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A class of finite discrete dynamical systems, called Sequential Dynamical Systems (SDSs), was introduced in
[BR99] as a formal model for analyzing simulation systems. Here, we address the complexity of two basic prob-
lems and their generalizations for SDSs.

Given an SDS § and a configuration C, the PREDECESSOR EXISTENCE (or PRE) problem is to determine whether
there is a configuration ¢’ such that S has a transition from ¢’ to C. Our results provide separations between effi-
ciently solvable and computationally intractable instances of the PRE problem. For example, we show that the PRE
problem can be solved efficiently for SDSs with Boolean state values when the node functions are symmetric and the
underlying graph is of bounded treewidth. In contrast, we show that allowing just one non-symmetric node function
renders the problem NP-complete even when the underlying graph is a star (which has a treewidth of 1). Our re-
sults extend some of the earlier results by Sutner [Su95] and Green [Gr87] on the complexity of the PREDECESSOR
EXISTENCE problem for 1-dimensional cellular automata.

Given two configurations ¢ and ¢’ of a partial SDS S, the PERMUTATION EXISTENCE (or PME) problem is to
determine whether there is a permutation of nodes such that $ has a transition from ¢’ to € in one step. We show that
the PME problem is NP-complete even when the function associated with each node is a simple-threshold function.
We also show that the problem can be solved efficiently for SDSs whose underlying graphs are of bounded degree and
bounded treewidth. We consider a generalized version (GEN-PME) of the PME problem and show that the problem
is NP-complete for SDSs where each node function is NOR and the underlying graph has a maximum node degree
of 3. When each node computes the OR function or when each node computes the AND function, we show that the
GEN-PME problem is solvable in polynomial time.
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1 Introduction and Motivation

We study the computational complexity of some basic problems that arise in the context of a new class
of discrete finite dynamical systems, called Sequential Dynamical Systems (henceforth referred to as
SDSs), proposed in [BR99]. A formal definition of such a system is given in Section 2. SDSs are closely
related to classical Cellular Automata (CA), a widely studied class of dynamical systems for modeling
complex systems. They are also closely related to an extension of CA called graph automata [NR98].
Decidability issues for dynamical systems in general and CA in particular have been widely studied in the
literature [W086, Gu89]. In contrast, computational complexity questions arising in the study of CA and
related dynamical systems have received comparatively less attention.

In simple terms, an SDS § = (G, ¥, ) consists of three components. G(V, E) is an undirected graph
with n nodes with each node having a state. ¥ = {f1, f2,..., fa}, with f; denoting a function associated
with node v;. Ttis a permutation of (or a total order on) the nodes in V. A configuration of an SDS is an
n-vector (by,by,...,bn), where by is the value of the state of node v; (1 <i < n). A single SDS transition
from one configuration to another is obtained by updating the state of each node using the corresponding
function. These updates are carried out in the order specified by 1t

The research reported here is a part of a program’ to provide a formal basis for the design and anal-
ysis of large-scale computer simulations, especially for socio-technical systems [BE+01]. Examples of
such systems include various national infrastructures including transportation, power and communication.
Such systems are prototypical examples of discrete coupled dynamical systems. An important aspect of
such systems is that unlike many physical systems, these systems do not have an equation of state. For
additional information regarding how SDSs can be used to model simulations, we refer the reader to
[BE+01].

In [BH+01b, BE+01], we studied the complexity of some configuration reachability problems for SDSs.
Here, we focus on the complexity of two basic problems for SDSs, namely PREDECESSOR EXISTENCE
and PERMUTATION EXISTENCE. We now discuss these problems informally and defer the formal defini-
tions to Section 2.4. Given an SDS § = (G, ¥, 1) and a configuration C, the PREDECESSOR EXISTENCE
problem (abbreviated as PRE) is to determine whether the configuration C has a predecessor; that is,
whether there is a configuration ¢ such that S has a transition from ¢’ to € in one step. Given a partially
specified SDS § consisting of the underlying graph G(V, E), the set F of functions associated with the
nodes and two configurations C and , the PERMUTATION EXISTENCE problem (abbreviated as PME)
is to determine whether there is a permutation 1t of the nodes such that under permutation T, there is a
transition from C’ to C in one step. The PRE problem is a classical problem studied by the dynamical
systems community in the context of CA [Su95, Gr87]. The PME problem is important in the context of
SDSs since two different node permutations may give rise to totally different behaviors of the underlying
dynamical system. An investigation of these problems is helpful in obtaining a better understanding of
the dynamical systems modeled by SDSs. The predecessor existence question is directly related to cer-
tain liveness properties of some network protocols [BE+01, Pe97]. Our conclusion is that these questions
are, in general, computationally intractable. However, we identify a number of special classes of SDSs
for which the questions can be answered efficiently. Several of our results are also applicable to cellular
automata (CA) and graph automata (GA).

