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† Université de Picardie, LaRIA, 5 rue du Moulin Neuf, 80000 AMIENS (France)
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We study the P4-tidy graphs, a new class defined by Rusu [30] in order to illustrate the notion of P4-domination in
perfect graphs. This class strictly contains the P4-extendible graphs and the P4-lite graphs defined by Jamison &
Olariu in [19] and [23] and we show that the P4-tidy graphs and P4-lite graphs are closely related. Note that the
class of P4-lite graphs is a class of brittle graphs strictly containing the P4-sparse graphs defined by Hoàng in [14].

McConnel & Spinrad [2] and independently Cournier & Habib [5] have shown that the modular decomposition
tree of any graph is computable in linear time. For recognizing in linear time P4-tidy graphs, we apply a method
intoduced by Giakoumakis in [9] and Giakoumakis & Fouquet in [6] using modular decomposition of graphs
and we propose linear algorithms for optimization problems on such graphs, as clique number, stability number,
chromatic number and scattering number. We show that the Hamiltonian Path Problem is linear for this class of
graphs.

Our study unifies and generalizes previous results of Jamison & Olariu ([18], [21], [22]), Hochstättler & Schindler
[16], Jung [25] and Hochstättler & Tinhofer [15].
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1 Introduction and motivations
H. A. Jung in [25] studied the existence of a Hamiltonian path or a Hamiltonian cycle in a graph G
without induced chordless path of four vertices (P4-free graph), by examining the value of the scattering
number of G.

The class of P4-free graphs (or cographs) has been discovered independently in different areas of
Mathematics and Computer Sciences. Corneil et al. in [4] proposed a linear (in the number of edges
of G) recognition algorithm obtained from a unique tree representation of a cograph G (a cotree
associated with G).

The numerous structural properties of P4-free graphs motivated researchers to define classes of graphs
obtained as extensions of cographs. In [14] Hoàng introduced the class of P4-sparse graphs as the
graphs for which every set of five vertices induces at most one P4. For any graph G = (V, E) and W
a proper subset of V inducing a P4, let S(W ) be the set of vertices of V \ W belonging to a P4 sharing
vertices with W . Jamison and Olariu in [19] defined G = (V, E) to be P4-extendible if for every proper
subset W of V inducing a P4, S(W ) contains at most one vertex. Previously they have defined in [17]
the P4-reducible graphs as the class of graphs such that any vertex belongs to at most one P4, and it
is easy to see that this class is the intersection of classes of the P4-extendible and P4-sparse graphs.

1365–8050 c© 1997 Chapman & Hall



18 V. Giakoumakis, F. Roussel, H. Thuillier

By extending the notion of cotree, Jamison and Olariu proposed a unique tree representation for
P4-reducible graphs [18], for P4-sparse graphs [20] and for P4-extendible graphs [19]. These trees are
used as framework to linear recognition algorithms for these graphs in papers of Jamison & Olariu
([21] and [18]) and in a paper of Hochstättler & Schindler [16]. This tree representation is also the
underlying data structure in [15] for studying the Hamiltonicity of P4-extendible graphs and of spiders,
a subclass of P4-sparse graphs.

McConnel & Spinrad [2] and independently Cournier & Habib [5] show that the modular decom-
position tree of a graph G = (V, E) is computable in linear time O(|E | + |V |). Using the modular
decomposition of graphs Giakoumakis in [9] and Giakoumakis & Vanherpe in [11] study two classes
of graphs strictly containing, respectively, the class of P4-sparse graphs and that of P4-reducible graphs
(we shall see later that these classes are also contained in the class of P4-tidy graphs). Note here, in the
same vein, a paper of Fouquet & Giakoumakis [6] concerned by a large class containing the P4-sparse
graphs. In these three papers, that generalize results of Jamison and Olariu ([18], [21] and [22]), linear
algorithms for the recognition as well as for classical optimization problems are obtained from the
unique up to isomorphism modular decomposition tree associated with any graph G.

In this paper, we define the P4-tidy graphs, a new class of graphs strictly containing the previous
considered classes (excepted the class defined by Fouquet & Giakoumakis in [6]). We show that the
modular decomposition tree T (G) of a graph G = (V, E) can be used to recognize, in O(|V |) time,
a P4-tidy graph. Namely, we design an algorithm able to state precisely if the considered graph is a
cograph, is P4-reducible, is P4-extendible, is P4-sparse, is P4-lite or is a general P4-tidy graph. We
also use the modular decomposition tree of a P4-tidy graph for finding, in linear time, the scattering
number, the clique number, the stability number and the chromatic number of such a graph. At last, we
use a method introduced in [10] for studying Hamiltonicity or path partition of graphs, by associating
the modular decomposition tree of a graph G with its scattering number. We apply this method to the
3-sun free P4-tidy graphs in order to generalize results of Jung [25] and Hochstättler & Tinhofer [15].
Note that, as corollary, we extend to Hamilton-connected P4-extendible graphs a result of [15].

2 Definitions, notations and general properties
2.1 Generalities
For terms not defined in this paper the reader can be referred to [12]. In this paper we deal only
with simple graphs (that is undirected graphs with no loops and no two edges joining the same pair
of vertices). For any graph G, V (G) denotes the set of its vertices and E(G) the set of its edges
(or V and E if there is no confusion, and we shall denote G = (V, E)). For any vertex v in V , the
neighbourhood of v is the set NG(v) = {u ∈ V | uv ∈ E} (or N (v) if there is no confusion). For
every set of vertices W ⊆ V \ {v} we shall say that v misses W if W ∩ N (v) is empty and that v

