraSym = Q(51, S, ...) generated by an infinite sequence of noncommutative indetermisiates
called thecompletesymmetric functions. We set for conveniengsg = 1. Lett be another variable

commuting with all thesy. Introducing the generating series

o(t) .= Z S t*
k=0

one defines other families of noncommutative symmetric functions by the following relations:
At) = o(=t)~!

%U(t) = o(t)6(t), o(t) = exp(®(1))

whereA(t), ¥(t) and¢(t) are the generating series

At) = > At
k=0

(o] (o] @
t) = Ut B(t) = —k 4k
»(t) ; k (t) 2
The noncommutative symmetric functiohg are callecelementary functionand¥, and®, are respec-
tively calledpower sum®f firstandsecond kind
The algebra8ym is graded by the weight functiom defined byw(S;) = k. Its homogeneous com-
ponent of weight: is denoted bySym,,. If (F,,) is a sequence of noncommutative symmetric functions
with F,, € Sym,, for n > 1, we set for a compositioh= (iy, ..., )

Fl=F, F, .. F

The families(S?), (A?), (¥) and(®!) are homogeneous basesSafm.
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The algebreé8ym can also be endowed with a Hopf algebra structure. Its copraiustdefined by
any of the following equivalent formulas:

ASn)= D Sk®Snk  AAn)= > Ay @An_y
k=0 k=0

AP,)=10T,+7, 1 AP =109, +P,®1

The free Lie algebral = L(®) generated by the family®,,), >, is then the Lie algebra of primitive
elements forA\. -

The set of all compositions of a given integeis equipped with theeverse refinement ordedenoted
<. For instance, the compositiodsof 4 such that/ < (1,2, 1) are exactly(1,2,1), (3,1), (1,3) and
(4). Theribbon Schur functiongéRy), originally defined in terms of quasi-determinants (cf. Gelfand and
Retakh [19, 20]), can also be defined by one of the two equivalent relations:

ST=3N" R Rr= ) (-1 g

J<I J<I

where{(7) denotes thdengthof the composition/. One can easily check that the famil;) is a
homogenous basis 8fym.

The commutative image of a noncommutative symmetric funckias the (commutative) symmetric
function f obtained by applying t@&” the algebra morphism which map$ onto s, (using here the
notations of Macdonald [21]). The commutative image\gfis ¢,, and the power sun&,, and®,, are
both mapped ip,,. Finaily, iy is sent to an ordinary ribbon Schur function, which will be denoted;by

2.2 Relations with Solomon’s Descent Algebra

There is a noncommutative analog of the well known correspondence between sgnfiametions and
characters of symmetric groups, where the character ring of a symmetric grousecepl the descent
algebra, in the sense of Solomon [6]. Recall that an intéger[1,» — 1] is said to be alescenbf a
permutationr € &, iff o(i) > o(i + 1). Thedescent sedf a permutationr € &,, is the subset of
[1,n — 1] consisting of all descents of. If I = (i1, ...,4,) is a composition of:, one associates with
it the subsetD(7) = {d;,...,d.—1} Of [1,n — 1] defined byd, = i; + --- + ix. Let D; be the sum
in Z[&,] of all permutations with descent sex(7). Solomon showed that thB; form a basis of a
subalgebra o%[&,,] which is called thalescent algebraf &,, and denoted by, [6]. One can define
an isomorphism of graded vector spaces:

o Sym:é Sym, — E:é Yn
n=0 n=0
by

a(R]) = D[

The direct sunt: can be endowed with an algebra structure by extending the natural product of its com-
ponents,,, settingzy = 0 for € £, andy € X, whenp # ¢. Theinternal product« on Sym is then
defined by requiring that be ananti-isomorphism, i.e. by

FxG= oz_l(oz(G) oa(F))
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for F,G € Sym. The fundamental property for computing with the internal product is the following
formula:

Proposition 2.l [18] Let Fy, Fs, .. ., F,, G be noncommutative symmetric functions. Then,
(PP B )« G=pe[(F@ P @@ Fr) + AT(G)]

where in the right-hand side,. denotes the-fold ordinary multiplication and: stands for the operation
induced orSym®" by .

2.3 Quasi-symmetric Functions

As shown by Malvenuto and Reutenauer [22], the algebra of noncommutative symmetriorfisnstin
natural duality with the algebra of quasi-symmetric functions, introduced by Gessel [23].
Let X = {zy,zs,...,z, ...} be a totally ordered infinite alphabet. An elemgne C[X] is said

to be aquasi-symmetric functioiff for any compositionx’ = (k1, ..., k) andz;,y; € X such that
Y1 <ya < - < Yy andzy < z9 < --- < 2z, 0n€ has
(Pl w5 ouir) = (Fla 25 )

where(f, | #¥) denotes the coefficient of the monomidf in f. The quasi-symmetric functions form a
subalgebra o€[X] denoted byQ) Sym.
One associates to a compositibe: (41, iz, . . ., i) thequasi-monomial function/; defined by

_ i i i
My = E yfyf - Ym
Y1<y2<-<Ym

The family of quasi-monomial functions is clearly a basisxfym. Another important basis @.Sym
is formed by thequasi-ribbon functionsdefined by

F,:ZMJ

J-I

where}- is the refinement order (i.el = Iiff D(J) D D(I)). For exampleF132 = Mya2 + Mi112 +

Mia11 + Miii11.
The duality betweeSym and@ Sym is realized by the pairing

(s, M)y =655 or (Rr,Fj)=dr;
The Hopf algebra) Sym can then be identified with the (graded) Hopf algebra du8lyah.

2.4 Differences and Products of Alphabets

We recall here some basic défians concerning transformations of alphabets. We refer elsewhere [7]
for more details. The basic idea is to embed noncommutative symmetric functiom®icammutative
polynomial algebra (for example, by definiagA;¢) = [[,5,(1 — ta;)~" for some noncommutative
alphabet4), and then to regard the images of the generaig(st) by an algebra morphism as being the
symmetric functions,, (A’) of another alphabet’, which can sometimes be explicit, but may also be
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virtual. For example, the formal difference of two genuine alphaledsd B is generally only a virtual
alphabet, having nevertheless well-defined symmetric functions, expressiblensdéthose ofd and
B.

We first recall the defition of the product of a totally ordered alphabet by a noncommutative alphabet.

Definition 2.2 LetX be atotally ordered commutative alphabet and4die a noncommutative alphabet.
The complete symmetric functiafig(X A) of the alphabefX A are defined by the generating series

o(XAst)= > Sp(XA) " = [] oA
n>0 rzeX
the product being taken according to the total ordering¥of

Example 2.3 Let X, = 1/(1 — ¢) denote the totally ordered alphabét = { - - < ¢" < --- < ¢ < 1}.
The complete symmetric functions of the alphah¢{1 — ¢) are

A A .
ol ——t) = Sp | — ) t" = o(A;q"t
()= Z o) o = L
We recall the following important property [7']:

Proposition 2.4 Let X, Y be two totally ordered commutative alphabets anddidte a noncommutative
alphabet. Then, for any,, of Sym,,,

Fu((X % Y)A) = Fy(XA) % S, (Y A)

whereX x Y denotes the direct product of the two alphah&tsindY endowed with the lexicographic
ordering.

This property suggests the notatisp( A/ X) for thex-inverse ofS,, (X A) in Sym,,.
Finally, here is the definition of the difference of two noncommutative alphabets.

Definition 2.5 Let A, B be two noncommutative alphabets. The complete symmetric fungtipas- B)
of the alphabetd — B are defined by the generating series

o(A - B;t) ZS (A= B)t" := o(B; )"t a(A;t) = M\(B; —t) o(A; 1)

The notation(1 — ¢) A = A — ¢ A therefore denotes the alphabet whose complete symmetric functions
are

a((1—q)A;t) Z Sp((1=q)A) " = A(A;—qt) o(A; 1)

These notations are coherent since it can be checke#f,ihdt—q¢) 4) is actually the inverse &f,, (4/(1—
q)) in Sym,, for the internal product.

3 Deformations of Cauchy and Convolution Products

In the sequel K will denote a field of characteristit, and.A will always be an infinite alphabet whose
letters are indexed b *, i.e. A = {aj,as,...,an,...}.
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3.1 The General Case
Consider, for allh > 1, an invertible element

Bo= Y bMo € K[&,]

cES,

We require tha; = Id,. This data defines a linear operatbon K (A) by

ﬁ(ail ain) = Qi ... A5, ﬁn = Z b(an) aig(l) aia(n)

oS,
whereq;,, ..., a;, € A.
This allows us to equifk (A} with a new product sz, defined by
uGpv=p(67" (u) - 57 (v)) ®3)

for u, v of A*. In other terms, this product is defined in such a way thhecomes an isomorphism of
algebras betweeR (A) equipped with its usual concatenation (or Cauchy) productagd) equipped
with the new products.

Thus,(K(A4), @) is a free associative algebra 604) = 3:(4) = A. Itis therefore endowed with a
canonical comultiplications, defined by

cgla) =1®@a+a1l

fora € A, and by the requirement tha is an algebra morphism fay .
LetCs(A) be the convolution algebra of the Hopf algebfa(A), ©3, ¢g), i.e. Cs(A) = End 8" K (4)
endowed with the convolution product

f&sg=pso(f@g)ocs (4)

whereps : u @ v — u ©g v is the multiplication. Whem = 1, it is well known that the direct sum of the
group algebras of all symmetric groups

K[&] = (P K[6,] (5)

n>0
is a subalgebra of the convolution algebra (cf. Reutenauer [2]). Thisastaue for the3-deformed
products.
Proposition 3.1 Thes-convolution algebrgd K'[S], &) is isomorphic to the usual convolution algebra
(K[&], %) (which corresponds to the case whegrés the identity).

Proof Let ¢ be the comultiplication of (A) (for its usual Cauchy structure) making letters primitive. By
definition of &g,
6(&1...071) ICll@ﬁ @ﬁ QAn

for a; of A. Using this property, it is easy to see that the following diagram is commatativ
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K(A) K(A)
c Cp
K(A) © K(A) 757 K(A) @ K(A)
In other words¢s = (3 @ ) o co 71, so that
c®3T = OGOpo(c@T)ocg

= ﬁo@o(ﬁ_l®ﬁ_1)o(0'®7')o(ﬁ®ﬁ)ocoﬁ_l
ﬁo@o((ﬁ_loaoﬁ)(@(ﬁ_loroﬁ))ocoﬁ_l

where we identify an element of K[&] with the endomorphism corresponding to its left action—
z oy on K[&] (© denotes here the usual concatenation produst(of)). Consider now the bijectiofis
from K'[&] into itself defined by

fﬁ(U) IﬁnOUOﬁ;1
foro € &,,. We have just proved that
folo ®p 1) = fo(o) ® fa(7) (6)

and f;s is the required isomorphism. O
Note 3.2 The definition of3 shows that

gof(r)=pB(cor)

for any two permutations andr. This just means that the left and right actions of the symmetric group
commute. One can then easily check that

oz T=0(c®T) @)

for permutations andr of arbitrary orders.

Consider now the subalgebXa of (K [&], &) which is generated by all the elemefits, =12 ... n
for everyn > 0. Wheng is the identity of K (A}, X is isomorphic to the direct sul of all descent alge-
bras equipped with the convolution product (cf. Reutenauer [2]), hence to the algebra of noncdivemuta
symmetric functions (cf. Sect. 2). An explicitisomorphism between thigebras is given by

Siy Siy o0 Sy, — Id;, ® 1d;, ® --- % Id;,

One can deform this isomorphism by constructing a new isomorphism demgtdm Sym into Xz
which maps the complete functissf (where! = (iy,...,i,) is a composition) to the convolution
product

Idil &5 IdiQ &®p - Bp Idzn
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It is interesting to observe that the isomorphispcan be seen as a deformation of the classical inter-
pretationa of noncommutative symmetric functions into Solomon’s descent algebra. One can therefore
obtain by this method different interpretations of noncommutative symmetric functiires following

result gives an explicit expression for the deformed interpretationapap

Proposition 3.3 For F,, € Sym,,,
ap(Fn) = B o a(Fh) o fr (8)
Proof With the same notations as in the proof of Proposition 3.1, one has
Folap(ST)) = fo(Idi, ®p - ®p Idi,) = fo(Idi,) & -~ & [3(Idi,) = (5T)
according to (6), and to the fact that(Id,) = Id, for everyk > 0. Hence,fs(as(ST)) = a(ST). That
is,ap(S?) = Byt o a(ST) 0 By m
As an immediate consequence, we can state:

Corollary 3.4 The convolution algebr&; is a subalgebra of{ [&] equiped with the usual composition
product.

Proof Let z andy be two homogenous elements of the same orderX ;. By construction, there exists
two elementsf andg of Sym,, such thate = «3(f) andy = as(g). It follows then from Proposition

3.3 that
zoy = (Bytoal(f)opn)o (B, oalg)ofbs)
= Biloa(f)oalg)oBn
= Byloalgxf)opy
= aplgxf) €Xp

Note 3.5 The proof of the corollary shows that

ag(F)oag(G) = ag(G« F)
for homogenous elements ¢ of the same weight dym. It follows in particular that the image hy;
of a homogenous idempotent®§m (for the internal product) is still an idempotentiiy.