Both PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE problems occur naturally while re-
verse engineering sequential dynamical systems from time series data. Examples of reverse engineering

TSeehttp://tsasa. | anl . gov for additional details on this program.
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problems where sequential dynamical system framework has been applied recently include the work of
Laubenbacher et.al. [LSSO03].

The remainder of the paper is organized as follows. In Section 2 we provide the necessary definitions.
Section 3 summarizes our results and discusses related results from the literature. Section 4 presents a
proof to illustrate the ideas behind some of our efficient algorithms.

2 Definitions and Problem Formulations

2.1 Sequential Dynamical Systems

A Sequential Dynamical System (SDS) S over a given domain D of state values is a triple (G, F, 1),
whose components are as follows:

1. G(V,E) is a finite undirected graph without multi-edges or self loops. G is referred to as the under-
lying graph of S. We use n to denote |V | and mto denote |E|. The nodes of G are numbered using
the integers 1, 2, ..., n.

2. For each node i of G, ¥ specifies a local transition function, denoted by f. This function maps
D%+ into D, where &; is the degree of node i. Letting N(i) denote the set consisting of node i itself
and its neighbors, each parameter of f; corresponds to a member of N(i). Throughout the paper, we
assume that the local transition function associated with each node can be evaluated in polynomial
time.

3. Finally, ttis a permutation of {1,2,...,n} specifying the order in which nodes update their states
using their local transition functions. Alternatively, Ttcan be envisioned as a total order on the set
of nodes.

A configuration C of $ can be interchangeably regarded as an n-vector (c1,Cz,...,Cn), Where each
¢ €D,1<i<n,orasafunction C:V — D. From the first perspective, ¢ is the state value of node i in
configuration C, and from the second perspective, C(i) is the state value of node i in configuration C.

Computationally, each step of an SDS (i.e., the transition from one configuration to another), involves
n substeps, where the nodes are processed in the sequential order specified by permutation Tt The “pro-
cessing” of a node consists of computing the value of the node’s local transition function and changing its
state to the computed value. The following pseudocode shows the computations involved in one transition.

fori=1to n do

(i) Node (i) evaluates fr;). (This computation uses the current values of the state of (i) and those of
the neighbors of 11(i).) Let x denote the value computed.

(ii) Node Ti(i) sets its state sy to x.
end-for

We let Fs denote the global transition function associated with S. This function can be viewed either
as a function that maps D" into D" or as a function that maps DV into DV. Fs represents the transitions
between configurations, and can therefore be considered as defining the dynamic behavior of SDS §.
Let I denote the designated configuration of § at time 0. Starting with I, the configuration of § after
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t steps (for t > 0) is denoted by &(S, I,t). Note that §($,7,0) = I and &(S,I,t+1) = Fs(§(S, I,t)).
Consequently, forall t >0, &(S, I,t) = Fst(1).

Recall that a configuration C can be viewed as a function that maps V into D. As a slight extension of
this view, we use C(W) to denote the states of the nodes in W C V. C(W) is called a subconfiguration
of C.

The phase space 25 of an SDS § is a directed graph defined as follows: There is a node in & for each
configuration of S. There is a directed edge from a node representing configuration C to that representing
configuration C if Fs(C) = C’. In such a case, we also say that configuration C is a predecessor of
configuration C. Since SDSs are deterministic, each node in its phase space has an outdegree of 1. In
general, the phase space P may have an infinite number of nodes. When the domain ID of state values is
finite, the number of nodes in the phase space is |D[.