dominates W if W ⊆ N (v). For any set of vertices A of G the subgraph induced by A is denoted
by G[A], while the subgraph G[V \ A] is simply denoted by G \ A. For any set of edges F of G
the subgraph (V, E \ F) is denoted by G \ F . The complement G of G is the graph (V, E) where E
is the set {xy | x ∈ V, y ∈ V and xy /∈ E}. A connected component of a graph is simply said to
be a component and the number of components of a graph G is denoted by c(G). A set S ⊆ V is
said to be a cutset of G if c(G \ S) > 1. Note that this definition is distinct from the usual one
(c(G \ S) > c(G)). Following our definition, S = ∅ is a cutset of G if and only if G is disconnected.
For any path P , the length of P is the number of its edges. An induced path on k vertices shall be
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denoted by Pk . An induced subgraph of G isomorphic to a Pk is simply said to be a Pk in G. A vertex
of a path P distinct from an end-vertex is said to be an internal vertex. If u and v are vertices of a
path P then P[u, v] denotes the subpath of P whose end-vertices are u and v. If V (P) = {v1, . . . , vk}

and E(P) = {vivi+1 | i ∈ {1, . . . , k − 1} }, P is also denoted by [v1, . . . , vk]. In a P4, [a, b, c, d], the
two internal vertices b and c are referred to as midpoints while the end-vertices a and d as endpoints.
A chordless cycle on k vertices is denoted by Ck or by [v1, . . . , vk, v1] if its vertex set is {v1, . . . , vk}

and its edge set is {vivi+1 | 1 ≤ i ≤ k − 1} ∪ {vkv1}.
Let H be a simple graph with vertices {v1, . . . , vn} and let {G1, . . . , Gn} be a family of vertex-disjoint

simple graphs. The join of {G1, . . . , Gn} over H (or composition of {G1, . . . , Gn} over H ) is the graph
denoted by JH (G1, . . . , Gn) having V (G1)∪ · · · ∪ V (Gn) as vertices and a pair {u, v}, with u ∈ V (G i )

and v ∈ V (G j ), is an edge of the join if either i = j and {u, v} is an edge of Gi , or i 6= j and {vi , v j }

is an edge of H . We shall say that the join JH (G1, . . . , Gn) arises by replacing the vertices of H by
the graphs G i .

Let Z be a set of graphs. We shall say that a graph G is Z-free if no induced subgraph of G is
isomorphic to a graph of Z . A set of graphs F will be Z-free if every graph of F is Z-free. The
subset F of all Z-free graphs of a set of graphs G is said to be defined by the forbidden configurations Z .

Let k ≥ 3 be an integer. A k-sun is a graph obtained from a chordless cycle [x1, . . . , xk, x1] by
adding k new vertices y1, . . . , yk and the edges x1 y1, . . . , xk yk . In this paper, we shall be interested by
the 3-sun-free P4-tidy graphs.

A spider is a graph G = (V, E) such that V is partitioned into sets S, K and R such that

(a) S is a stable, K is a clique and |S| = |K | ≥ 2.

(b) Every vertex in R is adjacent to all the vertices in K and adjacent to no vertex in S.

(c) There exists a bijection f : S → K such that either

(c.1) for all vertices s ∈ S, NG(s) ∩ K = { f (s)}

or else,

(c.2) for all vertices s ∈ S, NG(s) ∩ K = K \ { f (s)}.

If (c.1) holds, we say that G is a spider with thin legs, otherwise it has thick legs. R is called head, K
is called body and S feet of the spider G. We shall denote a spider by (R, K , S) or by (K , S) if R is
empty.

Clearly, the complement G of a spider G with thin (resp. thick) legs is a spider with thick (resp.
thin) legs. If the head R is empty or contains one vertex then a spider with thin legs is called an urchin
and a spider with thick legs is called a starfish. A P4 and a bull are simultaneously urchin and starfish,
a 3-sun is an example of urchin, and its complement (the Hajós graph) is an example of starfish (see
Figure 1).

2.2 Scattering number and Jung graphs
Let G = (V, E) be a graph distinct from a complete graph. Let 6 be the family of cutsets of G. The
scattering number of G is the number

s(G) = max{s | ∃S ∈ 6 and s = c(G \ S) − |S|}.
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Fig. 1. Bull, urchin and starfish.

A cutset S such that (c(G \ S) − |S|) = s(G) is called a scattering set of G. By convention, the
scattering number of a complete graph K = (V, E) is −|V | and V is the unique scattering set. Remark
that for a graph G of order n, s(G) = −n if and only if G is isomorphic to the complete graph Kn ,
s(G) = n if and only if G is isomorphic to the stable graph Sn = K n . Note that if G is not connected
then s(G) ≥ c(G). The following lemma is implicit in [25].

Lemma 2.1 Let G = (V, E) be a graph and S be a scattering set of G. Then, for any subset A of V ,
s(G \ A) ≤ s(G) + |A|. Moreover, if A is a subset of S then s(G \ A) = s(G) + |A|.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. We recall that the disjoint
union of G1 and G2 is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2, and the disjoint sum is
the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {xy | x ∈ V1, y ∈ V2}. We shall denote the
disjoint union of G1 and G2 by G1 0© G2 and the disjoint sum by G1 1© G2.

Lemma 2.2 ([25]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. Then

1. s(G1 0© G2) = max(1, s(G1)) + max(1, s(G2)),

2. s(G1 1© G2) = max(s(G1) − |V2|, s(G2) − |V1|).

The scattering number s(G) of a graph G = (V, E) distinct from a complete graph is closely
related to the toughness t (G) = min{s | ∃S ⊂ V, c(G \ S) > 1 and s = |S|/c(G \ S)} introduced by
Chvátal [1] in order to study Hamiltonicity. More precisely, if S0 and S1 are subsets of V such that
c(G \ S0) − |S0| = s(G) (a scattering set) and c(G \ S1)t (G) = |S1| (a tough cutset) then c(G \ S1)(1 −

t (G)) ≤ s(G) ≤ c(G \ S0)(1 − t (G)). Then, we see that s(G) > 0 if and only if t (G) < 1, and
s(G) = 0 if and only if t (G) = 1. Since for any proper subset S of vertices of a Hamiltonian graph G
c(G \ S) ≤ |S|, for such a graph s(G) ≤ 0 (or equivalently t (G) ≥ 1). We note that the problem:
‘Given a graph G and an integer k, decide whether s(G) ≥ k’ is NP-complete (see [27]).