Example 3.6 Let us explicit the interpretation of the image by of the Eulerian idempotent,, (which
is the image byx of the element®,, /n of Sym,,). Let £ denote the image of the free Lie algetirg4)
by 5. Transporting by the Poincae-Birkhoff-Witt decomposition of' (4), we obtain

KAA=K &L (L,Lsgd ...d (L,....0) & ...
n terms

where )
(T1,...,x0)p = o ( Z Zo(1) Op - Op l‘a(n))
e,
forz,...,z, € K(4). Thenag(®,/n) = f,o0¢,00, istheidempotent corresponding to the projection
of the homogenous component of degreef £ with respect to the above direct sum decomposition of
K(A).



Noncommutative symmetric functions Il| 169

Note 3.7 In many interesting cases, the elemefits = 3,(¢) depend on some parametgiand are
invertible for generic values of. In such situations, the convolution algetda(y) degenerates when

q takes a value, for which 5 = (q) is not an isomorphism. We will, however, still use the notation
Y 3(q0) to denote the limit of25(¢) for ¢ — ¢o whenever it exists. Several interesting problems arise in
the investigation of these degenerate convolution algebras.

Note 3.8 The framework presented here can be easily generalized to some other situationg, them

is the case of the so-calledthogonal Lie idempoteri®, 2]. The orthogonal Lie idempotent, is the
idempotent ofQ[&,,] which corresponds to the orthogonal projection fréfjA) (endowed with its
standard scalar product for which words form an orthonormal basis) onto the homogenous component
L(A), of ordern of the free Lie algebrd (A). =, is also the projection ontb(A),, with respect to the
decomposition of (A) given by Ree’s theorem, i.e.

K(A)=K & L(A) & LA)WLA) ¢ ...e LAW ... LHLA) & ...

n terms

wherelll denotes the usual shuffle product@QgA).

Let 5 be any linear basis af(A). The shuffle algebreQ(A),L)) is a free commutative algebra with
B as generating family (cf. Reutenauer [2]). This property allows us toéeficomultiplicatior,, on
Q(4) by

1 epy(l)=1® L+ L ®1forevery Lie element. € L(A);

2. ep(PWQR) = au(P) (W W) eu(Q) for every polynomials®, @ € Q(A).
One can then consider the associated convolution pragucn Q[&], defined by

cguT=Wo(c@T)oau(12... n+m)

forc € &, andr € &,,. The commutativity of the shuffle product implies the cocommutativity
of ¢y. Hence the convolution algeb(&)[&], &) is here commutative. It follows that its subalgebra
Y generated by the identity elements of all symmetric groups is also commutative. Considdrenow t
morphism fromSym into X, defined as in the general case by

am(S(“"“’i")) =1Id;, $u - %uwld;,

This is a degenerate situation in which the imagenhyof the algebra of noncommutative symmetric
functions is not isomorphic to Solomon’s descent algebra. The generic interpretation of ¢jechiyg,

of the Eulerian idempoten®,, given in Example 3.6 is, however, still valid here. It follows from this
interpretation that Ree’s decomposition is equivalent to

an(®,) =n-my

It follows that,, belongs to the homogenous componﬁﬂi) of ordern of X. Itis easy to see that this
set is a subalgebra @f[&,,] of dimensionp(n) (the number of partitions of). An interesting question
would be to characterize this subalgebra and to give explicit formulas for the images statitard
bases ofSym by oy,. The decomposition of,, on such bases would then be immediately given by
decomposition relations d@#,, in Sym.
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Example 3.9 Let us describ@ﬁj” forn = 2 andn = 3. In the first caseEEuz) is just the descent algebra
¥, = Q[&.]. In the second casEEU?’) is the commutative algebra spanned by

1
Oz|_|_|(R3) =123 ; Oz|_|_|(R12) = Oé|_|_|(R21) = 5 (132 + 213 + 231 + 312) ; am(Rlll) =321

and the orthogonal projector is
1 1 1
T3 = o (®3) = ay <R3 — 5 R — SR+ R111) = 123 — 5(132+ 213+ 231 + 312) + 321

Itis also interesting to see that the imagesfyof the homogenous componeiyt (¥) of ordern of the
free Lie algebrd. (¥) C Sym generated by the family¥,, ), > (or equivalently by the family®,,),,>1)
collapses here onto a line, which is necessarily equé) ig .

3.2 Deformations Using Noncommutative Symmetric Functions

Here is an interesting special case of the previous constructions. £etF;, ), > be a family of elements
of Sym,,, with F; = 5;. We assume that every, is invertible for the internal product &ym,,. We
can then consider the bijectigh defined by

Bn = a(Fn)

where we identify an element &f[&,,] with the linear morphism defined by its right action. In other
words,3,, is given by
Bnix € K[S,] — zoa(F,)

Denote by®r the product ofi’ (A) associated with the family3,, ),>1 by the above construction. We
also denote by » anda  the corresponding convolution product and interpretation morphisSi(af
into the convolution algebrar = X3).

Note first that Proposition 3.3 shows that the image pfis here exactly Solomon’s descent algebra.
Usinga~1!, we can therefore reinterpret the convolution produst Formula (7) shows in particular that
the algebrd X, &) is isomorphic to the algebra of noncommutative symmetric functions endowed with
the F'-product defined by

UkpV = Foppm * (UV)

for homogenous elementsandV of weightn andm, respectively. Identifying agaia (/) with I/ and
applying Proposition 3.3, one has has
ap(U) = F, + U x F;Y

forV € Sym,,, whereF{f(_l) denotes the inverse &, for the internal product dym,, .
We will study in the final section of this paper the situations corresponding to the families given by the
g-bracketing and its inverse, i.e. the caggs= S5, ((1 — ¢)A) andF,, = S, (A/(1 — q)).

4 The ¢-shuffle Product

We present in this section thyeshuffle product which is an interesting deformation of the usual Cauchy
product in/k’{A). We first give the formal definition of this product and then show that this deformation
is a special case of the general framework introduced in Sect. 3.
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4.1 Definition
The shuffle product can be recursively defined by the formula
aulllbv = a(ullbv) + b(aullv) (9)

wherea, b € A andu,v € A*. Inserting a power of an indeterminatén this definition, one obtains an
interesting deformation, which turns out to be a particular case of a cotistn o Rosso [24].

Definition 4.1 Theg-shuffle product is the bilinear operatian, on N[¢](A) recursively defined by
logu=udgl=u (20)

(au) ©Oq (bv) = a(u ©4 bv) + g'*b (au ©q v) (11)
whereu, v (resp.a, b) are words (resp. letters) of* (resp. A)

This operation interpolates between the concatenation produgt £dr) and the usual shuffle product
(for ¢ = 1) onN[q](A). The following property is a particular case of a result proved in Sect. 6.

Proposition 4.2 Theg-shuffle product is associative.
As an exercise, let us check it directly. Itis clearly sufficient to prove that
(au @q bv) Og cw = au Og (bv Oq cw) (12)
foru,v,w € A* anda, b, c € A. Applying (11), one finds
(au ©g bv) Ogcw = alu®qbv) O4 cw + gl b(au Og V) Og cw
= a((u g bv) O cw) + ¢l e(a(u ©g br) O w)
Hlb((au ©q v) Og cw) + 1 e(b(au O v) O w)
= a((u®q bv) Og cw) + ¢l b((au O v) O cw)
+glmH b e ((a(u ©g bv) + ¢l* b(au &4 v)) ©g w)
so that
(au g bv) Ogcw = a((u®q bv) Og cw)
+l*1b((au ©q V) Og cw) + g le((au ©g bv) ©g w) (13)
On the other hand,
au Gy (bo O ew) = auGy (b(v Oy cw) + ¢ eby 0, w))
= a(uOg b(v g cw)) + ¢! b(au ©q (v Oq cw))
+q!?! au ©q c(bv Og w)) + glavlFibel clau ®q (bv Og w))
= alu®q (b(v @4 cw) + ¢l e(bv O w)))
+ql U blau ©g (v Og cw)) + ¢l e(au @4 (bo O w))
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It follows that

au ©g (bv ©4 cw) = a(u®q (bv ©4 cw))
+glevl blau ©g (v ©q cw)) + glevleel clau Og (bv ©4 w)) (14)

which implies the result by induction.

4.2 The OperatorU(q)

As already observed, thyeshuffle can also be interpreted as a deformation (in the sense of trenddion
theory of algebras) of the concatenation product of a free associativeralgkhis known that these
algebras are rigid, which implies that for geneyithe ¢-shuffle product is ecessarily a deformation of
the concatenation product in the sense of Sect. 3. Itis easy to exhibit the conjugatmrphism. Let
U(q) be the endomorphism &{(4){A) defined by

U(q)(a1a2 ...an):Cll@qaz@q"'@qan

for w = ajas ...a, of A*. The producto, being multihomogeneous, the restriction 6fq) to
Z(q)(A)» defines an endomorphisifi(¢), of Z(¢){A), for each miti-degree), and one can write

Ulg) = € Ula)

Moreover,U (¢) clearly commutes with letter to letter substitutions. This shows that one carerécgy)
from its restriction to standard word5(¢);~. This endomorphism corresponds to the right action of an
element’,, (¢) of Z[¢][&,], which is given by the following formula:

Proposition 4.3
Un(9)(12...0) = 10420 - @Ogn= Y ¢"“o (15)
oS,
This formula follows by induction from the following one, itself established by induction:
Lemma4.4

n—1
12..n=1Ggn= > ¢" ' (1..initl.. . n—1) (16)
=0

It follows that for a word of length,

U(g)(araz ... ap) = aras ... an - Un(q)

and one sees that theshuffle is a deformation of the Cauchy product in the sense of Sect. 3 whenever
U, (q) is a bijection.

Indeeddet U, (¢) is an analytic function of, andU,, (0) being the identity oZ[&,,], U, (¢) is invert-
ible for small complex values af, and thus also for generic(that is, forq an indeterminate, or far a
complex number avoiding a discrete set of values). It followslit{a} itself is also generically invertible,
and hence that theshuffle is generically a deformation of the Cauchy product in the sense of Sect. 3.
One can restate this result as follows:
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Proposition 4.5 For genericy, U (¢) is an isomorphism between the concatenation algéBig)(A), -)
and theg-shuffle algebrdZ(¢)(A), @y).

Equivalently, wheri/ (¢) is invertible,
rOgy=Ulg) (U()™ (2) - Ula)™ () 17)

4.3 U(q) in Physics: The Quon Algebra

The problem arises now of finding the valuesqdior which U, (¢) is actually invertible. It turns out
that this problem has already been solved by Zaaier [25] and by Bozeijk8p@idher [12] in a totally
different contexts. The starting point of Zagier [25] was a problem in physics, relatadnodel of

guantum field theory allowing the existence of particlem¢ns’) displaying small violations of Bose
or Fermi statistics [11] Classically, bosons and fermions are deschpeanteation and annihilation
operatorsy;, a; satisfying canonical commutation or anticommutation relations. Heesproblem was
to determine whether it was possible to realizegtommmutator (y-mutator’) relations

aja; —qaja; =9d;  (i,7>1) (18)

by operatorsi;, o’ of a Hilbert space?, such that; be the adjoint of;, and such that there exists a
distinguished vectoj0) € H (the vacuum state) annihilated by all tihe

a;]0) =0 for all ; (29)

Zagier proved the realizability of this model ferl < ¢ < 1, and the same result was obtained indepen-
dently by Bozejko and Speicher, who encoutered the same algebra in their anabvsisradralization of
Brownian motion. Another proof (with a gap) appears in Fivel [26] — see also themrfaf].

It is easy to see that the realizability problem can be reduced to the case ihis equal to the
vector spaced (¢) generated by the images |65 under all products of;, andaj,. This space has a basis
consisting of all states

K)=ay, ... a; [0)

for K = (k1,...,k,) € (N*)". Consider now the infinite matriX(¢) defined by
Alg) = ((K

where the scalar product is defined by the conditigh) = 1. The Hilbert space realizability of relations
(18) is equivalent to the positive definiteness of the matt{y). Moreover, one can prove that this
condition is equivalent to the positive definiteness of all submatrice @f indexed by permutations of
&,,. An easy computation gives

L>)K,LE(N*)n,n20

(olry = ¢
which is the matrix of/,, (¢) in the regular representation.