2.2 Variations of the Basic SDS Model

The above definition of an SDS imposes no restrictions on either the domain D of state values or the local
transition functions, except that the ranges of the local transition functions must be subsets of D. SDSs
that model simulation systems can be obtained by appropriately restricting ID and/or the local transition
functions. We use the notation “(X,y)-SDS” to denote an SDS where ‘x’ specifies the restriction on the
domain and ‘y’ specifies the restriction on the local transition functions. Some restrictions studied in this
paper are discussed below.

References [BR99, BMR00, MR99, Re00] studied SDSs with Boolean domains and symmetric Boolean
local transition functions. (The definition of symmetric Boolean functions is given in Section 2.3.) We de-
note such an SDS by (BooL, Sym)-SDS. Symmetric functions provide one possible way to model “mean
field effects” used in statistical physics and studies of other large-scale systems. A similar assumption has
been made in [BPT91]. As pointed out in Section 3, symmetry plays an important role in separating effi-
ciently solvable and computationally intractable versions of the PRE problem for SDSs whose underlying
graphs have bounded treewidth.

A restricted class of (BooL, SYM)-SDSs is obtained by requiring the local transition functions to be
monotone as well. It can be seen that a Boolean function is symmetric and monotone if and only if it is a
k-simple threshold function (defined in Section 2.3) for some integer k > 0. Therefore, over the Boolean
domain, the class of SDSs where each node function is symmetric and monotone coincides with the class
of SDSs where each node function is a k-simple-threshold function for some integer k > 0. We denote this
restricted class by (BooL, ST)-SDS. A class of symmetric but not monotone Boolean functions is that
of k-tally functions (defined in Section 2.3) for any integer k > 0. The class of SDSs in which each node
computes the k-tally function for some nonnegative integer k is denoted by (BooL, TALLY)-SDS. SDSs
in which the local transition functions are not necessarily symmetric are also considered in the companion
papers [BH+01a, BH+01b].

Some of our results are for SDSs over the Boolean domain where the node functions are from an explic-
itly specified set of Boolean functions. For example, when each node function is AND, the corresponding
class of SDSs is denoted by (BooL, AND)-SDS. If the set of node functions has cardinality two or more,
then standard set notation is used as the restriction on the local transition functions in the notation for such
SDSs. For example, when each node function is from the set { X0oR, XNOR}, the corresponding class of
SDSs is denoted by (BooL, {X0R, XNOR})-SDS.

We also consider SDSs over an algebraic field where the node functions are linear combinations of
the inputs. The class of such SDSs is denoted by (FIELD, LINEAR)-SDS. Each local transition function
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fi, 1 <i <n, has the following form:

fi(s,sy,...8)=0i+ > aj*sj. 1)
VieN(i)

Here, aj and & (1 <i<nand 1< j<r)are (scalar) constants, s; is the state value of node vj, and *+’
(addition) and “«’ (scalar multiplication) are the operators of the field.

It is also of interest to consider dynamical system models obtained by modifying some components
of an SDS. One such model is a Synchronous Dynamical System (SyDS), which is an SDS without the
node permutation. Ina SyDS, during each time step, all the nodes synchronously compute and update their
state values. Thus, SyDSs are similar to classical CA with the difference that the connectivity between
cells is specified by an arbitrary graph. The restrictions on domain and local transition functions for SDSs
are applicable to SyDSs as well.

2.3 Other relevant Definitions

Several special classes of Boolean functions are considered in this paper. We provide formal definitions
of these classes below.

A symmetric Boolean function is one whose value does not depend on the order in which the input
bits are specified; that is, the function value depends only on how many of its inputs are 1. The k-simple-
threshold (Boolean) function has value 1 if at least k of the inputs have value 1; otherwise, the value of
the function is zero. The k-tally (Boolean) function has value 1 if exactly k of the inputs have value 1;
otherwise, the value of the function is zero. It should be noted that both k-simple-threshold and k-tally
functions are symmetric. The k-simple-threshold functions are also monotone.