For a graph G we shall denote by ρ(G) the minimum number of elementary disjoint paths which
cover V (G) (i.e. the minimum path partition number of G, or simply the path number of G). Skupień
[32] studied some graphs whose scattering number is ρ(G) and Jung [25] studied relationships between
minimum path partition (in particular, Hamiltonicity) and scattering number in P4-free graphs. Namely
he proved the following result:

Theorem 2.1 ([25]) Let G = (V, E) be a P4-free graph. Then

1. ρ(G) = max(1, s(G)),
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2. G is Hamiltonian if and only if s(G) ≤ 0 and |V | ≥ 3,

3. G is Hamilton-connected if and only if s(G) < 0.

Using Theorem 2.1, Corneil et al. [3] proved that the Hamiltonian Decision Problem for cographs is
linear, by showing that the scattering number of a P4-free graph is computable in linear time. We note
that,

• for an arbitrary graph G, ρ(G) ≥ max(1, s(G)),

• for any Hamiltonian graph G, s(G) ≤ 0 and

• for any Hamilton-connected graph G, s(G) < 0.

Definition 2.1 A graph G is said to be a Jung graph if it verifies the following conditions:

1. ρ(G) = max(1, s(G)),

2. if s(G) = 0 then G is Hamiltonian,

3. if s(G) < 0 then G is Hamilton-connected.

A given class of Jung graphs is said to be a Jung’s family.

A 3-sun H is not a Jung graph (because s(H) = 1 and ρ(H) = 2). By Theorem 2.1, the class of
P4-free graphs is an example of Jung’s family. The following result is implicit in [25], [3] and [15].

Proposition 2.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two Jung graphs with V1 ∩ V2 = ∅. Then the
disjoint union G1 0© G2 and the disjoint sum G1 1© G2 are Jung graphs.

2.3 Modular decomposition of graphs
Let G = (V, E) be an arbitrary graph. A set M of vertices is called a module if every vertex in V \ M
is either adjacent to all the vertices in M , or to none of them. Hence, a module M of G is also a
module of G. The empty set, the singletons and V are the trivial modules of G. A non-trivial module
is called a homogeneous set. A module M is called a strong module if, for any other module A, the
intersection of M and A is empty or one module is contained into the other. A graph having only
trivial modules is called indecomposable. Any indecomposable graph distinct from K1, K2 and S2 is
said to be a prime graph. Note that a prime graph is connected and has at least four vertices and that G
is a prime graph if and only if G is a prime graph. P4, for k ≥ 5 Pk , Pk , Ck , Ck , bulls, urchins and
starfishes are examples of prime graphs.

The modular decomposition is a form of decomposition of a graph G that associates with G a unique
modular decomposition tree T (G). The leaves of T (G) are the vertices of G and a set of leaves of
T (G) having the same least common ancestor in T (G) is a strong module of G. The internal nodes of
T (G) are labelled by P , S or N .

More precisely, let r be an internal node of T (G), M(r) be the set of leaves of the subtree of T (G)

rooted on r , and V (r) = {r1, . . . , rk} be the set of children of r in T (G). If G[M(r)] is disconnected
then r is labelled by P (for parallel module) and G[M(r1)], . . . , G[M(rk)] are its components. If
G[M(r)] is disconnected then r is labelled by S (series module) and G[M(r1)], . . . , G[M(rk] are its
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components. Finally, if both graphs G[M(r)] and G[M(r)] are connected then r is labelled by N
(neighbourhood module) and M(r1), . . . , M(rk) is the unique set of maximal strong submodules of
M(r). Then the representative graph G(r) of the module M(r) is the graph whose vertex set is
V (r) and such that rir j is an edge if and only if there is a vertex of M(ri ) adjacent in G to a
vertex of M(r j ). Note that by definition of a module, if a vertex of M(ri ) is adjacent to a vertex
of M(r j ), then every vertex of M(ri ) will be adjacent to every vertex of M(r j ). Thus, G[M(r)]
is the join JG[r ](G[M(r1)], . . . , G[M(rk)]) and G(r) is isomorphic to the graph induced by a subset
of M(r) consisting of a single vertex from each maximal strong submodule of M(r) in the modular
decomposition of G. It is easy to see that if r is a S-node then G(r) is a complete graph, if r is a
P-node then G(r) is a stable set and if r is a N -node then G(r) is a prime graph. Let us denote by
π(G) the set of prime graphs {G(r1), . . . , G(rs)}, where {r1, . . . , rs} is the set of N -nodes of T (G).

Theorem 2.2 ([9]) Let Z be is a prime graph then a graph G is Z-free if and only if every graph in
π(G) is Z-free.

For more details on modular decomposition, see for instance [7], [28], [26] and [29]. The effi-
cient construction of the modular decomposition tree T (G) had been extensively studied. We recalled
previously that McConnel & Spinrad in [2] and independently Cournier & Habib in [5] gave linear
algorithms for this purpose (‘linear’ means here O(m + n) with m = |E(G)| and n = |V (G)|).

2.4 p-connectedness
In [24] Jamison & Olariu introduce and investigate the notion of p-connectedness. This concept leads
them to a general structure for arbitrary graphs and to a unique tree representation extending the modular
decomposition.

Let G = (V, E) be a graph. Let F = {e ∈ E | e belongs to an induced P4 of G}. Let G p = (V, F)

be the spanning subgraph of G having F as edge-set. Following Jamison & Olariu [24], a connected
component of G p having exactly one vertex is called a weak vertex. Remark that any component
of G distinct from a weak vertex contains at least four vertices. Such a component is said to be a
p-component of G. A graph G is said to be p-connected if it has only one p-component and no weak
vertices. Remark that G is p-connected if and only if for every partition A ∪ B of V some P4 in G
contains vertices from both A and B. Then, G is p-connected if and only if G is p-connected. Note
also that a p-component is a connected subgraph of G and G, and that the p-connected components
of G are the maximal induced subgraphs which are p-connected.