Hence, one has to prove that all operatGygq) are positive definite for-1 < ¢ < 1. By continuity,
sincel, (0) is the identity, it is sufficient to show that, (¢) is non singular in this range. This reduces
the realizability problem to the invertibility of the-shuffle operator for-1 < ¢ < 1. This will follow
from the computations of the forthcoming section, as well as the complete determinatienvafues for
whichU, (¢) is invertible.
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4.4 Zagier’s Inversion of U(q)
Define

n—1
To(g)=12..n=1on= 3 ¢/ (1. initl...n—1) (20)
=0

(by Lemma 4.4). Embedding,,_; in &,,, one can write
Un(q) = (10g -+ ©gn—1) ©Ogn = Un-1(q)Tn(q)

so thatl,, (¢) = T>(¢)Ts(g) - - - Tn(g). Taking reduced decompositions of the factors, we obtain:

Proposition 4.6 For n > 2, one has the factorization

Un(9) = (1042)(12043) ... (12...n—1 04 n) (22)
= (I4q0)(1+q0o244¢° 0201) ...
(1+q0-n—1+q20-n—10-n—2+"'+qn_10-n—1~~~0-1) (22)

Thus, U, (¢) will be invertible if and only if all theT;(¢) are invertible fori < n. These elements
can themselves be factorized. To this purpose, we need to introduce two eléméntsand D,, (¢) of
Z(4)[&,], which are defined by induction. One first sets

Gi(q) = Di(g) =1

Let nown > 2, and suppose that, _(¢) andD,,_,(q) are defined. Denote by, _;(¢) andd,,_,(q) the
images of these elementsZiiq)[&,, ] where we identifys,, _; with the stabilizer ofl in &,,. That is,

gn-1(g) =m;_1(Gn-1(g))  and  dn_s(g) = ;1 (Dn-1(q))
wheren” _, is the group morphism a&,,_, into &,, defined by
Mhoi(oc) =(1o(l)+1 ... 0(n—1)+1)
foroc € &,,_1. Then one defines
Gnlg) = (1=4¢"7)gn-1(q)
{ Dalg) = dn-a(q) (1= ¢"""80)7"

where
Yo =(n—=112...n—2n) and dp=(Mm12...n-1)

The complete factorization @f, (¢) is then given by
Proposition 4.7 [25] lForall n > 1,

T, (Q) =G, (Q) D, (Q) (23)
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Proof Letn > 2 and suppose by induction and that the formula is validifpr; (¢). Then,
Gu(@) Dul(q) = (1=¢"m) gn-1(¢) dn-1(g) (1 = ¢ 8,)7"
= (I=¢"m)tn-1(g) (1 —¢""10n)7"
wheret,_1(q) = n_1(Th-1(g)). It suffices therefore to check that
Ta(q) (1= 4" 7" 0n) = (1= ¢" 1) ta-1(9)

which follows from a straightforward computation. |

Example 4.8 Forn < 4, this gives
T»(q) (1-¢*) (1 —q(21)7!
T3(q) = (1-¢>(213)) (1 —¢*) (1 —¢(132))7" (1 - ¢* (312))~"

Ta(q) (1—q*(3124)) (1 — ¢® (1324)) (1 — ¢?)
(1—q(1243))7" (1 — ¢* (1423))~" (1 — ¢® (4123))~*

It is now easy to obtain an explicit formula f@t, (¢)~! (which is a factorization of this element into
2n — 3 terms). To state it, we need to introduce the eleméfijts;) and D!, (¢) defined byG (¢) =
Di(¢) = 1 and by the recursive formulas

{ Gh(@) = (1= ¢"" ) gn-1(0)

Dy(g) = d_1(9) (1447 8n 47" (62)7 + -+ ¢ (6,)"77)
whereg;, _;(q) = n;,_1(G},_1) andd;, _(q) = n;_1(D;,_1)-

Proposition 4.9 [25] If ¢ is an indeterminatel;, (¢) is invertible, and its inverse is

1
(1-¢%) (1—=¢% ... (1—gnin=1)

To(q)~' = D}, (q) Gy (q) (24)

Proof It suffices to find the inverses of the linear factors, which are giyen b

1
) (1 + (]n on + an ((5n)2 4+ q(”—2)n (6n)n—2)

l_qn(sn —1:7
( ) l_qn(n—
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Example 4.10 Forn = 2, 3, 4, one has

L)~ = ——(1-q(21).
l—q

To()' = (12 (312) (1 — ¢ (132)) (1 + ¢ (213))
(1—-¢*)(1-¢%

T = L (- P (123)) (1 ¢? (1423))

(1=¢*)(1=¢)(1—¢")
(1 —q (1243)) (1 + ¢° (1324)) (1 + ¢* (3124) + ¢° (2314))
We can now describe the exact valueg &r which the operatol’,, (¢) is not invertible.

Corollary 4.11 [25] For everyn > 1, the operatord/,, (¢) andT,, (¢) are invertible iffg is not ak(k —1)-
root of unity for somé < [1, n].

Corollary 4.12 [25] The operatotl/ (¢) is invertible whery is not a root of unity.

We have also the following result of Zagier, which is also a special chaegeneral formula due to
Varchenko (c®. [13], Theorem 1.1 or Sect. 6.4).

Corollary 4.13 [25, 13] The determinant df’,, (¢) considered as an operator for the regular representa-
tionof &, is

detUn(q) — H (1 _ qk(k—1))(n—k+1)n!/(k(k—1))
k=2

Proof Using the factorization of},(¢) and the the fact thatet (1 — ¢v) = (1 — ¢')*'/! if v is a cycle of
order! in &,,, we obtain '
detﬂ(q) — H (1 _ qk(k—l))n!/(k(k—l))

k=2

4.5 Representation Theoretical Interpretation of the q-shuffle
The 0-Hecke algebrdT, (0) is the C-algebra obtained by specialization of the generic Hecke algebra

H,(q) atq = 0. Itis generated by elemenis, Ts, ..., T,,_1 and has the following presentation :
T? = =T, fori e [1,n— 1]
LT =1;T; forli—j| > 1

TiTipa Ty = Tipa Ti Ty fori € [1,n— 2]

For generic values af, the Hecke algebra is semi-simple, and isomorphif€®,,. This is not the case
wheng = 0. In particular, the families of irreducible and indecomposdb|€¢0)-modules are not equal.
The irreduciblef , (0)-modules ard -dimensional, and parametrized by subset$,of ., n — 1 [14]

To see this, itis sufficient to observe thi@t7; .1 —7;4+17;)* = 0. Thus, all the commutatof$;, 7;] are in
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the radical. But the quotient @f,, (0) by the ideal generated by these elements is the commutative algebra
generated by, — 1 elements, ... ,{,_1 subject tot? = —¢,. It is easy to check that this algebra has
no nilpotent elements, so that itis, (0)/(rad H,(0)). The irreducible representations are thus obtained
by sending a set of generators(tel) and its complement tb. For reasons that will become transparent
later, it is better to label these representations by compositions rathentisabsets. Lef = (iy,...,4,)

be a composition of. and letD(7) the associated subset[df » — 1]. The irreducible (-dimensional)
representatiop; of I7,,(0) is defined by

(-1 ifieD()
W(TZ’)‘{ 0 ifig D)

and the associatefd,, (0)-module will be denoted b¢';.
Now let M be an arbitrary finite dimensiona,, (0)-module and consider a composition series/bf
i.e. a decreasing sequence

Mi=MD>DM; DD My D My ={0}

of I,(0)-modules whereeach M; /M, is irreducible. There exists therefore for eacte [1,%] a
composition]; of n such thatM;/M;,; ~ C;,. The Jordan—Holder theorem ensures that the quasi-
symmetric function

F(M)= > Fy,

is independent of the choice of the composition series. The quasi-dyimfu@ction associated with/
is called thecharacteristicof M. One can show that it has several properties in common with the usual
Frobenius characteristic of@&,,-module [15]. In particular, the characteristic of an induced module

Hoy ooy
M= CII ® C12 Q- CIr THnl_é)HTQ@...@Hnr
is the product of the characteristics of the factors [15]
F(M)=Fr, Fr, - Fr. (25)

These induced modules are cyclic, with generator the basis vectorl © 1 ® --- ® 1 of the one-
dimensional spac€;, ® Cr, ® - --® Cy, . The length filtration

b cr, (26)
(w)>k

H,(0)*) =
4
of the 0-Hecke algebra induces a filtration bf
M®*) = H,(0)%) ¢ (27)
and this suggest the definition of a graded characteristic (for these particular modules) by

Fo(M) =" " F(M®) /M H+0) (28)
k>0
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-1
T4]0

T2
Ty|-1

(T2T\TsTae ) D Tal-1 4
T3]0

Fig. 1: The induced, (0)-moduleM 2y (1,1)) -

Example 4.14 Take! = (2), J = (1,1) and letM () (1,1)) be theH4(0)-module obtained by inducing
the H,(0)® H-(0)-moduleC 5@ Cy 1), identifying H,(0)© H» (0) to the subalgebra af , (0) generated
by T} and7s. Lete = 1 ® 1 be its standard generator, so tiiat = 0, T3¢ = —e, andTse is independent
of e.

The automaton shown in Figure 1 gives a complete description of the induced moduleatdss st
which correspond to images efunder the action of some basis elem@&ptof 77,(0), form a basis of
M(2y,(1,1))- An arrow indexed by; going from the stat¢ to g means that;; - f = ¢, and a loop issued
from a statef and labelled byf; |e (withe = 0 ore = —1) means thaf; - f = ¢ f.

This automaton is naturally graded by the dista#(c8 of a statef to the initial state: as indicated on
the picture, and it is clear that this grading corresponds precisely to the filtration used in the definition of
F,. To be more explicit, if one associates with each sfaté the automaton the compositidiif) of 4
whose associated subset is

D)y ={iell.3|Ti-f=—-1}

one has
Fo(Mizy, 1) = >, ¢ Frp
I
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The graded characteristic 8f((2) (1 1)) is equal to

Fo(Mi(2y,1,1y) = Fs1+ ¢ Foo + ¢* (Fiz + Fa11) + ¢° Fior + ¢* Fi1o

For ¢ = 1, this characteristic is the produkt F 1, which can be obtained from the shuffleldfand43
[2]. On the other hand, thgshuffle of12 and43 is

12 ©4 43 = 1243 + 1423 + ¢? 1432 + ¢?4123 + ¢°4132 + ¢*4312

and taking the descent compositions of the permutations in the right-hand side, one réveggesied
characteristic of/((5) (1,1))-

This example illustrates a general fact. The following proposition shows that the graded characteristic
of an induced module as above is always given bygtstuffle. As it is an associative operation, one
obtains in this way g-deformation of the ring of quasi-symmetric functions.

We denote here by'(c) the composition oh associated with the descent set of a permutatiaf
S,

Proposition 4.15 Let I, J be compositions of andm. Let alsor andr be respectively two permutations
of &1 ) and &y, 41 ;40 SUCh thatC'(o) = T and C(r) = J. Then, the graded characteristic of the
H, 1~ (0)-module obtained by inducing tig, (0) @ H,, (0)-moduleC ;@ C 5 (identifyingH,, (0) ® H,,» (0)

to the subalgebra off, +, (0) generated by, ..., T 1, Thi1, - - -, Them—1) iS given by

FCroCrtytmth o)= > ¢ Few

VEStm

where one has
od ®q T = Z qd(l/) v

VEStm

Proof Let M ; be the induced/,, 4, (0)-module considered in the proposition. This module is generated
byae = 1® 1 onwhichTy,..., 7,1, 1041, - - Tham—1 act by

—1 ifieD(I)orien+ D(J)
T€=91 0 ifig¢ D(I)orign+ D)

A basis ofM; ; is given by elements of the standard b&sif H,, (0) indexed by permutations € &,
whose descent sél(¢) is contained ifn}, i.e.

B, ={T; e|loc € SytmandD(c) C {n}}
Let R,, ., be the permutation
Rom=m+lm+2 ...m4+nl2 ... m

of &,,4.,. The followinglemma gives a simple characterization of the permutations indibemiements
of the basi<3,,:
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Lemma4.16 The setD,, = {0 € S,4n | D(o) C {n}} is equal to the intervalid, R, ] in the
permutohedron o5, 1, .

We are now in position to prove Proposition 4.15. We first supposd teatn) and.J = (m). In this
case,T; - ¢ = 0 wheni # n. It follows that the action of the generators &f,(0) on the basi$3, of

Mi(n),(m)) I8

T - (Ty-e)=<X —T,-e ifie D)

0 if D(oio) € {n}
Tyo-e if i¢ D(c™1) and D(o;0) = {n}

fori € [I,n+m — 1] ande € D,. Let J,,, be the linear subspace 6f{&,,.,,] spanned by all
permutationsr such thatD(c) ¢ {n}, and consider the left action df, 1., (0) on C[S,4,]/Tn m
defined by

WU el if o(d) <o(i+1)
Li-o= { oo ifo(d)>c(i+1) (29)

and lety,, ,, be the map from\/((,) () INto C[&,, 4]/ Tn m sendingl’, - e to the permutation—1.
Thus, ¢, ., is an isomorphism betweeW (., (), and thef,, ., (0)-module generated by the identity
permutation for the action (29). On the other hand,

Z o1 =(12...n)Wn+1n+2 ... n+m)
oc€eD,

As an example, in Figure 2 we show an image of the modijlg) »), underyp; ».
As in Example 4.14, the graded characteristidff.,,) (,)) can be read on the permutations indexing
the states of the automaton, which are given by the formula

Fo(Mn),m)) = Fal@nm(Mimy,emp) = Y ¢ Ferom
oc€eD,
To get the proposition, it suffices therefore to prove that

(12 ...n) @ (n+1n+2 . ntm)= > 4" s7!
c€D,

or equivalently that
(12 ...n)Q (n+ln+2 ... ntm) = Z ¢
o€(12...m)W(ntl n42 ... ntm)

which is clearly true. This proves therefore the proposition in special Easgn) andJ = (m). The
general case follows from a similar argument. O

Using the formula expressing the product of two quasi-ribbon functions in terms of the shuffle product
[23, 2] and taking; = 1, we recover (25).
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0
1
T

-1 T4]0

o &(120) (1912) 2 ity ——2
Ts T
-1

(1) D 25 3

T

7|0
(s12) D Tl 4
750

Fig. 2: The image ofM (), (2)) undergs 2.