In this paper, NP-completeness results are established using reductions from variants of the Satisfia-
bility (SAT) problem. An instance of SAT is specified by a collection X = {X,X2,...,%} of n Boolean
variables and a collection C = {cy, ¢y, . .. ,cm} of mclauses, where each clause is a set of literals. The ques-
tion is whether there is an assignment of Boolean values to the variables so that each clause is satisfied
(i.e., contains at least one true literal).

Comparing SyDS and SDS. The main difference between graph automata (and SyDS) and SDSs is that
in the former, node states are updated in parallel while in latter, they are updated in a specified sequential
order. From a modeling standpoint, having a partial order on the update seems more appropriate since it
captures causality between agents. Examples where such an ordering seems appropriate are considered in
[BE+01, HG99]. Reference [BE+01] discusses an example in which the movement of cars on a single-
lane road is modeled using an SDS. It is shown that the order in which the state information for cars
is updated yields completely different dynamics. For instance, when the state information is updated
from front to back, the system acts like a perfect predictor and thus never yields clusters of vehicles.
On the other hand, updating from back to front yields more realistic traffic dynamics. Recently, other
authors [HG99, Ga97, Rk94] have also considered sequential updates. In particular, Huberman and Glance
[HG99] discuss experimentally how certain simulations of n-person games exhibit very different (but
probably more realistic) dynamics when the cells are updated sequentially as opposed to when they are
updated in parallel.

Computationally, SDS and SyDS also exhibit interesting differences as well as similarities. Our polyno-
mial time results for class of bounded treewidth graphs apply to both SyDS and SDS. Similar conclusions
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hold for many other polynomial time solvable cases as well. On the other hand, it is known that the phase

space of SyDS and SDS when all local functions are simple threshold functions show important differ-

ences. Specifically, the phase space of SDS has only fixed points (for every permutation) while SyDS can
have both fixed points and limit cycles of length 2. As another example, Mortveit and Reidys [MR99]
completely characterize the question of when an SDS is invertible. However, this is a well known open

question for SyDSs. See [BE+01, BH+01b] for additional discussion on this topic.

2.4 Problems Considered

In this paper, we study two basic problems and their extensions that arise in the context of SDSs. Some
of these problems have been studied in the context of CA. We provide formal definitions of the two basic
problems below.

Given an SDS § = (G(V,E), #,m and a configuration C, the PREDECESSOR EXISTENCE problem
(abbreviated as PRE) is to determine whether there is a configuration ¢ such that F¢(C") = C. (Note that
C has a predecessor if and only if C is not a garden of Eden configuration.) Given a partially specified SDS
S consisting of graph G(V, E), the set F of local transition functions associated with the nodes of G, an
initial configuration ¢ and a final configuration C, the PERMUTATION EXISTENCE problem (abbreviated
as PME) is to determine whether there is a permutation 1t for § such that Fs(C') = C.

As stated, the PRE problem asks for an immediate predecessor; that is, whether there is a configuration
C' from which a given configuration ¢ can be reached in one transition. It is possible to generalize the
problem to the case where we are given an integer t > 1, and the goal is to determine whether there is a
configuration ¢ from which C can be reached in exactly t transitions. We call this the t-PRE problem.

Givenan SDS 5= (G(V,E), F,m), letW = {v,...,V; } be a subset of nodes in V. Recall that the states
of nodes in W is the subconfiguration (b, ,b,, ..., b;, ). Using this notation, we can state the SDS analogs
of some problems considered ¥ by Green [Gr87] in the context of infinite CA. These problems can be
viewed as extensions of the t-PRE problem.

Given an SDS § = (G(V,E), F,m), a subset of nodes W, a vector B = (b, bi,,...,b; ) that specifies
state values for the nodes in W and an integer t > 1, the t-SUBCONFIGURATION PREDECESSOR EXIS-
TENCE problem (abbreviated as t-SuB-PRE) is to determine whether there are configurations ¢ and C
such that Fs'(C’) = ¢ and B is a subconfiguration of C. The t-SUBCONFIGURATION RECURRENCE prob-
lem (abbreviated as t-SUB-RECUR) is to determine whether there are configurations ¢ and C such that
Fs'(C') = € and B is a subconfiguration of both ¢ and C; in other words, the question is whether the
subconfiguration represented by B will occur again after exactly t time steps.