A p-connected graph G = (V, E) is said to be separable if there exists a partition V1 ∪ V2 of V such
that each P4 which contains vertices from both V1 and V2 has its midpoints in V1 and its endpoints
in V2.

Proposition 2.2 ([24]) The partition V1 ∪ V2 of a separable p-connected graph G = (V, E) is unique.

Jamison & Olariu give the following general structure for arbitrary graphs.

Theorem 2.3 ([24]) For a graph G, exactly one of the following conditions is satisfied:

(a) G is disconnected;

(b) G is disconnected;

(c) G is p-connected;
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(d) There exists a unique proper separable p-component H of G with partition W1 ∪W2 (with crossing
P4s between W1 and W2 having their midpoints in W1) such that every vertex in V (G) \ V (H)

dominates W1 and misses W2.

Jamison & Olariu [24] define the following operation reflecting condition (d) in Theorem 2.3.
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩V2 = ∅ such that G1 is separable with

partition V1
1, V1

2 (each P4 which contains vertices from both V1
1 and V1

2 has its midpoints in V1
1).

We consider the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {xy | x ∈ V1
1, y ∈ V2}. We shall

denote this graph by G1 2© G2.

Theorem 2.4 ([24]) Every graph G is either p-connected or it can be obtained uniquely from its p-
components and weak vertices by a finite sequence of disjoint union 0©, disjoint sum 1©, and preceding
operation 2©.

3 P4-tidy graphs
Concerning the recognition problem of a graph G, the key idea of the method introduced in [9] is to
transform this problem into that of recognizing a set of prime graphs associated to G. This method uses
as basic data structure for studying recognition and classical optimization graph problems, the modular
decomposition tree T (G) of G. In [10] we proposed techniques for studying Hamiltonicity of graphs
based on this method. We will apply these techniques to the P4-tidy graphs, a class containing cographs
and all classical families with few P4s.

3.1 Definitions and main properties
Let G = (V, E) be a graph and let A be a P4 in G. Let Mid(A) be the midpoints of A and End(A) its
endpoints. Let us define the following sets:

T (A) = {v ∈ V (G) \ V (A) | V (A) ⊆ N (v)},

I (A) = {v ∈ V (G) \ V (A) | V (A) ∩ N (v) = ∅},

P(A) = {v ∈ V (G) \ V (A) | Mid(A) ⊆ N (v) and End(A) ∩ N (v) = ∅},

R(A) = V (G) \ (V (A) ∪ T (A) ∪ P(A) ∪ I (A)),

S(A) = {v ∈ V (G) \ V (A) | v belongs to a P4 sharing vertices with A}.

In other words, T (A) is the set of vertices that dominate A, I (A) is the set of vertices that miss A.

Remark 3.1 A vertex v belongs to R(A) if and only if G[V (A) ∪ {v}] is isomorphic to one of the seven
graphs Z1, . . . , Z7 depicted in Figure 2. We shall say that R(A) is the set of partners of A. Then,
R(A) = {v ∈ V (G) \ V (A) | V (A) ∪ {v} induces at least two P4}.

In order to illustrate a new notion in perfect graphs (P4-domination), I. Rusu [30] defines P4-tidy
graphs: a graph is a P4-tidy graph if any induced P4, A, has at most one partner (that is, |R(A)| ≤ 1).
She notes that the C5-free P4-tidy graphs are perfect, since they are weakly triangulated graphs (see [13]).

Recall that a graph G is P4-sparse [14] if every set of five vertices induces at most one P4. Clearly,
by Remark 3.1, a P4-sparse graph can be defined as a graph such that for any induced P4, A, R(A) is
empty. Thus, every P4-sparse graph is a P4-tidy graph.
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Fig. 2.

Recall also that a graph G = (V, E) is P4-extendible [19] if for every proper subset A of V inducing
a P4, S(A) contains at most one vertex. Since for any P4, A, R(A) ⊆ S(A), every P4-extendible graph
is a P4-tidy graph.

Remark 3.2 ([20]) A graph G is P4-sparse if and only if G is (Z1, . . . , Z7)-free.

In [23] Jamison & Olariu define P4-lite graphs: a graph G is a P4-lite graph if every induced
subgraph H of G with at most six vertices either contains at most two P4, or is a 3-sun, or is the
Hajós graph (the complement of a 3-sun). They remark that every P4-sparse graph is a P4-lite graph
and prove that every P4-lite graph is brittle (Chvátal defined a graph G to be brittle if each induced
subgraph H of G contains a vertex that is not a midpoint of any P4 or not an endpoint of any P4). We
shall see now that the family of P4-tidy graphs and the family of P4-lite graphs are closely related.

Proposition 3.1 A graph G is P4-lite if and only if G is C5-free P4-tidy.

Proof. Let G be a P4-lite graph. If G is not P4-tidy then it contains a P4, A, such that |R(A)| ≥ 2.
Let u and v be two vertices in R(A). Then, V (A) ∪ {u} induces at least a P4 containing u (exactly one
if G[V (A) ∪ {v}] is not a C5, exactly four otherwise). Symetrically, V (A) ∪ {v} induces at least a P4

containing v. Thus, V (A) ∪ {u, v} induces at least three P4s. Then, G[V (A) ∪ {u, v}] must be either a
3-sun or its complement. Since G[V (A) ∪ {u, v}] is an induced subgraph, without loss of generality,
either u ∈ P(A) and v ∈ I (A), or u ∈ P(A) and v ∈ T (A). Thus, we have a contradiction.

Let G be a C5-free P4-tidy graph. Let H be an induced subgraph of G with at most six vertices. If
|V (H)| ≤ 5 and H contains an induced P4 then, since H is not isomorphic to C5, it induces at most
two P4s. If |V (H)| = 6 and H contains a P4, A, then let u and v be the two vertices in V (H) \ V (A).