5 The ¢-shuffle Hopf Algebra and its Convolution Algebra

This section is devoted to the study of thshuffle algebra as a Hopf algebra. We describe the primitive
elements, and discuss the degeneration of the convolution algelgra-far.

5.1 The q-shuffle Hopf Algebra

Let A be an alphabet and 1€f{(A4), ©,) be the correspondingshuffle algebra. As shown in Sect. 3,
one can associate with it the coprodugtefined by the following properties:

eVacA ¢la)=1®a+a®l,
o VP QEK(A), cg(P©qQ) = cq(P) g cq(Q).
Recall(from the proof of Proposition 3.1) that
cg=(U(g)@U(g))ocol(q)™ (30)
wherec = ¢; is the usual coproduct df { A). That is,

cg(12...n) = c(Un(9)™") - (Un(q) © Un(q))
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and it suffices to apply the substitutidr+ a; to this formula to get,(ai as ... a,).
Letw be the involution sending a wordto (—1)!*! @ and lete be the constant term homomorphism.

Proposition 5.1 (K (4), ©,, ¢q) is a Hopf algebra with antipode and counite.

Proof It suffices to check that is the antipode, witls as counit. Note first thal’ (¢) andw commute
since

Un (Q) OWp = Wn © Un(Q)

(wherew,, denotes the maximal permutation®#,). The property follows then from (30), sinceis also
the antipode for the usual coproduct O

The combinatorial structure of the coprodugts, however, not clear at all. We tabulatgdl 2 ... n)
up ton = 6, and no simple formula seems to emerge. We list below the results<£os.

Example 5.2 Forn = 2 andn = 3, one has
1
cg(12) = 12®0+m(1®2+2®1)+0®12

q2

A+l +g+>+ 3 +¢*+¢°)

cg(123) =123 @ 0 — (1©32+32014+30214+21®3)

+ s
I+ +q+a>+ 3+ ¢ +¢°)

2013+ 13©2)

N q+q°
I+ +q+a>+ 3+ ¢ +¢°)

2©31+31©2)

N l+9+@+°+¢*
I+ +g+¢*+ ¢ +q¢* +¢°)
Based on these computations, we propose the following conjecture, which would imply inulaartic

that the convolution algebra associated with¢tehuffle algebra degenerates into a commutative algebra
wheng — 1 (see Sect. 5.3).

(1©234+2301+1203+3®12) + #©123

Conijecture 5.1 There exists a familyf. , (¢)) of rational functions irZ(¢) which do not havé as zero
nor as pole, such that foratl > 1,

cq(12...n) = Z forlg)o@T

a,T

12..n€ollr

Note 5.3 The dual Hopf algebra of theshuffle algebra is the algebf& (A), O,, A,) with productd,
and coproduct\, defined by

(u Bg vfw) = (u @ vleg(w)) and (Alw)lu @ v) = (wlu ©q v)
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for u, v, w € A*. The product, dual to the coproduet, is not easily described. On the other hand, one
can completely describe the coprodict by the following formula:

A (12...n) = Z ¢ oo r

12..n€eocllir

wheres - 7 denotes here the permutation obtained by concatenatargl~ considered as words.

5.2 Primitive Elements for ¢,

We shall now have a look at the setim, of primitive elements for,. These elements occur in several
decompositions of the free associative algebra and in the desaoridtiloe associated convolution algebra.
According to the general theor¥,rim, is just the image undér (¢) of the set of primitive elements for
the shuffle coproduet, i.e. of the free Lie algebra(A). That is,

Primg = U @ L,
n>1

This shows that a basis of the standard componeftoin, is, for instance(c o 6,, o Uy, (¢))oe &, ,n>1
whered,, is the Dynkin idempotent. Hence any explicit formula for o U, (¢) gives us an explicit
description ofPrim,.

To obtain a description d@f, o U, (¢), let us introduce the leftbracketing operatd®,, (¢) which is the
element ofZ[t][&,,] defined by

O,) =111, 2], 3, - -1¢, e
where[P,Q]: = PQ —1Q P.
Proposition 5.4
On(t)oUn(g) = Y Poltig)o (31)
cES,

whereP, (t, ¢) is the polynomial o%[¢, ¢] recursively defined by

¢ (g" B — 1) Po(t,q) if 1 <

<i <[
n—i (1—tq2i_n_1) Pr(t,q) if [i]

(32)

1 <
P =1 and Pg(t,q):{ -
q <

2
<n
wherei = 0=1(n) and wherer is the permutation o&,,_; obtained fromr by deleting.

Proof This is proved by induction using Lemma 4.4 and the well-known factorizafiéh,¢) given by

Opt)=(1—tgs) (1 —tgs) ... (1 —tygy)

whereg; denotes here the cycleél ... ¢ — 1) of &,. O
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Example 5.5 Let o = 23541 € &5. Then,

Passa1(t, q) ¢ (1 —1t) Posar(t, q)

(¢*(1=1))q (1 —tq) Posi(t,q)

= (U=t —tg)q( 1) Pultq)
(" (L=t)*(1—tq)) (¢ —1) Pr(t,q)
¢ (g—t)(1—=1)* (1 —tq)

Specializing = 1 in the proposition leads to an explicit formula #y o U, (¢). To State precisely this
result, we need to introduce the elementé;) of Z(¢)[&,,] defined according to the parity efby

“N[2n—2i4 1] , ,
TZn(q) = Z q 1[2T1]qq(12 L. 2n—12n 2n—1+1 277,—1)
i=1

n

n—1i [21_1]q . .
_ ;q m(l?...n—z?nn—z—l—l...2n—1)

n

- [2n—2i+2
3 g w(m S 2n—ik] 2n412n—i42 ... 2n)
i=1 [Qn]q

= e Bl gy i tain o 2m)
i=1 [Qn]

q
As a consequence of Proposition 5.4, we can give a factorization formula fol/, (¢).

7’2n+1(Q)

Corollary 5.6 Forall n > 2,

OpolUn(qg) =(1—q)(1— qz) (1= q"_l) m2(q) 73(q) ... T (q) (33)
Example 5.7 Forn = 4,5, we have

030Us(q) = (1—q)(1—q%)(1—q3) (1234 — 2134) (1234 — 3124)

(1234 + % 1243 — —— 1423 — 4123)

L+q+4° l+qg+¢q

O50Us(q) = (1—q)(1—q%)(1—g¢®)(1—q*) (12345 — 21345) (12345 — 31245)

q q
12345 + ——— 12435 — ——— 14235 — 41235
( I+q+¢? L+q+¢? )

q

1234
(12345 +

512354 - 1f—q2 15234 — 51234)

Let us now introduce the elemehy (¢) of Z(¢)[&,,] defined by

Aa(q) = [(n = Dg! n2(q) 73(0) - 7 (q)
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so that
0, o U, (Q) = (1 - Q)n_l An (Q) (34)

The image of the operatar — w - A, (¢) (Wherew runs through words of length) is exactly the set of
homogeneous primitive elements of oraefor ¢,. In other words, one has the following description:

Primg = € K(q)<A>n  An(q)
n>1

5.3 The Convolution Algebra

According to the general theory, the convolution algebrgg) associated with the-shuffle Hopf algebra
is equal to

Sn(g) = €D K Ualg)™" o DroUn(g)
| I|=n

whereD; is the sum of all permutations with descent®¢f). Unfortunately, due to the intricate structure
of U, (¢), it does not seem possible to give a simple descriptidh,df) for n > 4 (forn = 2 andn = 3,
one can check thai,, (¢) is in fact equal to the usual descent algebya.

The following conjecture, basically duzs to Zagier [25], would give some indicatiotisestructure of

Un(‘])_l:

Conjecture 5.2 T Letw,, denote the maximal permutation@¥,. For all n > 1, the inverse of/,,(¢) has
the form

Un(e)™ = (1—¢2) ... 11 — qn(n=1) ( Z ()P po(g) U) (14 (=1)n~tgnn=0/2, )

oc€eD,

wherep, (¢) is a polynomial inN[¢] and whereD,, is a subset of5,, whose cardinality is equal to the
number of planar trees with leaves.

Zagier’s conjecture would give a description of the limit of the convolutigelara®,, (¢) wheng — 1
whenever this degenerate limit existéndeed, a basis dt, (¢) is given by

aq(U) = (Ui, (g) ™! 0 b, 0 Uiy (0) ®q - %4 (Ui, (g)™ ! 0 6i, 0 Ui (q))
for |I| = n. The conjecture would imply, taking into account (34), that
: -1 _ 1 Do) -1
lim U ()™ o0 0 Unlg) = — | D (=) po(1)o | (14 (=1)" ) Aa(1)

n!
oc€eD,

These elements would therefore generate the limit convolution alggfira, if it exists.

t Added in proof: This conjecture has been recently disproved hy Melianac and Surtar) [17], who found a counterexample for
n = 8. These authors also give a precise descriptioii,ofg) ~*.
t The existence of a limit convolution algelia (1) would be a consequence of Conjecture 5.1.
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The expression of/,, (¢)~! given by Zagier’s Conjecture can be interpreted as the decomposition on
the family (¢ A, (1)) of the idempotent corresponding to the projection on the homogeneous component
of ordern of

L= P KA A1)

n>1

with respect to the decomposition

KA =KeLocWLe oW, WL, ..

n times

of the free associative algebRa( A).

6 Some Generalizations of the Shuffle Operator

The aim of this section is to present interesting generalizations of the shpé#kator of which the-
shuffle product is the simplest case.

6.1 Rosso’s Quantum Shuffles

Rosso showed, by expliciting their multiplication, that certain Hopf algebrasmdx by very general con-
structions can be interpreted as generalizations of the shuffle algebra [24]. Thésasahge constructed
as follows.

Let H be a Hopfalgebra over afield. A Hopf bimoduleV over H is a K -vector space endowed with
compatible structures af -bimodule andH -bicomodule [29]. In other words, a Hopf bimodule ovér
is a H-bimoduleM equipped with left and right coactiodg : M — H @ M andégp : M — M @ H
commuting with each other (i.e. such théd ® dr) ;. = (dr ® id) dr) and which are morphisms of
H-bimodules.

The following proposition is a particular case of a result of Woronowicz:

Proposition 6.1 [28] Let M be a HopfH -bimodule. There exists a uniqu&-bimodule endomorphism
o of M @z M such that

Vmne M, dg(m)=1@m, dg(n)=n®l — oy(m@n)=nem
Moreover,o s is invertible and satisfies to the braid equation
(Idy @ onr) (o @ Tdpr) (Idy @ onr) = (o @ Tdpr) (Idy @ onr) (o @ Tdar)
Recall that the braid grouB, is the (infinite) group generated by— 1 elementys;);=1 ,_1 subject

to the relations
Si S5 = 8584 for|i—j|>1

$i Si41 8; = Si41 8; Sip1  fori € [l,n— 2]

For each permutation € &,,, one can define an eleméfit of B, by T, = s;, ... s;, whereo;, ... o;
is an arbitrary reduced decompositiorpof

r
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Let M be a HopfH -bimodule and let/* = {m € M, é.(m) = 1 @ m } be the submodule of left
coinvariants. The proposition allows us to define a right action of the braid dipum (A 1)%" by

foreveryzy, ..., z, € M.

On the other hand, it can be shown thgt\/ L) is isomorphic to the space of left coinvariants of
the cotensor coalgebt&; (A1), which is known by a result of Nichols [29] to be a Hopf algebra. This
isomorphism therefore endowW¥ M *) with a new product>, and Rosso shows that it can be explicited
as follows, in terms of the braid group action GV £):

Proposition 6.2

(21 @ @ 2p) O (Xpy1 @+~ D) = > (21 @ @un)- Ty
cel2. . plp+lp+2..n

where- denotes the right action df,, on (M£)®" defined by (35).

For our purposes, one can consider the following reversed presentatidn bestny vector space, and
R € End (V ® V) be a solution of the Yang—Baxter equation

RioR13Ro3 = Raz Rzl (36)

where as usuak; ; is the endomorphism df @ V@ V' acting asft on thei-th and;-th factors. Also, let
R = PR, whereP(u @ v) = v @ u, so thatR satisfies the braid relation

R12R23R12 = R23R12R23 (37)
One defines then as usual a right actiolBgfon V" by
VI QU@ Dy -8 = Rijp1(v1 @ua @ - @ vy) (38)
The fundamental observation (also known to Rosso [30]) is the following

Lemma 6.3 Define a multiplicatior> onT'(V') by

(1@ @ ap) © (Tpy1 @ -+ @ &y) = Z (1@ - @ay) T,
cel2. . plp+lp+2..n

forz,,...,z, € V. Then® is associative.