Given an SDS § = (G(V,E), ,m), an integer t > 1 and a temporal sequence (by(1), by(2), ...,
by(t)) of t state values of a given node v, the t-TEMPORAL SEQUENCE PREDECESSOR EXISTENCE
problem (abbreviated as t-TEMP-SEQ-PRE) is to determine whether there is a configuration C such that
F(C)(v) =bu(j), 1< j<t.

Another way of specifying a subconfiguration of an SDS is to give suitable state values for some nodes
and “don’t-care” values for other nodes. The corresponding subconfiguration is obtained by retaining only
the non-don’t-care values. Using this idea, it is possible to formulate a generalized version of the PME
problem as follows: Given a partially specified SDS § consisting of graph G(V,E), the set F of local
transition functions associated with the nodes of G, an initial configuration ¢’ and a final configuration C

* The actual definitions in [Gr87] are slightly different. Since the main goal of [Gr87] was to prove NP-completeness, the problems
were formulated with time t equal to the number of nodes in the subconfiguration.
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possibly containing don’t-care values, the GENERALIZED PERMUTATION EXISTENCE problem (abbrevi-
ated as GEN-PME) is to determine whether there is a permutation Tt for .§ such that Fs(C’) and C agree in
all the components of C that have non-don’t-care values. (In other words, C succinctly specifies a set of
configurations, and (') may be any one of these configurations.)

3 Summary of Results and Related Work

As stated earlier, we study the complexity of PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE
problems for sequential dynamical systems. The paper makes two basic contributions. First, we classify
the complexity of these problems providing in many cases tight separation between easy and hard in-
stances. These results also show a trade-off between the underlying connectivity structure and the class
of local functions used in determining the complexity of the problem. For example, PRE problem is
easy for (BooL, AND)-SDSs on general graphs and for (BooL, Sym)-SDSs when underlying graphs
have bounded treewidth. In contrast, PRE problem is NP-complete when each node computes the same
k-simple-threshold function for any k > 2. Notice that as the graph structure becomes more restrictive,
more general functions can be accommodate to obtain polynomial time results. In classifying the com-
plexity, we initiate the study of discrete dynamical systems on graphs of bounded treewidth. As discussed
later, this strictly includes 1-dimensional CAs with bounded radii. Second, in obtaining our easiness re-
sults, we show a strong connection between PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE
problems and the classical generalized satisfiability problems that have been extensively studied in Com-
puter Science (See e.g. [CKSO01a]). This allows us to use the known polynomial time algorithms for such
satisfiability problems to obtain analogous easiness results for PREDECESSOR EXISTENCE and PERMU-
TATION EXISTENCE problems. While we will not discuss this further here, most of our easiness results
for treewidth and degree bounded graphs hold not only for Boolean domains but arbitrary finite domains.
Moreover, using the general framework presented by Stearns and Hunt [SH96], we can show that our
results extend to variants of these two basic problems, e.g. count the number of predecessors, count the
number of predecessors with specified value for some of the nodes, etc. Answering such questions is
useful in the context of reverse engineering problems such as those discussed in [LSS03].

A natural question to ask is whether a different local transition function is needed at each node. From a
modeling perspective, this is certainly beneficial. For instance, in our simulation of deregulated electrical
markets [BE+01], we needed to represent various types of players: monopolistic, oligopolistic, etc. A
similar need arises in the context of simulating wireless communication systems, wherein different local
transition functions correspond to the use of different protocols at each node. Computationally, most of
our hardness results hold even when all local transition functions are identical. In contrast, many of our
polynomial time results hold when the local transition functions are not necessarily identical (although
the results assume that each local transition function is chosen from a given class of functions).

3.1 PREDECESSOR EXISTENCE Problem

Sutner [Su95] and Green [Gr87] considered the PRE problem and its generalizations in the context of CA.
Their work motivated our study the PRE problem for SDSs.