Case 1: u /∈ R(A) and v /∈ R(A).
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1.1: uv /∈ E(G).
If u ∈ T (A) and v ∈ P(A) then H is the Hajós graph. Up to symmetries, we see that for the other

cases, H induces no P4 distinct from A.

1.2: uv ∈ E(G).
If u ∈ P(A) and v ∈ I (A) then H is a 3-sun. Up to symmetries, we see as previously that for the

other cases, H induces no P4 distinct from A.

Case 2: u ∈ R(A) and v /∈ R(A) (symmetrically, u /∈ R(A) and v ∈ R(A))

2.1: uv /∈ E(G).
We see that, either G[V (A) ∪ {u}] ∈ {Z1, Z2, Z4, Z5, Z6, Z7} and v ∈ I (A), or G[V (A) ∪ {u}] ∈

{Z5, Z7} and v ∈ P(A).
In any other case, G[V (A) ∪ {u, v}] induces a P4, B, such that |R(B)| ≥ 2.

2.2: uv ∈ E(G).
Then, either G[V (A) ∪ {u}] ∈ {Z1, Z2, Z4, Z5, Z6, Z7} and v ∈ T (A), or G[V (A) ∪ {u}] ∈ {Z4, Z6}

and v ∈ P(A).
In any other case, G[V (A) ∪ {u, v}] induces a P4, B, such that |R(B)| ≥ 2.

Thus, either H induces at most two P4s, or is isomorphic to a 3-sun or its complement, that is, G is
a P4-lite graph. ✷

Proposition 3.2 Let G = (V, E) be a P4-tidy graph. Then every proper subset M of V inducing a
subgraph isomorphic to C5, P5 or P5 is a homogeneous set.

Proof. Let us suppose that M induces a P5 and that there exists a vertex v in V \ M such that
1 ≤ |N (v) ∩ M | ≤ 4 . It easy to see that in any case we can choose an end-vertex u of G[M] such
that {u, v} ⊆ R(M \ {u}). Since for any P4, A, |R(A)| ≤ 1, we obtain a contradiction. Then, for every
v in V \ M , N (v) ∩ M = ∅ or M ⊆ N (v). Thus, M is a homogeneous set.

The proof is quite analogous if M induces a C5.
Since a homogeneous set of G is also a homogeneous set of G, if M induces a P5 then M is a

homogeneous set of G. ✷

Let H be any graph isomorphic to one of the four graphs Z4, Z5, Z6 or Z7 depicted in Figure 2. We
shall say that a vertex v in V (H) is an internal vertex of H if v is midpoint of a P4 in H .

Lemma 3.1 Let G be a P4-tidy graph. Let H be an induced subgraph of G isomorphic to one of the
four graphs Z4, Z5, Z6 or Z7. Let v be a vertex in V (G) \ V (H). Then, either V (H) ⊆ N (v), or
V (H) ∩ N (v) = ∅, or v is only adjacent to the internal vertices of H.

Proof. Let A be a P4 in H . Let u be the vertex in V (H \ A). Clearly, R(A) = {u}. Then, every
vertex v ∈ V (G) \ V (H) is

1. either adjacent to every vertex of A

2. or adjacent to the midpoints and not adjacent to the endpoints of A

3. or adjacent to no vertex of A.
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(1) If v is not adjacent to u then we see that G[V (H)∪ {v}] contains a P4, B, containing u such that
|R(B)| ≥ 2. Thus, v is adjacent to every vertex of H .

(2) It is done if H is isomorphic to Z5 or Z7. Otherwise, u is midpoint of the P4, B, of H distinct
from A. If v is not adjacent to u then |R(B)| ≥ 2. Thus, N (v) ∩ V (H) is the set of internal vertices
of H .

(3) If N (v)∩ V (H) is empty then v is not adacent to u, otherwise we have |R(B)| ≥ 2 for B, the P4

in H distinct from A. ✷

We are now able to determine the prime P4-tidy graphs. The following result is due to Jamison and
Olariu:

Theorem 3.1 ([20]) A graph G is a P4-sparse graph if and only if for every induced subgraph H of G
with at least two vertices, exactly one of the following statement is satisfied:

(a) H is disconnected;

(b) H is disconnected;

(c) H is isomorphic to a spider.

Corollary 3.1 Let G be a prime P4-sparse graph. Then G is isomorphic to a starfish or to an urchin.

Theorem 3.2 Let G be a prime P4-tidy graph. Then, G is isomorphic to a P5 or a P5 or a C5 or a
starfish or an urchin.

Proof. Let us suppose that G has an induced subgraph H isomorphic to a P5 or a P5 or a C5. By
Proposition 3.2, either V (H) is a homogeneous set or G = H . Since G is prime, G = H . Now,
suppose that G is distinct from P5, P5 and C5 and contains an induced subgraph H isomorphic to one
of the four graphs Z4, Z5, Z6 or Z7. By Lemma 3.1, it is easy to see that V (H) contains a homogeneous
set of two vertices. This contradiction shows that G is (Z1, . . . , Z7)-free, that is, by Remark 3.2, G is
a P4-sparse graph. By Corollary 3.1, G is a starfish or an urchin. ✷

Lemma 3.2 Let G be a P4-tidy graph and M a neighbourhood module of G. If the representative graph
of M is a prime spider H (starfish or urchin) then G[M] is obtained from H by replacing at most one
vertex distinct from the head of H by a K2 or a S2, and replacing the possible head by the subgraph
induced by a module.