Proof Consider first the case whereis the identity oft” @ V. Then® is the ordinary shuffle product,
which is indeed associative. Lete the representation 6t defined byR, and let

sh (p,q) = > 1o

ocel2..plp+1...p+g

The associativity ofy is equivalent to the validity of the identities

p(sh (p,q)sh (p+¢,7)) = p(sh (¢,7)sh (p,q + 7)) (39)



188 Gérard Duchamp et al.

in the given representation. But taking reduced decompositions of both sides and expanding ths,produc
one obtains only reduced words. The identity being true for the symmetric group, it is valid in the algebra
of the braid group, and therefore in any representation. |

Example 6.4 (1) Theg¢-shuffle®, is the particular case obtained by takiRg= ¢ - I, whereI is the
identity of V' ® V (andV is @, 4 K a).

(2) Let (¢;) be a basis of/. Diagonal matrices(e; © e;) = g¢;5¢; @ e; satisfy the Yang—Baxter
equation. IfA = («;;) is a symmetrizable Cartan matrix and df) are relatively prime positive integers
such that(d;a;;) is symmetric, Rosso shows that the triangular part of the quantized envelogéigal
associated tol is a subalgebra of the corresponding quantum shuffle algebra.

(3) TakeV = K[z], whereK = C(g), and identifyl’ ®" with K[z, . ..., z,]. The standard action
of the Hecke algebr&,(¢) on K[z, ..., z,] by symmetrizing operators [31]

Ti=(qg—1)m+ oy (40)
wherer; is the isobaric divided difference operator

l‘iP — l‘H_lO'Z'(P)

Li — Li41

FZ(P) =

gives a solution of the Yang—Baxter equation and induces as above an action of the braid g¥6tih on
The subspace df ®” spanned by products of elements 6f can be identified with the space of symmet-
ric polynomialsinz+, . . . , z,,, and the factorization formula for the total symmetrigét) = doves, Lo
given in [31]. Theorem 3.1, implies that for a partitidn= (A, > A2 > ... > A, > 0), the product

x>‘1®x>‘2®®x>‘n

is equal, up to a scalar factor, to the Hall-Littlewood polynom@al 1, ... , . ; 1/q).

(4) Other families of symmetric functions can be obtained by consideeggrkrate actions, for ex-
ample, the Schur functions or the augmented monomial functions

(5) The g-wedge product introduced by Stern [32] and Kashiwara—Miwa—Stern [16] can also be re-
garded as a special case of this construction, obtained from an actimattine Hecke algebra commut-
ing with U, (sl,,).

6.2 Twisted Derivations and Multi-parameter Deformations of the Shuffle Prod-
uct

This section explains how the consideration of twisted derivations allowsoameover in a natural way
the multi-parameter deformations of the shuffle product associated to diagonal solutions of the Yang—
Baxter equation.

Definition 6.5 Atwisted derivatiorior a i -algebra structurg K'(A), +, ®) constructed ovek (A4) is a
linear mapg from K (A) into K (A) which satisfies for words, v € A* to the Leibnitz rule

Iuov)=0(u)@v+ x(u)ue d(v)

wherey is a monoid morphism from* into K.
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Example 6.6 Let (¢4)qca (resp. (9(a))qca) be an arbitrary family of elements &f (resp. of K'(A4)).
One can define a derivatiéhon the free associative algelt& (A4), +, -) by

I w) = Z quud(a)v

uav=w

where foru = a; - - -a,, € A", q, denotes the elemeny, ... g,

"

Consider now the classical twisted derivati¢fis).c 4 on K {A), defined for each letter ¢ A by

u ifw=au

3a(w):{ 0 if w¢ ad®

forw € A*. These operators are widely used in automata theory, e.g. for defining the algebra of rationa
series (cf. [33]). They are also twisted derivations forgrshuffle algebra, since by definition

Fa(t ©Og v) = 0a(u) Og v + ¢ u g 9a(v)

foru,v € A*. One can then ask whether there are other products for which all opeiatmesstill twisted
derivations. The following proposition answers this question in the case where the twisting mogphism
is given by means of a matrix of commutation factors.

Proposition 6.7 Let M = (¢a5)a,5c4 be anAd x A-matrix of indeterminates, and set
g(u,0) = T dars,
,J

forallwordsu = a; ...a, andv = by .. .b,,. There exists then a unique graded prodegt on K (A)
such that
VueA*, uOyl=10pnu=1u

Vu,v€ A% J(uGprv) = 0q(w) Onr v+ qla, u) u@pr Gq(v)

foreverya € A. This product can be computed by the following recursive formulas

uOyl=10pmu=u

(au) Opr (bv) = a(u Oar bv) + q(b, au) blau Opr v)

whereu, v € A* anda, b € A.

Proof A straightforward calculation, which is left to the reader. |

The product>,; defined in the proposition is associative. One can therefore consider the algebra
(K({A),+, ). Observe that this algebra reduces togkshuffle algebra when all indeterminatgs,
are equal t@. In the general case, the produg}; is still a special case of the construction of Sect. 3.
Indeed,

ay Op @ Op -+ OM Gp = @1 A2 ... Ay - Uy (M)
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fora; € A, and where

Un(M) = Z H Qas(iyaoiy | 7

cES, 1<i<j<n
a(i)>o(j)
Thus,(K(A4), +, ©ar) is shuffle Hopf algebra associated to the diagonal solWRiEN® y) = ¢, 4 (2 Q)
of the Yang—Baxter equation.

Note 6.8 If one forgets about the first condition in the proposition, there are other interesting solutions,
such as thé&'-operation of Schiitzenberger [34], also called ‘chronological product’ [35].

Note 6.9 When the matrix}/ is skew-symmetric in the multiplicative sense, i.e. whenp = qb_; for

everya, b € A, one recovers the bicharacters introduced by Ree [10]. Let us recall bictaracter is
a bilinear mapping fronN(4) x N(4) into (K, x), i.e. a mapping such that

x(z,y+z) = x(z,y) x(z,2) and x(z+y,z2) = x(z,2) x(y, 2)

hold for everyz,y,z € N, Let now (g,).c4 be the basis oN(4) defined bye,(b) = 4, for
a,b € A. The mapping which associates to a skew-symmetric matrix: (¢q5)q 54 the bicharacter
x(24,€) = qa, is then clearly a one-to-one correspondence between bicharacters and skew-symmetric
A x A-matrices.

It is also interesting to observe tHahd 9" (K (A)) can be equipped in this case with a structure of Lie
superalgebra defined by

[f,9] = fg — x(deg (f),deg (9)) 9f

The space of graded twisted derivations q\€( A), +, @) becomes then a super Lie subalgebra of this
superalgebra. Moreover it can be shown that the derivafidfisc 4+ generates the free Lie superalgebra
Ly (A).

6.3 Shuffle Operators in the Braid Group Algebra

Rosso’s construction suggests that the combinatorics of generalized shuffles has tosbhmodds the
level of the braid group algebra. This point of view leads to a uniform presentation of sexacailzation
results, and reveals a connection between quantum shuffles and Varchenko’s constrigtipraotfum
bilinear form associated to a hyperplane arrangement.

6.3.1 A Shuffle Element in the Braid Group Algebra

Let 5., denote the infinite braid group, generated by elemgenis,, satisfying to the relations; s; =
s; s for|i — j| > 1ands; siy1 s = siy1 s siy1. Since every braid grouf, can be embedded .,
the notatioriZ, will be still used in this context.

One can define a shuffle eleméntin K[B..] by

U, = > 1,
ceES,

The g¢-shuffle operator is the image &f, under the representatien — ¢ ;. Thus any factorization of
U, will also hold in particular for the-shuffle operatot’,, (¢).
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6.3.2 Factorizations
More generally, any factorization &f,, will provide similar decompositions in any homomorphic im-
age of the braid group. We will first give a decomposition formulalfgrwhich can be viewed as the
generalization of Zagier’s factorization of theshuffle operator.

Consider the elemenft, of the algebra o3, defined by

Tn=14sn_14+sn-185p-2+ -+ (Sn—l Sp—2 ... 51)

One can then give the following factorizationiéf in N[5 ]:
Proposition 6.10 For everyn > 2, one has

Un=T2Ts ... Tn

Proof The formulais true in the representatign— «;, and expanding the product yields only reduced
words. O

The elements],, can themselves be factorized, and we obtain in this way a factorizatits) af
Z[[B..]], which projects onto Zagier’s factorization under— go;.

Proposition 6.11 For n > 2, one has irZ[[B..]] :

Ton = (1—52_180-92...81)(1—582_185_2...59) ... (1—=52_)

(1 — Sn_l)_l (1 — Sp—1 Sn_z)_l - (1 — Sp—18,—-9 ... 81)_1

Proof The proposition follows from the following lemma, whose proof is left to the reader.
Lemma6.12 For n > 3, one has

Tn (1= 8p—18n-2 ...81) = (1 — 82 L Sp_g ... $1)tn-1
wheret,,_; denotes the image Gf,_, under the algebra morphismof N[5..] defined by;(s;) = s;11
forall 7 > 1.

Example 6.13 Forn = 2, 3, 4,
To=(1—s7)(1—s1)

Ts=(1=s3s1) (1 —s3) (1= s2)7" (1= s251)7"
Ta=(1- 5:2)) s281) (1 — 5:2)) s2) (1 — 5%) (1— 53)_1 (1—s3 52)_1 (1 — 5382 51)_1

Specializing these results in a homorphic image of the braid group, we get the follosefg corol-
lary:

Corollary 6.14 For any representatiop of 3,,, one has

pUn) = p(T2) p(T3) - .. p(Tn)
and if the inverses are defined,

— —

o(Tn) = H (1= p(s2_ 1 sp s ... 5)) H (1= p(sn-15n-2 ... 5)) "

1<i<n—1 1<i<n—1
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Note 6.15 Typical examples where the inverses are well defined are the represestatio— ¢s; in
C[&,,] or the Hecke algebr& . (t) where the factors of the elementsy;) satisfy polynomial equations
with non-zero constant terms and hence are invertible. For example for the symgnetnic withX =
p(Sn—18n—2 ...s;) (resp.Y = p(s2_; sp_2 ... s;)) one has

-+l q(n—i-l—l)(n—i); (1-X) ZXJ' —-1— q(n—i+1)(n—i)
7=0

Hence
(1 _ X)—l — (1 _ q(n—i+1)(n—i))—1 ij
§=0
similarly
n—it—2
Yn—i—l — q(n—i+1)(n—i); (1 _ Y) Z Y] —1— q(n—i-l-l)(n—i)
7=0
and then
n—it—2
(1 _ Y)—l — (1 _ q(n—i+1)(n—i))—1 Z Y]
7=0

so that the denominator of Zagier’s formula can be lowered to

n m-—1 n—1
H (1- q(m—i+1)(m—i)) _ H(l _ qk(k+1))n—k
m=2 =1 k=1

6.3.3 Action of the Braid Group on Words

Let M = (¢a,5)a,5¢ 4 b€ a matrix of indeterminates. The diagonal solutions to the Yang—Baxter equation
discussed in Example 6.4 can be described as the right acifdf), on words defined by

(araz ... an) 8 = Ga;aip, (@1 0 Q21 Qip1 G Qg ... Gp)

fora; € A.

Example 6.16 The matrices of/; and7; considered as operators on the space aas & K ajasa; &
K asaya; with respect to this action are given by

1+ qalyal 0 0
/TZ = 0 1 dayi,az
0 qa27a1 1
1 qa1,a2 qgl,aQ
Ts = Qaz,ar T qay,a19az,a, 1 0

0 Qas,a19a1,a; 14 Qa;,a;
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This subsection will be devoted to the study of the determinaift, afonsidered as an operator acting
on words of fixed multihomogeneity. According to the results of Sect. 6.3.2, one can commute thi
determinant if one knows the values of

det(l—sisn_l oo Sm ) and det(1—spsp_1 ... 5m)
for all m < n. But for the representation under consideration,
det( 1 — 52 80_1 ... Sm ) =det(1— si_m_l_l Sp—m - .. 51)

det(1 =8, 8n-1 ... 8m ) =det(1 — Sp_mt1 Snem - .- 1)

for1 < m < n — 1. Hence it is sufficient to compute the determinantd ef s,,_; s,_5 ... s; and
1—s2_,s,_2...s1. The following proposition gives an answer to this question by providing explicit
formulas for the characteristic polynomialst (1 — « s) of the elements = s,, s,—1 ... 57 ands =
8721 Sp—1 ...81.

ForI € N, let K(A); be the multihomogenous component of multidegieé i (A). Every braid
s € Bjr-1 stabilizesk (A);. We can therefore consideras an operator ok’(A);. The characteristic

polynomial of this operator will be denoted I8 (s; ). Finally, let us set

o, )= [[ e and g()= ] et
a,beA acA
for I = (I)aca @andJ = (J4)aea Of N4,
Proposition 6.17 For n > 1 and/ € N(4) of weight|/| = n, one has

kNI
PI(Sn—l Sp_9 ... 51;1‘) = H <$|J| _ M)

q(J)
I=kJ
keEN
Pr(st_y s winj= [ (oD Uz ale, ) N
T n—1°n—2 -.. 91, - q(J)
I=kJ+e,
keN,acA

where(e,) = d.» and wherd ; denotes the dimension of the multihomogeneous component of multiho-
mogeneity/ of the free Lie algebrd.(A).