We show that the PRE problem is NP-complete for each of the following restricted classes of SDSs:
(i) (BooL, ST)-SDSs where each node computes the same k-simple-threshold function for any k > 2
(if) (BooL, TALLY)-SDSs in which each node computes the same k-tally function for any k > 1, (iii)
(BooL, {AND, OR})-SDSs and (iv) (BooL, Sym)-SDSs whose underlying graphs are planar.
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We present polynomial time algorithms for the PRE problem for (BooL, AND)-SDSs and (BooL, OR)-
SDSs with no restrictions on the underlying graph. We also present polynomial time algorithms for the
PRE problem for (BooL, Sym)-SDSs whose underlying graphs have bounded treewidth. In contrast,
we show that even if one nonsymmetric local transition function is permitted, the PRE problem is NP-
complete for SDSs whose domain is Boolean and whose underlying graphs are star graphs. In addition, we
present polynomial time algorithms for the PRE problem for the following cases: (a) (FIELD, LINEAR)-
SDSs, with no restriction on the underlying graph and (b) SDSs whose underlying graphs have bounded
degree and bounded treewidth with no restriction on the local transition functions (other than that the
function evaluations can be done efficiently).

These algorithms can be extended to solve the t-PRE, t-SUB-PRE, t-SUB-RECUR and t-TEMP-SEQ-PRE
problems in polynomial time when when t is a constant. Many of these polynomial time algorithms are
obtained by reducing the corresponding problem to a generalized satisfiability problem [CKSO01a] that can
be solved in polynomial time.

Many of the polynomial time results can be directly extended to SyDSs. Our results extend the earlier
work of Sutner [Su95] and Green [Gr87] on the complexity of the PREDECESSOR EXISTENCE problem for
CA. For instance, our polynomial time solvability results for the class of SDSs whose underlying graphs
are both degree and treewidth bounded, extend Sutner’s result since CA can be seen to have bounded
treewidth (in fact, they are of bounded bandwidth). Finally, our polynomial time results can be extended
to solve a number of other variants when instances are restricted to degree and treewidth bounded graphs.
Examples other than those mentioned above include the problem of finding a predecessor with maximum
(or minimum) number of state values being 1 (or 0), etc.

Our lower bounds for PREDECESSOR EXISTENCE problem restricted to (BooL, ST)-SDS directly
imply analogous lower bounds for Hopfield networks with sequential update and to questions related to
communicating finite state machines [BZ83, Mi99, Pe97] To our knowledge, such results have not been
reported earlier.

3.2 The PERMUTATION EXISTENCE Problem

The PME problem is unique to SDSs since state updates in CA are carried out in a synchronous fashion.
As mentioned in Section 1, the motivation for the PME problem comes from the fact that the behavior of
an SDS under two different permutations may be very different.

We show that the PME problem is NP-complete for (BooL, ST)-SDSs as well as for SDSs whose un-
derlying graphs are stars. However, we show that the problem can be solved efficiently for the following
cases: (a) SDSs whose underlying graphs are of bounded degree and bounded treewidth with no restric-
tion on the local transition functions, (b) (BooL, NOR)-SDSs and (c) (BooL, NAND)-SDSs. We also
show that the GEN-PME problem is NP-complete for each of the following restricted classes of SDSs: (i)
(BooL, NoR)-SDSs ((BooL, NAND)-SDSs) where the maximum node degree in the underlying graph
is 3 and (ii) (BooL, Sym)-SDSs whose underlying graphs are planar. We present polynomial time algo-
rithms for the GEN-PME problem for (BooL, OR)-SDSs and (BooL, AND)-SDSs. These results show an
interesting contrast between the complexities of GEN-PME and PME problems for (BooL, NOR)-SDSs
and (BooL, NAND)-SDSs.