Proof. Let R = {r}, K and S be respectively the head (if it is not empty), the clique and the stable of
the prime spider H . We shall denote by {k1, . . . , kl} the vertices of K and by {s1, . . . , sl} the vertices
of S. For every i ∈ {1, . . . , l}, if H is an urchin then the neighbourhood of si is N (si ) = {ki }, and if H
is a starfish, N (si ) = K \ {ki , r} (N (si ) = K \ {ki } if R is empty). We know that G[M] is obtained
from H by replacing r by a graph A0, each vertex ki (respectively si ) by a graph Ai (resp. Bi ) where
V (A0), V (Ai ) (resp. V (Bi )) are strong modules of G. If V (Ai ) (or V (B j )) is a homogeneous set of
G[M]\ V (A0) then we can see that there exists a P4, P , of G[M]\ V (A0) such that V (P)∩ V (Ai ) 6= ∅

(or V (P) ∩ V (Bi ) 6= ∅). But this would imply that |R(P)| ≥ |V (Ai )| − 1 (or |V (Bi )| − 1). Thus,
|V (Ai )| ≤ 2 or (|V (Bi )| ≤ 2). Since every pair of vertices of H \ {r} belongs to a P4, at most one
vertex in K ∪ S can be replaced by K2 or S2. ✷
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Definition 3.1 A quasi-starfish (resp. quasi-urchin) is a graph obtained from a starfish (resp. urchin)
without head by replacing at most one vertex by a K2 or a S2. Note that a quasi-starfish (resp. quasi-
urchin) is a p-connected graph.

Remark 3.3 If the representative graph G[M] of a neighbourhood module of a P4-tidy graph G is a
prime spider then G is isomorphic to the graph arising from a spider (R, K , S) by replacing at most one
vertex in K ∪ S by a K2 or a S2. Then G[M] \ R is a quasi-starfish or a quasi-urchin. R will be called
the head of G[M]. We note that G[M] = (G[M] \ R) 2© G[R].

Lemma 3.3 Let H be a prime spider and G be the graph arising by replacing the possible head of H
by a P4-tidy graph and at most one vertex distinct from the head by a K2 or a S2. Then, G is a P4-tidy
graph.

Proof. By Remark 3.3, G is isomorphic to the graph arising from a spider (R, K , S) by replacing at
most one vertex in K ∪ S by a K2 or a S2. Let

K ′ =
{

K ∪ {k ′} if G is obtained by replacing k in K by {k, k ′}

K otherwise

S′ =
{

S ∪ {s ′} if G is obtained by replacing s in S by {s, s ′}

S otherwise.

Since every vertex of R dominates K ′ and every vertex of K ′ dominates R, it is easy to see that there
is no P4 containing vertices from both R and K ′ ∪ S′, that every P4 in R has no partner in K ′ and that,
since every P4 in K ′ ∪ S′ has its midpoints in K ′ and its endpoints in S′, it has no partner in R. Thus,
every P4 in G has at most one partner. ✷

Lemma 3.4 Let G be a P4-tidy graph and M be a neighbourhood module such that the representative
graph of M is a prime spider. Let R be the head of G[M]. Then, G[M] \ R is a p-component of G.

Proof. By Remark 3.3, G[M]\R is a p-connected induced subgraph of G. By the proof of Lemma 3.3,
we know that there is no P4 containing vertices from both R and G[M] \ R. By using modular
decomposition of G, we see that G[M] \ R is a maximal induced p-connected subgraph. ✷

Proposition 3.3 A graph G is P4-tidy if and only if every p-component is isomorphic to either a P5 or
a P5 or a C5 or a quasi-starfish or a quasi-urchin. Quasi-starfishes and quasi-urchins are the separable
p-components of G.

Proof. Suppose that G is P4-tidy. Let B be a p-component of G. By Proposition 3.1, the set of
vertices of a subgraph B isomorphic to a P5 or a P5 or a C5 is a homogeneous set. Since every P4

has at most one partner, there no P4 containing vertices from both V (B) and V (G) \ V (B). Thus, B
is a p-component.

By Lemma 3.4, the other p-components are quasi-starfishes and quasi-urchins. Then, the ‘only if’
part is true.

The ‘if’ part is a consequence of Theorem 2.4. ✷

Corollary 3.2 ([15]) A graph G is P4-extendible if and only if it has no p-component of order greater
than 5.
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Proof. Note that the seven graphs given in Figure 2 are the p-connected graphs on five vertices. It
is clear that if G has no component of order greater than 5 then G is P4-extendible. Conversely, if a
p-component B of a P4-extendible graph G is distinct from Z1, Z2 and Z3 then, by Proposition 3.2, B is
isomorphic to a quasi-starfish or a quasi-urchin. Since for every P4 A of a 3-sun (or of its complement)
|S(A)| = 2, we see that the prime representative graph P of B is a P4 or a bull. Since a bull is not
p-connected, P is a P4. Then B belongs to {Z4, Z5, Z6, Z7}. ✷

3.2 Linear recognition
Let us consider a graph G. Knowledge of π(G) is not sufficient for characterizing G. Let r be a
neighbourhood node of the modular decomposition tree T (G), M(r) the corresponding module of G,
G(r) the representative prime graph and V (r) = {r1, . . . , rk} be the set of children of r in T (G) (vertex
set of G(r)).

During the construction of a graph G(r) of π(G) from T (G), let us mark every vertex ri whose
corresponding module is a homogeneous set. A graph of π(G) having no marked vertex is said to be
unmarked.

Suppose that G is P4-tidy. By Theorem 3.2, every graph in π(G) is isomorphic to a P5 or a P5 or
a C5 or a starfish or an urchin. Then, by Proposition 3.1 and Lemma 3.2, for every neighbourhood
node r of T (G), G(r) must verify one of the following statements:

(a) G(r) is isomorphic to a C5 and G(r) is unmarked.

(b) G(r) is isomorphic to a P5 and G(r) is unmarked.

(c) G(r) is isomorphic to a P5 and G(r) is unmarked.

(d) G(r) is isomorphic to a starfish or an urchin, the head is possibly marked (the corresponding
module can be any P4-tidy graph) and at most one other vertex is marked (the corresponding
module contains exactly two vertices).

If G(r) verifies condition (d) then we mark (if necessary) the head by the usual mark and the other
marked vertex (if such a vertex exists) by a special mark ∗ and G(r) is said to be weak-marked. We
shall consider that an unmarked prime spider is weak-marked.