Proof These formulas are obtained by expliciting the eigenvectors of the paivers |

Example 6.18 Consider the multidegree = (2,2,0,0,...). In this case, the matrix of the operator
83 89 81 in the baSiS{alalazaz, a1asa1ao, A1A2A2A1, A2A1A1 A2, AoA1A20A1, azazalal} of [{<A>] is

0 0 qllqgl 0 0 0
0 0 0 0 qllqgl 0
B 0 0 0 0 0 41143,
M538251 o (]%2(]22 0 0 0 0 0
0 (1%2(]22 0 0 0 0
0 0 0 41922 0 0
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where we write for conveniengg ; in place ofq,, ,,. Then,

4

Pr(s3sgsy;x) = (2 — qgﬂ]fz‘]%ﬂl%z) (952 - qgﬂ]%z‘]lﬂ]zz)

according to the first formula of the position.

As an illustration, we can give an expression of the characteristic polynomial of the permutation
on—_1 ... o1 inanirreducible representatién of &,,.

Corollary 6.19 Let A be a partition ofn. The characteristic polynomial of the permutation_, ... oy
in the irreducible representatioW, of &, is

(skvmu>

Py, (op_1...01;2) = H H (M — 1)l

w A=kl keEN
wheres, = ZN<S)\, m, )k, denotes the decomposition of the Schur functjpon the basis of complete

symmetric functions.

Proof For aK'[&,]-moduleV and fors € &,,, denote byPy (s; x) the characteristic polynomial efin
the representatiovi. The corollary follows from the property

Pyiw (s;2) = Py(s;2) Pw(s; x)

and from the fact that the characteristic polynomiatgf ; ... o; in the permutation representatisn
of &,, whose Frobenius characteristidhig is given by

Por(op_1 ... 01;2) = H (J:lIl — 1)”
A=kIkEN

according to Ryposition 6.17. O

This gives the characteristic polynomial of any permutasion o;_- ... o; inthe regular representa-
tion of &,,,

Pe, (0i—1 ... 01;2) = Ps, (051 ... 0'1;93)"!/”

Example 6.20 The characteristic polynomial @f,_; ... o3 in any irreducible representation &, is
a product of cyclotomic polynomials. Table 1 shows these polynomials for6.
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Representatior]  Vharacteristic polynomial
2 r—1
11 z+1
3 r—1
21 14+ x4+ 22
111 r—1
4 r—1
31 (z— 1)(1’2—|—1)
22 z? -1
211 Pttt
1111 r+1
5 r—1
41 [ ML G R |
32 x5 —1
311 (z® = 1)(z - 1)
221 25 —1
2111 4+ 22+ +1
11111 r—1
6 r—1
51 Pt 2t r—1
42 (1’6 — 1)(1’3 +1)
411 (z+1 (1’6 — 1)(1’3 -1)
33 (z° = 1)(z? - 1)
321 (1’4 + 22 4 1)3(902 — 1)2
3111 (z — 1)(1’6 — 1)(1’3 +1)
222 (1’3 + 1)(902 - 1)
2211 (z® —1)(z® - 1)
21111 Pzttt 2 +r+1
111111 r+1

6.4 Diagonal Hyperplane Arrangements

6.4.1 The Quantum Bilinear form B,,

Varchenko associated to every real configuratiaf hyperplanesa bilinear formB,, called thequan-
tum bilinear formof C, which is defined as follows. One first associates to éggierplaner of C a

weightay in some fixed commutative ring. Aedgeof C is any nonempty intersection of some subset
of the hyperplanes af. The weightzr of an edgeF is defined as the product of the weights of all the

hyperplanes containing. The set of all edges @f is denoted by.
The connected components of the complement of the hyperplanesaref calleddomains Denote

by D¢ the set of all domains af. Let alsoA¢ be the ring of polynomials in the commutative variables
(amg)mec. The quantum bilinear forn® associated witlf is the bilinear form on the spacd, of the

Ac-linear combinations of the domains®f which is defined by
Be(P,Q) = H ag

the product being taken over all hyperplaries C separating the domaind and@. Varchenko showed
that the determinant of the for is given by the following formula

detBe = ] (1-ap)™" (41)

FEe&e

§ A configuration of hyperplanes is afipite set of hyperplanes in some affine or projective space.



196 Gérard Duchamp et al.

wherem(F) is an integer, called the multiplicity of the ed@e(see Sect. 2 of [13] for more details).

Consider now the configuratian,, of diagonal hyperplanes: it consists of the hyperplatigsof R”
defined byz; = z; for 1 <i < j < n. Leta;; be the weight of the hyperplarfé;;. Here, the domains
are the cone#®, defined by

Pr={(z1,...,2n) ER", 7501) < To(2) <+ < To(n)}

for all permutations of &,,. The quantum bilinear fornBp, = B,, associated wittD,, can therefore
be considered as a bilinear form Bift;;][&,,]. The matrix ofB,, is given by

Bp(o, 1) = H @j; (42)
(o7 (B =T (T =TT (G))<0
1<i<j<n
for o, T € &,,. In other words, the entry of ordés, 7) of B,, is obtained by taking the products of al;
forwhlch the pa|rgz does not appear in the same orderiande, i.e. for whiche = ... 7 ... j ... and
T=...].. . (or the converse). The bilinear fori,, can also be interpreted as the contravanant
formof a swtable guantum group [cf. Schechtman 36]).
Varchenko’s formula (41) reduces here to

Nk

det, = [[ (1— J[ <& (43)

I (7,4) €T

where/;; runs through all subsets éf% — 1)/2 elements of (j,i), 1 < i< j < n}fork € [2,n]and
wheren;, denotes the integéf — 2)!(n — k + 1)!.

Finally, relation (42) shows thak,, is the matrix of an element &[«;;][S,,] (considered as an operator

in the regular representation &,) iff a;; = ay for all j > ¢ andk > {. If we call ¢ this common
value, we see thas, = U, (¢). Thus,U, (¢) has the same matrix as the quantum bilinear form associated
with the diagonal hyperplane arrangement when every hyperplane as the samey\aeigjlone sees that
Corollary 4.13 can be also obtained by specializing formula (43).

Example 6.21 The matrix of the quantum bilinear foriys is

123 132 213 231 312 321

123 1 a32 a21 a210a31 310432 2103132
132 a32 1 210432 2103132 asi a210a31

. 213 a2l 21032 1 asy 21031032 a31a32
231 a210a31 2103132 asi 1 210432 a32
3;? 310432 asi 2103132 210432 1 a21
3 210310432 a210a31 310432 a32 a21 1

In this case,

detBs = (1 —a3,)” (1 — a3)” (1 — a3,)” (1 — (az1a31032)%)
Bs is the matrix of an element ﬁ[azl, as31, 032] [63] iff 91 = A3z1 = a32.
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6.4.2 A decomposition of B,,

We shall now see that one can recover formula (43) from a factorizatisy efhich is in fact a special-
ization of Corollary 6.14. We shall therefore define first a representatjoof the braid grougB,,. For

n > 2andi € [1,n — 1], consider thes,, x &, matrixSf”) defined by

(44)

K3

" Uo(yo(i41) T T=00;
S (g 1) =
(e,7) { 0 in all other cases

wherea;; denotesy;; if j > i anda;; if j < i. These matrices are obtained from the diagonal solutions
R(e; ® ;) = d;5¢; © e; Of the Yang—Baxter equation by restriction®fto then!-dimensional subspace
of V®7 spanned by multilinear elements; ) @ - @ es(n), 0 € &Sy Thus,

{ s gln) — gln) g(n) if i —j| > 1
S = st st s if i e [1,n—2]

K3

so that
Hn (52) = Sz(n)

defines a representation Bf. The matrix of Varchenko’s quantum bilinear form is then

Bn = Hn (un) = Z Hn (TCT) (45)

oES,
the results of Sect. 6.3 can be applied. The imd@{@% = o (Tx) are the&, x &,, matrices
Tk(n) =1+ Sl(cn—)l + Sl(cn—)l Sl(cn—)Z +o Tt Sl(cn—)l Sl(cn—)Z T Sgn) (46)

whose elements are

1 ifo=r1
k—1
Tk(n)(a, T) = Go(kyo(ry W T=00k_1...00 Withl=1k—1
7=l
0 in all other cases

In other wordsTk(”) is the matrix obtained fron®,, by taking all entries indexed by a pair of the form
(0,001 ... 07) with somel € [1,n] and by replacing all other entries Iy The first formula of
Corollary 6.14 reduces then to the following:

Proposition 6.22

B, =7 ... T{™ (47)
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Example 6.23 Forn = 3, one hasBs = 74> 7.%, with

123 132 213 231 312 321

193 1 0 a1 O 0 0
3 | 0 1 0 0 am 0
T(S) _ 213 a9 0 1 0 0 0
2 231 0 0 0 1 0 as
312 0 a 0 0 1 0
ZEN 0 00 0 am 0 1
123 132 213 231 312 321
193 1 ass 0 0 az1d3 0
132 @32 1 21032 0 0 0
e _ 213 0 0 1 asi 0 a31a32
3 231 9131 0 asy 1 0 0
312 0 0 0 91032 1 asl
321 0 a910a31 0 0 as 1

The second formula of Corollary 6.14 applied to Varchenko’s quantum bilinear form will give us a
factorization of the matriTk(") which reduces to the decomposition (23) when alldheare specialized
to ¢. As in theT, (¢) case, it will give us a closed formula for the inverséZ‘é’f) (and hence oB,,) and
for its determinant.

Forn > 2,k €[2,n],i € [2,k]andj € [1, %k — 1], we defineS,, ><6n-matricesr({f,’f) andf(ﬁ’k) by

Ik

k-2
s - .
n,k _ ) Gk-1)ok do(k—1)o(ry If T =07k
i =] B I
0 in all other cases
k—1

oy, ) Gemew =07,

F%,k (0,7) = I=k—j !
0 in all other cases

where
vig=( . k=i k=1k—itl .. . k=2Fk.. . n)

Vg =0 k=j=1k k—j .. k=1 k+1... n)

)

The specialization of the second identity of Corollary 6.14 gives here tloaviog factorization.
Proposition 6.24 For n > 2 andk € (2, n],

n n n =(n,k), _ =(n,k _
T = (1= TRy (= Ty (=T =T (48)
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Example 6.25 For k = 3 andn = 3, the different matrices involved in (48) are given below:

123 132 213 231 312 321
1 0 —a%zazl 0 0 0
0 1 0 0 —a%zagl 0
I F(S’S) _ —a%lam 0 1 0 0 0
T t(213) — _ 2
0 0 0 1 0 a310a32
0 —a51a31 0 0 1 0
0 0 0 —a3 azss 0 1
123 132 213 231 312 321
1—a, 0 0 0 0 0
0 1— a2, 0 0 0 0
Fores _ 0 0 1— a2 0 0 0
Tt (123) — 9
0 0 0 1— a2 0 0
0 0 0 0 1—a 0
0 0 0 0 0 1-d}
123 132 213 231 312 321
1 —asz9 0 0 0 0
—aga 1 0 0 0 0
—(3,3) 0 0 1 —ag; 0 0
I1-T =
(132) 0 0 —azm 1 0 0
0 0 0 0 1 —a2
0 0 0 0 —a921 1
123 132 213 231 312 321
1 0 0 0 —asz1ass 0
0 1 —a210d39 0 0 0
I f(S’S) _ 0 0 1 0 0 —a31a32
(312) o —a21031 0 0 1 0 0
0 0 0 —a210d39 1 0
0 —a21031 0 0 0 1

In this case, (48) reduces to

7 7 =(3,3), _ F(3:3) \ —
T3 = (1= TR T = TR T = Tii) ™ (1= Tiala) ™!
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and . . )
T = (1= T (T = Tiaig) ™

(123)
Note 6.26 One can check that
i—2
(1 =) (Z <F(JZ,’5>)’) =AY (49)
=0
whereAE”’k) is the diagonal matrix

~9 . _
) { 1-— H Clo.(r)o.(s) |f o =T

Al(n,k)(o_ 7) = k—i+1<r<s<k
0 if o ;ﬁ T

One hasA "™ = (1 - [Ti<icjcn aji) T and

J

=(n,k) =(n,k) n.k

(=T (Z (T >’) = Ay (50)
=0

Formulas (49) and (50) both give a more explicit version of decoitipng48) and a closed form for the

inverse oka(”) (and hence also for the inverse Bf).