3.3 Previous Work

Computational aspects of CA have been studied by a number of researchers; see for example [M090,
Wo86, Gu89, Gr87, Su95]. Much of this work addresses decidability of properties for infinite CA. Bar-
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rett, Mortveit and Reidys [BMR00, MR99, Re00] and Laubenbacher and Pareigis [LP0Q] investigate the
mathematical properties of SDSs. The PRE problem was shown to be NP-complete for finite CA by Sut-
ner [Su95] and Green [Gr87]. Sutner also showed that PRE problem for finite 1-dimensional CA with a
fixed neighborhood radius can be solved in polynomial time. As mentioned earlier, Green [Gr87] studied
generalized versions of the PRE problem for infinite CA. The problems were so formulated that his results
are also applicable to finite 1-dimensional CA. References [Su95, Gr87] do not consider other restrictions
on CA that lead to polynomial algorithms for the PRE problem. Our approach allows us to identify a
number of restricted classes of SDSs for which the PRE problem can be solved efficiently.

4 A Selected Proof Sketch

Due to lack of space, only one proof is included in this version. The purpose of this proof is to illustrate
the ideas used in the design of our efficient algorithm for the PRE problem for (BooL, Sym)-SDSs, when
the underlying graph of the SDS is of bounded treewidth. A complete version of the paper can be obtained
from the authors.

Theorem 4.1 Let S bea (BooL, Sym)-SDSwhose underlying graph has bounded treewidth. The PRE
problemfor § can be solved in polynomial time.

Proof: Let k be the treewidth of the underlying graph G(V,E). It is well known that a tree decomposition
({X|iel}, T=(,F)) of Gcan be constructed in time that is a polynomial in the size of G. Moreover,
this can be done so that T is a binary tree; that is, each node of T has at most two children [Bo88].

For a given node i of the tree decomposition, we refer to the SDS nodes in X; as explicit nodes of i. If
a given explicit node of i is also an explicit node of the parent of i, we refer to this node as an inherited
node of i; and if it does not occur in the parent of i, we refer to it as an originating node of i. We refer
to the set of all explicit nodes occurring in the subtree of T rooted at i that are not explicit nodes of i as
hidden nodes of i. (Thus, the hidden nodes of i are the union of the originating and hidden nodes of the
children of i.)

Given the underlying graph G(V, E) of ., the permutation tof Sand two disjoint subsets Y and Z of V,
we define the set N(Y, Z) as follows.

N(Y,Z) is the set of nodes w € G such that for each nodey € Y, {w,y} € E, y precedes w in
11, and there is no node z € Z such that {w,z} € E and zprecedes win Tt

Intuitively, N(Y, Z) is the set of nodes w of G, not in Y, such that in a transition of .S, the old value of w is
an input parameter to the computation of the new value of every node in Y, but is not an input parameter
to the computation of the new value of any of the nodes in Z.

Let C be the configuration specified in the given instance of the PRE problem for §. Consider a given
node i of the tree decomposition. Suppose a is a given assignment of state values to the explicit nodes of i
and B is a given assignment of state values to the hidden nodes of i. We say that the combined assignment
o U is viable for i if for every hidden node w of i, the evaluation of the local transition function fy, gives
the value C(w), using the value B(w) for w, the value a U B(u) for every neighbor u of w that follows w
in 11, and the value C(u) for every neighbor u of w that precedes w in Tt (Note that the definition of a tree
decomposition ensures that every neighbor of a hidden node w is either an explicit node or a hidden node
of i.)
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We say that the combined assignment a U3 is strongly viable for i if the above condition holds for every
node w that is either a hidden node or an originating node of i. (The definition of a tree decomposition
ensures that every neighbor of an originating node of i is either an explicit node or a hidden node of i.)

For a given node i of the tree decomposition, and a given assignment 3 to the states of the hidden nodes
of i, define a function fy : 2% — N from the nonempty subsets of X; to the set N of natural numbers as
follows. For a subset Y of X;,

hg(Y) is the number of hidden nodes w of i such that w € N(Y,X; —Y) and B(w) = 1.

For a given node i of the tree decomposition, and a given assignment a to the states of the explicit nodes
of i, define the set H, to be the set of functions h from 2% — N such that there exists an assignment [3
to the states of the hidden nodes of i such that o U3 is viable for i and h is hg.

Since for any given B and Y, the maximum possible value of hg(Y) is the number of hidden nodes of i,

and |X| < k (where k is the treewidth), an upper bound on |Hg]| is n2*.

Note: The function hg could have been defined as a function whose domain is the nonempty subsets of
X;. However, including the empty set 0 in the domain of hg makes the final decision at the root node of
the tree decomposition easier to describe.