Then we obtain the following characterization.

Theorem 3.3 A graph G is P4-tidy if and only if every graph of π(G) is either an unmarked P5 or an
unmarked P5 or an unmarked C5 or a weak-marked urchin or a weak-marked starfish.

Proof. By Proposition 3.1, Theorem 3.2 and Lemma 3.2, the ‘only if’ part is true. Since P5, P5

and C5 are P4-tidy graphs, the ‘if’ part is obtained by induction on |V (G)| and Lemma 3.3. ✷

Corollary 3.3 ([11]) A graph G is P4-reducible if and only if every graph of π(G) is either an un-
marked P4 or a bull having at most one marked vertex: its vertex of degree 2.

Corollary 3.4 ([11]) A graph G is extended P4-reducible if and only if every graph of π(G) is either
an unmarked C5 or an unmarked P4 or a bull having at most one marked vertex: its vertex of degree 2.

Corollary 3.5 ([9]) A graph G is P4-sparse if and only if every graph of π(G) is either an unmarked
urchin or an unmarked starfish.
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P -free cographs4
(*)

(*)

P4- reducible

P -tidy4

ext.-P   -reduc.4 4  P -sparse

ext.-P  -sparse4P -extensible4 P -lite4

Fig. 3. A Hasse diagram.

Corollary 3.6 ([9]) A graph G is extended P4-sparse if and only if every graph of π(G) is either an
unmarked C5 or an unmarked urchin or an unmarked starfish.

Corollary 3.7 A graph G is P4-extendible if and only if every graph of π(G) is either a weak-marked P4

or an unmarked P5 or an unmarked P5 or an unmarked C5 or a weak-marked bull.

Corollary 3.8 A graph G is P4-lite if and only if every graph of π(G) is either an unmarked P5 or an
unmarked P5 or a weak-marked urchin or a weak-marked starfish.

The previous classes are partially ordered by inclusion. We sum up the situation by a Hasse diagram
given in Figure 3.

Recognition algorithm
Let H be a graph and let us define type(H) in the following way:

type(H) =



































1 if H is isomorphic to a P4

2 if H is isomorphic to a bull
3 if H is isomorphic to a spider distinct from a P4 and a bull
4 if H is isomorphic to a C5

5 if H is isomorphic to a P5

6 if H is isomorphic to a P5

7 otherwise.

Now, we define a function M on {1, . . . , 6} × π(G) in the following way:

M(1, H) =











0 if H is not isomorphic to a P4

1 if H is isomorphic to an unmarked P4

2 if H is isomorphic to a weak-marked P4

3 if H is isomorphic to a marked P4 (not weak-marked)
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M(2, H) =











0 if H is not isomorphic to a bull
1 if H is isomorphic to a bull with unmarked P4

2 if H is isomorphic to a weak-marked bull
3 if H is isomorphic to a marked bull (not weak-marked)

M(3, H) =











0 if H is not isomorphic to a spider
1 if H is isomorphic to an unmarked spider
2 if H is isomorphic to a weak-marked spider
3 if H is isomorphic to a marked spider (not weak-marked)

M(4, H) =

{ 0 if H is not isomorphic to a C5

1 if H is isomorphic to an unmarked C5

2 if H is isomorphic to a marked C5

M(5, H) =

{ 0 if H is not isomorphic to a P5

1 if H is isomorphic to an unmarked P5

2 if H is isomorphic to marked P5

M(6, H) =







0 if H is not isomorphic to a P5

1 if H is isomorphic to an unmarked P5

2 if H is isomorphic to a marked P5.

Input: A graph G.

Output: The message ‘G is MSG’ (with MSG ∈ {a cograph, P4-reducible, extended P4-reducible,
P4-sparse, extended P4-sparse, P4-extendible, P4-lite, P4-tidy, not P4-tidy}).

Step 1:
Construct the modular decomposition tree T(G), the set π(G) and mark the vertices of every graph in
π(G) as previously explained. Let π(G) = {G1, . . . , G p}.

Step 2:
[1] For each j ∈ {1, . . . , 7} do MASK[ j] := 0
[2] For each G i ∈ π(G) do
[3] if 1 ≤ type(G i ) ≤ 6 then
[4] MASK[type(G i )] := max{M(type(G i ), G i ), MASK[type(G i )]}
[5] else MASK[7] := 1
[6] The array MASK is compared with the rows of the table given in Figure 4.

In Figure 4, ‘spider’ means ‘spider distinct from a P4 and a bull’.
By Theorem 3.3 and Corollaries 3.3 to 3.8, the correctness of the preceding algorithm is easy to

prove.

Complexity
Let n = |V (G)| and m = |E(G)|. Step 1 can be done in O(m + n) time (see [2], [5] and [33]).

Line [1] of Step 2 is accomplished in constant time. For each G i in π(G) we can sort the vertices of G i

by increasing order of their degrees in O(|V (G i )|) time by an usual technique of sorting integers having
values between 0 and (|V (G i )|) (by bucketsort for instance). Testing if G i is either an unmarked P5 or
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P4 bull spider C5 P5 P5 other MSG
0 0 0 0 0 0 0 cograph

≤ 1 ≤ 1 0 0 0 0 0 P4-red.
≤ 1 ≤ 1 0 1 0 0 0 ext. P4-red.
≤ 1 ≤ 1 ≤ 1 0 0 0 0 P4-sparse
≤ 1 ≤ 1 ≤ 1 1 0 0 0 ext. P4-sparse
≤ 2 ≤ 2 0 ≤ 1 ≤ 1 ≤ 1 0 P4-extens.
≤ 2 ≤ 2 ≤ 2 0 ≤ 1 ≤ 1 0 P4-lite
≤ 2 ≤ 2 ≤ 2 ≤ 1 ≤ 1 ≤ 1 0 P4-tidy

Fig. 4.

an unmarked P5 or an unmarked C5 is done in constant time. Testing if G i is a weak-marked urchin
or a weak-marked starfish can be decomposed in three steps:

1. Verify if G i is a split-graph Ki + Si (where Ki is a clique and Si is a stable). This can be done
in O(|V (G i )|) time (see [12]).