Note 6.27 It can also be checked that

det(7-r{"y =1 T[] [1- [ < (51)
IC[1,n] rsel
HE r<s
where
in! (n—1d)ld!
Mp i = NN .
2)(7) it
On the other hand,
det(7 T\ = I1 - I <. (52)
IC[1,n] rsel
[I|=5+1 r<s
with .
/ Jn: . .
m, ;= o = (n—j = ljl.
T2 ()
It is interesting to observe that (51) and (52) show that the determinfifits (F({fjf) and/ — f(vnf) are

independent of.
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6.5 The t-shuffle Operator in the Hecke Algebra

The representations of the braid group considered in the foregoing sections were all obtaingnyitbm
(diagonal) solutions of the Yang—Baxter equation. The simplest non-trivial solutions are thade w
factorize through the Hecke algehi, (¢). It is therefore of interest to consider the element

Vaty= > 91,

cES,

of ,,(¢) ® C[¢], i.e. the image o#f,, under the morphism from the braid grof#p into 7,,(¢) defined
by s; — ¢ T;. All the factorizations of Sect. 6.3.2 are valid figy(¢), and we shall also obtain an explicit
formula for the determinant of this operator, which can be regardedyamalogue of the determinant
formula forU, (¢).

According to the results of Sect. 6.3.2, itis sufficient to compute them@tants of the elements

1—T,_q...7y and 1-T72

n—1 *--

Ty

considered considered as operators of the (left or right) regular representaiigii¢f But one has

det(1—=T,_y ... T1) = (H Py, (Th_1 ...Tl;x)f*)

Abn =1
det(1-T2_, ... Ty) = (H Py, (T2_, ...Tl;x)f*)
Abn =1

wheref, is the number of standard Young tableaux of shap@d wherePy, (s; ) is the characteristic
polynomialdet (1 — « s) of s € H,(q) in the irreducible representation &f, (¢) indexed byA (see, for
example, [31]).

Let K , = (sa, h,) be the Kostka numbers. The following proposition expresses the characteristic
polynomial of 7;,_; - - - T3 in the ¢-Specht modulé’, (¢) in terms of the corresponding polynomial for
the symmetric group, as computed in Sect. 6.3.3.

Proposition 6.28 Let A be a partition ofz and V), (¢) be the corresponding irreducible representation of
H,(q). Then, the characteristic polynomial®f_1 7,,_5 ... 71 in Vi (q) is

PVA(q)(Tn—l Th_o ... Tl; $) = PVA(I)(Un—l On—2 ...01; q(n—l)ou l‘)
whereV/, (1) is the Specht module for the symmetric group, and= K ojn-2/Ky 17.

Proof The existence of a homogeneity factor between the characteristic polynoniialsof . . 7} and
on—1 ... 01 Can be seen on the Kazhdan-Lusztig model of the irredudibléy)-moduleV, and this
factor is determined by the equality

det v, (Th—1 ... Ty) = (dety, T1)" "1 = "D Exzin=z

which is easily checked. O
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Corollary 6.29 The characteristic polynomial ¢f>_, T;,_» ... T} in the irreducible H, (¢)-module
Vi (q) is equal up to a homogeneity factor to the characteristic polynomial of the corresponding per-

mutation in the irreducibless,, -modulel, (1), i.e.

PVA(TS_l Thzo ... Tl,l‘) = PWA(O-TL—Z o Ul;qnoq $)

WhereO[)\ = [(A,21"_2/[(>\,1" .
Example 6.30 For || < 4, these polynomials are

A PVA(Tn—l Tl,l‘) PVA(Tr%_lTn—2~~~T1;x)

2 1—xq 1—aq?

11 1+ = l—=z

3 1 —2q? 1—zq¢3

21 14+ 2q+ 22¢> 1 —¢32?
111 1l—=z 1+ =z

4 1—2¢° 1—q'

31 1—xqg+22¢? — 2343 1 —23¢?
22 1—22¢3 14+ 2¢® + 2%¢*
2111 | 1+ 2q® + 2%¢* + 23¢° 1 —¢%23
1111 14z l—=z

Note 6.31 Consider the elements; (¢) of H,,(¢) defined by
Oy (t) =1+1t7T;
fori € [1,n — 1]. These elements interpolate between two interesting elemefts(qj

-1

Ol =0 = 14T, Oi(~1/g) = —Vi= —L(1 —¢)
q q

(see [31] for more details). The operatergt) satisfy Yang—Baxter type relations

i) <<>i+1(t) - %) Ci(t) = Ciga(l) (Qi(t) - %) Ciga(t)

and as a special case of a construction of Cherednik, one can associdteewithximal permutation,,
of &,, the element

OCwnp = O ((<>2 - f13)<>1 ) e ((<>n—1 - fln) e (<>2 - f13) O )
of H,(q) ® C(t), where
fue = M
1k — t,q [1]2(1 1
with [1]; , = 1 +#(¢ — 1). It would be interesting to clarify the relation between , andV/,(¢). These
elements are clearly related in the two extreme casesl andt = —1/4 but we do not know if such

relations still exist in the general case.
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7 Deformations of the Algebra of Noncommutative Symmetric Func-
tions

7.1 Deformations and Lie Idempotents

This section is devoted to a special case of the deformations of the usual Cauchywaidtammproducts

of K(A) obtained by means of noncommutative symmetric functions (cf. Sect. 3.2). We are leere int
ested in the case where the set of primitive elements of the deformedalgetill the free Lie algebra
L(A). This case is of some importance, since it leads to a complete understandingssf af dtaeresting
decompositions of the free associative algebra.

We use the notations of Sect. 3.2. We will restrict the families= (#),),>; used to construct the
deformations to those satifying for all

Fpx W, = kp, W,

wherekr_ is a constant. These equations have of course many solutions. An interesting dixes

by F, = S,(XA), whereX is a totally ordered alphabet (which can be virtual, i.e. defined by the
specialization of a transcendance basi§®fym). Indeed, the following result shows that such a family
satisfies to the desired property:

Proposition 7.1 Let X be a totally ordered commutative alphabet, febe a noncommutative alphabet
and letr,, be a homogenous element of weiglih Z(¥). Then,

Sp(X A) x mp(A) = ¥ (X) ma(A)
forall n > 1, wherey,, (X) is the usual power sum symmetric function.

Proof Using Proposition 2.1, we can write

fioo (( %9 U(A;xt)) * Aoo(ﬂ'n))

rzeX

= ﬂoo((@ O'(A;l‘t)) * Z 1®~~~®1®ﬂ'n®1...)

rzeX

o(X Ajt)  mp(A)

from which it follows that
(X Aty xma(A) = Z (Sp xmp) 2™ 1" = ( Z x") " = ¢ (X) mp t”
reX zeX

O

Let nowX denote a fixed totally ordered commutative alphabet. According to Sect. 3, one can deform
the ordinary Cauchy product éf (A) by means of the familyo (S, (X A)),>1. The product x obtained
by this method is here given by

wox v = (w0 a(Sa(XA) (@ a(Sn(XA)™) ) - a(Sum (X 4)
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for wordsw andv of respective lengths andm. The associated convolution algebra is still equal here
to Solomon’s descent algebra. It can be interpreted agithector space&Sym of noncommutative
symmetric functions endowed with the new prodyciefined by

Ux V= Snym(XA)* (UV)

forU € Sym,, andV € Sym,, (cf. Sect. 3.2). The deformed interpretation morphisgis here
1 1

and in particular the interpretation of the Eulerian Lie idempodgnts
1 1 D, (L A)
ax(P,) = Sp(XA) P, (—A) =, (X) ®, <_A) — M\XT
(1) = S (XA) ¥y ¢ ()@ (4) =755
according to Ryposition 7.1. This situation is interesting since the forthcoming proposition shows that
every Lie idempotent of Solomon’s descent algebra can be described in this way.

Proposition 7.2 Let A be a noncommutative alphabet and4gtbe an arbitrary homogeneous Lie idem-
potent of ordem in L(¥). The following properties are equivalent:

1. TI,, is a homogenous Lie idempotent of oraein 7 ().
2. There exists a virtual totally ordered commutative alphabetuch that

T (X A)
e =2

wherev,, is the usual power sum symmetric function.

Proof (2 —> 1) follows essentially from Proposition 7.1. Indeed, this allows us to write

I, * m, = ﬁﬂ'n(XA) * T, = ﬁﬂ'n % Sp (X A) « mp = Ty % Ty = Ty
On the other hand,
m * 11, = #ﬂ'n * p (X A) = #ﬂ'n * Ty * Sp (X A) = #ﬂ'n * Sp (X A) =11,
¥n(X) ¥n(X) ¥n(X)
so thatr,, * II,, = II,, andll, * =, = =, for all n > 1, which implies thatfll, is a Lie idempotent of

L(¥).

(1 = 2) Consider a totally ordered commutative alphaletLet ([71]).cr, be the Lyndon basis
of the free Lie algebrd (¥) associated with the generating family,, ),,>1 (whereLy denotes the set
of Lyndon words over the alphabBt). From the case,, = ¥,,, one can see that there exists a family
(pr (X)) ey, of quasi-symetric functions such that

(X A) = > pr(X)[r"] (53)
LeLyy,
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where Ly, denotes the set of Lyndon words overof weightn. The coefficienty,,)(X) of m,, in this
expansion is equal t9,, (X ), since

Py (X) T = T X A) Ty = 0 % Sp (X A) # 1 = U (X) T # T = 00 (X) mp

according to Ryposition 7.1.

We shall now prove that the familyr, (X)) rery.. »>1 IS @ transcendance basis for the algepsym
of quasi-symmetric functions oveX (which is a free commutative algebra according to a result of
Malvenuto and Reutenauer [22]). Lét}) be the dual basis ofr!). As shown in [22], the family
(7} )LeLy.,n>1 IS atranscendance basis@$ym. On the other hand, using the Cauchy formula, one can

write
Su(XA) = > wp(X)«
Itn

Expandings,, (A4) on the basi$x!) and applying (53), one obtains another expressiaf,¢fX A) on the
(=!) basis. Identifying the coefficients, one finds

*
n;, =krpr + E PLy --- PLy
Lu,. Ly
k>2

for any Lyndon wordL of weightn, the sum being taken over Lyndon woids . . ., L of length strictly
less than Z| (and whose total length is equal tb]). Also, the constant; must be non-zero, as fol-
lows from using a simple argument on the cardinality of finite transcermdbases. This shows that
(PL)LeLy.,n>1 1S @ transcendance basis@Fym, as required.

Let nowII,, be an arbitrary Lie idempotent i(¥). One can expand it on the Lyndon basis associated

with the family (=, ), i.e.
Hn = Z qr [ﬂ-L]

LeLy,

where theg;, are scalars. According to the previous discussion, one can now define a totally ordered
commutative (virtual) alphabéf by settingpr,(X') = ¢, foreveryl € Ly. Sinceg,) is here necessarily
equal tol, it follows that

m(XA) mp(XA) 7w (XA)

= = = Tp XA) = Hn
Un(X)  pmy(X) q(n) A
as required. O
Recall now that the Lie (quasi) idempotent
(x4)
aX(q)n) =,
Un(5)

is the element 08ym,, corresponding to projection onto the free Lie algebra with respect to the decom-
position

K(A) =K & L(A) & (L(A), L(A) o, & ... & (L(A),...,L(A)o, & ... (54)
n terms
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where(L(A), ..., L(A))s, is the submodule ok {A) spanned by the x -symmetrized products
1
(P, Pr)ox = n! Z Poy Ox - Ox Po(n)
oceSG,

of Lie polynomials. Hence it follows from Proposition 7.2 that all Lie idempotents of the descent algebra
are the Lie projectors associated to some deformation of the canonical decompositioajodiven by
(54).

Note 7.3 Interesting specializations are obtained by taking- 1 — ¢ and X = 1/(1 — ¢). In the latter
case, the associated interpretatioris

LA) ¥ F((1— q)4)

l—q
In particular,
1
O[q(ﬂ'I) =5, (ﬂ A) (1 —q)A)

for every family(x, ), >, of homogeneous Lie idempotents. On the other hand [37],

s 1 4 s qmajj(a) ol
" (1 — ) T 2 (1= g (I — = Fie@) (T = gem® Fm)
Hence,
mayj, (o)
T Z qg T oI
(™) (1—g'-m)(1—qlemTe@) ... (1 —glemT Tia0n) (1= 9)4)

But it has been shown [7] that the limit for— 1 of of =, ((1 — ¢)A4)/(1 — ¢™) is always equal t&,, /n.
Thus,

. 1. ) ) . o
lim ag(r) = 3 ——(io() +iow) - (o) + o) ¥ = Bagn (V)

ceES, to(1)

whereA(7) denotes the partition obtained by sortihgHence the convolution algebra associated with the
deformed Cauchy product correspondingtd A/(1—q¢)) degenerates when— 1 into the commutative
algebra generated by the elemeffis (¥)).-.. One should observe that these elements form a family of
orthogonal idempotents, similar to those: of Garsia and Reutenausar ([1] — see alset EkqB]).