We solve the PRE problem for § by using bottom-up dynamic programming on the decomposition tree.
For each node i of T, we compute a table with an entry for each assignment a to the states of the explicit
nodes of i. The value of the entry for each such assignment o is the set Hy. We refer to this table as
Ji. Since the treewidth k is a constant, the size of the table for each node of the decomposition tree is a
polynomial in n, the number of nodes of the underlying graph G(V,E).

For a leaf node i of the decomposition tree, every entry Hq in the table consists of the single function
h that maps every subset X; into zero. Thus, the table for each leaf node of the decomposition tree can be
computed in polynomial time.

For a nonleaf node i of the tree decomposition, the table for i can be computed in polynomial time from
the tables of its children. To facilitate this computation, we utilize the following concepts and notation.

For a given node i of the tree decomposition, let )?. denote the set of inherited nodes of i. (Thus, )?. -
Xi.)

For a given node i of the tree decomposition, and a given assignment ﬁ to the states of the originating
nodes and the hidden nodes of i, define a functionﬂﬁ : 2% — N from the nonempty subsets of X; to the

set N of natural numbers, as follows. For a subset Y of X;,
EE(Y) is the number of nodes w such that w is an originating or a hidden node of i, w €
N(Y,X —Y) and B(w) = 1.
For a given node i of the tree decomposition, and a given assignment y to the states of the inherited

nodes of i, define ﬁw to be the set of functions h from 2% — N such that there exists an assignmentﬁ
to the states of the originating and hidden nodes of i such that YU 3 is strongly viable for i and h is ﬂﬁ.

For each node i of the tree decomposition, we defineJ; as a table with an entry for each assignment Y
to the states of the inherited nodes of i. The value of the entry for each such assignment is the set Hy,.

For each node i of the tree decomposition, given table J;, the table J; can be constructed in polynomial
time. For each assignment a to X; and function h in Hy, consider the assignment a to be the union of an
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assignment s to the states of the inherited nodes of i, and an assignment y to the states of the originating
nodes of i. In polynomial time, we can determine whether the combination of ), y and h corresponds to a
combined assignment that is strongly viable for i. If so, we combine y and h to obtain a function h that we
union into the jentry for Y. By considering each such pair (a, h) in J;, we can construct Jin polynomial
time.

Consider a nonleaf node i of the tree Qecomposition. Suppose that i has only one child, say the tree
decomposition node i’. Given the table J, for i’, the table J; can be constructed in polynomial time, as
follows. Consider an assignment a to the states of the explicit nodes of i. Let y denote the projection of
the assignment a on to X. the inherited nodes of i’. Then the entry for a in the table J; for i is the set Hw in
the entry for y in the table for Jy for i’, with the modification that every function h : 2% — Ninthe set
HqJ is extended to be a function g : 2% N by setting g(Y) = 0 for every subset Y of X; that contains
at least one member of X; — X;'.

Now suppose that nonleaf node i of the tree decomposition has two children, say nodes i’ and i of
the tree decomposition. The tables I/ and i for tree nodes i’ and i” are combined to produce table J;
for i as follows. Consider an assignment o to the states of the explicit nodes of i. Let Y’ and Y denote
the projection of assignment a onto the inherited nodes of i’ and i” respectively. Let every function b’
in ﬁw/ for node i’ be extended to a function g’ : 2% — N, and every function h” in ﬁmn for node i” be

extended to a function g” : 2% — N; both extensions are done as described above. Define the function
g+9g": 2% — Nasfollows: (g +9")(Y) =g (Y)+g"(Y). Thus, the entry for a in table J; for i is the
set of all functions (g’ +g”) that can be constructed in the above manner from some h’ in Hy from Jy and
b in Hye from Jp-.

Let r be the root node of the tree decomposition. The root node has no inherited nodes, so )A(r =0.
Consequently, table J; for the root node r consists of the single entry: (0, ﬁ@). Set Hp is nonempty if and
only if there exists an assignment to the states of all the nodes of SDS § that is strongly viable for r, that
is, if and only if configuration C has a predecessor. ]
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