7.2 Structure of Multihomogeneous Modules Associated with Lie Idempotents

We first recall some results [7]. Let = (7,),>: a family of homogeneous Lie idempotents. One can
decompose),, on the basigr!), say
Sn = Z br 7TI
I
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wherep; are constants. One associates then with ea¢hipar\ = ({1, .. .,/,) of n the noncommutative
symmetric function? (r) defined by

Ex(m) = Z prt
A(I)=A

whereA(7) denotes the partition obtained by reordering the componeritsAs shown in Krotet al. [7],
these elements form a complete system of orthogonal idempotents. Mdre family(®,,) of Eulerian
idempotents, these idempotents reduce to the family described by Garsia and Redfgnbuthis case,
E5(®) is the projector on the modulé.(A),,, ..., L(A);.) in the decomposition

KA =K & L(A) & (L(A),L(A) & ... & (L(A),...,L(A) & ...
n terms

In the case of an arbitrary family of Lie idempotents, the structure of the taphles is notimmediately
clear. According to previous discussion, one can sayfhét) is the projector ofL(A),, ..., L(A), o«
with respect to the decomposition (54) if one interprets the Lie idempotgras &, (X A) /v, (X) for
some totally ordered alphabgat (which is always possible according tooposition 7.2). It remains,
however, to give a more explicit description of the images offilér), i.e. of

Im Bx(7) = K{A)ps) - o(Bx ()

This will be done in the next proposition. Before stating it, we introduce some notations. =f
(A1,..., Ay) is a partition ofn, we denote by - ¢ thecompositiorof » defined by

Ao= (/\0(1), cey /\g(,«))
We can now give the main result of this subsection.

Proposition 7.4 Let 7 = (m,),>1 be a family of homogeneous Lie idempotents, wjithe Sym,,, let
A= (l1,la,...,1,) be apartition ofn and let

Ex(m) = Z prol
A(I)=x

be the idempotent associated witls above. The imagen E) () of this idempotent is then the module
spanned by the polynomials

Z Pxo Proay Pl - Pl

ceES,

whereF,, is a homogeneous Lie polynomial of degtee

Proof The propositionis a special case of the following lemma:

Lemma 7.5 With the same hypotheses, let

E= Z p[ﬂ'I
A(I)=A
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be an arbitrary linear combination of aft! indexed by a permutation af The imagdm F = K(A)5 -
«(FE) of this element is then spanned by the polynomials

> Pro Pl P - Py
cES,
where as above?;, is a homogeneous Lie polynomial of degtee

Proof of the lemmalLet M be the module defined by

M = { > pro Py P - P, IVEELT], P, € L(A), }

ceES,

We first prove thatm E C M. To get this inclusion, it suffices to show thatZ) € A . This follows
from the fact that

a(F) = Z prbi, & - ®6;
I=(i1,eir)
AI)=A

Going back to the definition of the convolution product, we see that

alE) = p Z prd, @@, |oc(12...n)
I=(iv,...\iv)
A(I)=A

= pu Z prd, @ @Y, o( Z U1®"'®u7«)
I=(%1,...,8r) 12..n€uill. Uk,
A(I)=x
= > pr (9, ) - (95, - )
I=(i1,...,ir), A(I)=A
12, .neuilll. Wy, |ug|=ix

whered; = o(¥;) is Dynkin’s element and wheteis for the usual coproduct o {A4). Observe that if
up @ - @ u, isinthe support of(12 .. . n), thenu, ) ® - - - @ uy(,) also belongs to the support of this

coproduct. Taking now a sét of representatives of the orbits efuples(u;, . .., u,) of words under the
action of&,., we obtain
a(E) = Z Pro (7910(1) . ug(l)) .. (ﬁla(r) . ug(,«))
cES,

(u1,...,ur)ES
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This shows that (%) € M from which it follows that/m £ C M, as desired.
On the other hand, a simple manipulation of the definition of the convolution product shows that

1
O[(E) . (79[1 7Bl") = m ( Z Pro 79[0(1) ﬁlo(r))

cES,
if A= (1",...,n”"), whichimplies that\/ C Im E. O
The following corollary is essentially a reformulation of Proposition 7.4.

Corollary 7.6 Let, foralln > 1, 7, be a Lie idempotent of degreeand setr = (7,,),>1. For every
partition A = (Ay,..., A.), there exists then a probability distributign on &, with the following
properties:

e pa(o) = pa(r) whenever the compositions ¢ and A - = are equal. This common value will be
denoted by, (o - A) in the sequel.

¢ The image of the projectdt) () is the module generated by al{-symmetrized products

(P, Po)py = D> palo-X) Pogry - Pogyy

cES,
where eachP; is a homogeneous Lie polynomial of degiee

Example 7.7 The family® = (®,),>: of Solomon idempotents is characterized by the fact that the
associated probability distributions are uniform.

As another simple consequence of Proposition 7.4, we can also give the structure of the multihomoge-
neous modules associated with Dynkin idempotents.

Corollary 7.8 LetA = (Aq, ..., \) be apartitionofz. The image of the projectdr (¥,,) is the module
spanned by the elements

AL A
(P P)u = Y ! P

Py
52 Ao Poy HAo) - Qo) o F Aoy) - T

a(r)

whereP,, is a homogeneous Lie polynomial of degige
Another consequence of Lemma 7.5, the following result is of independent interest:

Corollary 7.9 Let(r,),>1 be a family of Lie idempotents and let= (i7", .. ., ;") be any composition
of n (with i, # 4,4, for all k). The element! is then, up to a constant factor, an idempotent whose
image undery is a projector onto the module

ny terms no terms n, terms
generated by the produc(sPl(l), : ..,Pl(”l)) (Pr(l), : ..,Pr(”r)) where Pk(’) is a homogeneous Lie
polynomial of degreé;, for & < [1,r] and where(e,. .., e) denote the usual symmetrized product in

K(A).
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Proof The only thing to check is the fact thaf is actually quasi-idempotent. This follows from Propo-
sition 2.1 and a simple computation. O

7.3 Structure of Modules Associated with Deformations of some Classical Lie
Idempotents

We describe here without proof the structure of the multihomogeneous modules associated with the de-
formations ofp,, and¥,, defined by the transformations of alphahétss (1 —¢)A andA — A/(1—gq).
All these results can be proved by variants of the arguments ofrdoeging subsection.

7.31 0,((1—q)A)

We need first to introduceganalogue of the factorial, connected with the combinatorics of descents and
compositions.

Let » > 1 be an integer and let be a subset ofl, r]. We associate witly' the vectoru(S)
(v(S)1,...,v(5)r) € {0,1}" wherev(S); = 1iff i € S. We can then consider a new vectgs)
(s(S)1,...,s(S)r) € N" defined by

S(S)i = v(S)i + -+ v(S),
fori e [1,r].

Example 7.10 Table 2 gives the values of the above vectors and numbers for all subsets]ofl1, 2]
and([1, 3].

[(COHT s T v [ s(5 [ds]
2 [} (0) (0) 1
11 ] (1) (1) 1
3 ] 0,0) | (0,0) | 1
21 {2} 0,1) | (1,1) | 2
12 {1} (1,0) | (1,0) | 2
1t || {1,2} (L1 | @21 |1
1 ] (0,0,0) [ (0,0,0) | 1
31 {3} (0,0,1) | (1,0,0) | 3
22 {2} (0,1,0) | (1,1,0) | 5
211 || {2,3} || (0,1,1) | (2,2,1) | 3
13 {1} (1,0,0) | (1,0,0) | 3
121 || {1,3} || (1,0,1) | (2,1,1) | 5
112 || {1,2} || (1,1,0) | (2,1,0) | 3
111 || {1,2,3} || (1,1,1) | (3,2,1) | 1
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Let nowl = (¢y,...,4,) be a composition of length We associate witth the¢-analogue ofr + 1)!
defined by
[(r+ Dlrg= D dsg' it +eSh (55)
Scli,r]

whereds = [{ o € &,41, D(o) = S }| denotes the number of permutations®f,,; whose descent set
is equal taS.

Example 7.11 Forr = 1, = 2 andr = 3, one can read on the table the following formulas:
[2!](i1),q =1 + qil
[3!](2»172.2)7(1 =142 qi1+i2 +92 qil + q2i1+i2

[4!](2,172,272,3)7(1 — 1+3qi1+i2+i3 +5qi1+i2 +3q2i1+2i2+i3 _|_3q21 +5q2i1+i2+i3 +3q2i1+i2 +q3i1+2i2+i3

O
For a compositiod = (i1, ..., ¢,) of lengthr, set
ey, i) @ i]g l22lg - i
ClI((]) — [ ]( ' ) : : [1].<1[2]<1 : [ ]q : (56)
r! []gin +i2]g ... [l + -+ irlq

Let nowA = (Aq,...,A) be a partition ofn. We can now define a-deformation of the usual sym-
metrized product by

(Trys - ®x)o((1-g)A) = Z as2(q) Trgay - T (57)

ceES,

This product clearly reduces to the ordinary symmetrized producg fer 0. Also, the familya =
(as2(¢))sec e, is a probability distribution ove&s,., as we will see in the sequel. The following result
provides therefore a complete description, of the multihomogeneous modules associatth Wit
idempotentsb,, ((1 — ¢)A)/(n(1 — ¢")).

Proposition 7.12 Let A = (A4, ..., A.) be a partition ofr. Then the image of the projectéf, (®,, ((1 —
q)A)/(1 — ¢™)) is the module generated by all products of the form

(Pays - Pa)a(i—q)a)
whereP,, is an arbitrary homogeneous Lie polynomial of order

Note that the casg = 1 gives again Corollary 7.8.
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7.3.2 ©,(A/(1-q))

For a compositiodd = (i1, . .., ,), define now
B _ - r—1 -1 k=1 i1+ Fip_1 [,
I(Q)—Z E—1 (=1 q liklq
k=1
and set
B
brla) = ila)

(1—q)"=trtli]y ... [ir]g
The relevang-deformation of the symmetrized product is defined by

(Try, - ®x ) oA/ (1-q) = Z box Tx,y - Ta,g

cES,
Indeed, we have:
Proposition 7.13 LetA = (A4, ..., A,) be apartition of.. Then the image of the projectéh, (®,, (A/(1—
q))/(1 —¢")) is the module generated by the products

(Pays oo Pa)agasa—q)

whereP,, is an arbitrary homogeneous Lie polynomial of degkee
7.3.3 U,((1-q)A)
Let! = (i1,...,4,%-41) be a composition of length+ 1. We associate with it the familiys ) s 1,

of N2" defined byyp, i,y = 1 for everyi; > 1 (whenr = 0) and by the inductive rules

fr_14ir—1
i

T4ty tp—1+ir—1
Y81 = , Y8, (41, ire1) — : Y8, (i1, esirmyir i)

tr tr

Ysu{r}, I = ( ) VS (i1 irmzyire14iy)

vScll,r—1],

(whenr > 1). Next, we introduce the polynomiél; (¢) € N[q] defined by

Crlq) = Z s, (it ()i
Scli,r]

Example 7.14 Let us show how to computé; 3 1)(¢q). We need first to compute

4 5 4

1) (23) = <3) =4, 0,023 = (3) — (3) =10-4=6,
5 6 5

Vi}(24) = <4) =5, Y24 = (4) - (4) =15-5=10.
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It follows that

Y{1,21,(2,3,1) = (?) Y{1},(2,4) = 3x5=15, Y{2},(2,3,1) = (?) Y0,(2,4) = 3 x10=30,

6
Y{1},(2,3,1) = (1) Y{1},(2,3) — V{1,2},(2,3,1) = 6x4-15=9,

6
Y0,(2,31) = (1) 79,(2,3) — Y{2},(2,3,1) = 6x6—-30=6.
Hence we finally get
C(Z 3 1)((]) — 15 q2><2+1><3 + 30 q1><2+1><3 + 9ql><2+0><3 + 6qO><2+0><3

= 15¢"+30¢°+9¢>+6

For a compositiod = (i1, ..., ¢,) of lengthr, let us set
g .o 2 C
CI((]) = _ : [ 1]<1 [ ]q : ' I(Q)
[Zl]q [Zl + ZZ]q ce [Zl + -+ Zr]q <21+"'+2r)
LetA = (A, ..., A,) be a partition of:. Theg- symmetrized product will be in this case

(T, T )u((1-g)a) = Z Con () Tr, ) - Tayg
oES,

and we have:

Proposition 7.15 LetA = (A4, ..., A,) be a partition of». Then the image of the projectéi, (¥, (A/(1—
q))/(1 —¢™)) is the module generated by all products of the form

(Payy - Pa)e(i—g)a)
whereP,, is an arbitrary homogeneous Lie polynomial of degkee
7.3.4 U, (A/(1-q))

Forl = (i1, ..., 1), define the polynomiaD; (¢) by the recurrence relations
Di, = [ilg
- =1\ i1
Dr(q) = Z Diy it in=Lyingn,ein (@) + i1 q Di, i.(q) fori(l)>2
k=1

with the conventionthaD _, (¢) = 0. We set
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Theg-analogue of the symmetrized product will be defined by

(Tays - A )w(A)(1—q) = Z do A @r, ) - Taye
oES,

Proposition 7.16 LetA = (A4, ..., A,) be a partition of». Then the image of the projectéi, (¥, (A/(1—
q))/(1 —¢™)) is the module generated by all products of the form

(Pays- o Pa)wias-q)

whereP,, is an arbitrary homogeneous Lie polynomial of degkee
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