2. Check if all vertices of Si are either of degree 1 or |Ki | − 1 or |Ki | − 2 (recall that G i has no
homogeneous set).

3. Test if there is at most one vertex in Ki ∪ Si weak-marked.

These three steps are done in O(|V (G i )|) time. It is easy to see that
∑p

i=1 |V (G i )| < 2n.
Thus, lines [2] to [5] are accomplished in O(n) time. Line [6] is accomplished in constant time. It

follows that the time complexity of Step 2 is O(n) as claimed.

3.3 Optimization algorithms
We will show that the modular decomposition tree T (G) of a P4-tidy graph G and the set π(G) can
be used to obtain linear time solutions to a number of classical combinatorial optimization problems.

We consider the following parameters:

ω(G), the clique number of G (maximum number of pairwise adjacent vertices),

χ(G), the chromatic number of G (smallest number of stables which cover all the vertices),

α(G), the stability number of G (maximum number of pairwise nonadjacent vertices),

θ(G), the clique cover number of G (smallest number of cliques which cover all the vertices).

It is well known that each of the problems of recognizing graphs G and integers k with ω(G) ≥ k,
χ(G) ≤ k, α(G) ≥ k, and θ(G) ≤ k is NP-complete (see [8]). We propose to solve the above
optimizations problems for the class of P4-tidy graphs. More precisely, given the modular decomposition
tree of a P4-tidy graph G, we show how to compute parameters ω(G), χ(G), α(G) and θ(G).

Since α(G) = ω(G) and θ(G) = χ(G), and since the complement G of any P4-tidy graph G is a
P4-tidy graph, we shall only compute ω(G) and χ(G).
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Lemma 3.5 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. Then

1. ω(G1 0© G2) = max{ω(G1), ω(G2)},

2. ω(G1 1© G2) = ω(G1) + ω(G2),

3. χ(G1 0© G2) = max{χ(G1), χ(G2)},

4. χ(G1 1© G2) = χ(G1) + χ(G2).

Let G be a P4-tidy graph and let r be an internal node of the modular decomposition tree T (G),
M(r) be the corresponding module of G, G(r) be the representative graph and V (r) = {r1, . . . , rk} be
the set of children of r in T (G).

Case 1: M(r) is a parallel module (r is a P-node).
By Lemma 3.5 (1)(3), we have

ω(G[M(r)]) = max{ω(G[M(r1)]), . . . , ω(G[M(rk)])}

χ(G[M(r)]) = max{χ(G[M(r1)]), . . . , χ(G[M(rk)])}

Case 2: M(r) is a series module (r is an S-node).
By Lemma 3.5 (2)(4), we have

ω(G[M(r)]) =

k
∑

i=1

ω(G[M(ri )])

χ(G[M(r)]) =

k
∑

i=1

χ(G[M(ri )]).

Case 3: M(r) is a neighbourhood module (r is an N -node).
By Theorem 3.5, we shall consider two subcases:

3.1: G(r) is an unmarked P5 or P5 or C5. (G[M(r)] is isomorphic to P5 or P5 or C5).
Then, ω(P5) = 2, ω(P5) = 3, ω(C5) = 2, χ(P5) = 2, χ(P5) = 3, χ(C5) = 3.

3.2: G(r) is a weak-marked urchin or a weak-marked starfish.
By Remark 3.3, G[M(r)] is isomorphic to H1 2© H2 where H1 is a quasi-urchin or a quasi-starfish

and V (H2) is empty or is a strong submodule of M(r). By Lemma 3.2, H1 is a prime spider without
head (K , S) or is obtained from a prime spider without head H = (K , S) by replacing exactly one
vertex in K ∪ S by a S2 or a K2. Let

ǫ =
{

1 if H1 is obtained by replacing a vertex of K by a K2

0 otherwise

ǫ′ =
{

1 if H is a starfish and H1 is obtained by replacing a vertex of S by a K2

0 otherwise.

Note that a P4 is a starfish. Then, ω(H1) = χ(H1) = |K | + ǫ + ǫ′ and we have

ω(G[M(r)]) = |K | + ǫ + max{ω(H2), ǫ
′}

χ(G[M(r)]) = |K | + ǫ + max{χ(H2), ǫ
′}
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Clique number and Chromatic number
In their paper Corneil et al. [3] solved the previous problems for cographs by performing a certain
computation on the corresponding cotree, thus reducing the problem to evaluating an expression on
the cotree. This method can be generalized to the modular decomposition tree T (G). For a given
parameter, clique number or chromatic number, we associate an expression to each type of internal
node (given in Cases 1, 2, 3.1 and 3.2). More precisely, we associate to T (G) a new tree T ′(G)

obtained in the following way:

• P-nodes and S-nodes are unchanged (Cases 1 and 2),

• an N -node corresponding to an unmarked P5 or P5 or C5 (Case 3.1) becomes a leaf of T ′(G)

with its attributes ω and χ ,

• an N -node r corresponding to a weak-marked urchin or a weak-marked starfish (Case 3.2) has
two sons: a leaf H1 (quasi-urchin or quasi-starfish) with its attributes |K |, ǫ and ǫ′, and an internal
node corresponding to the strong submodule V (H2) of M(r) previously described.

The parameters ω(G) and χ(G) can be evaluated by traversing T ′(G) in postorder and performing
the prescribed expression at every internal node as described in the previous study of Cases 1, 2 and 3.

Complexity
T ′(G) is a subtree of T (G) and is obtained from T (G) in O(|V (T (G))|) time. It is easy to see that
|V (T (G))| < 2n. Since the postorder traversal of T ′(G) is done in O(|V (T ′(G))|) time, ω(G) and
χ(G) are computable in O(n) time.

3.4 Hamiltonicity

As previously, let s(G) be the scattering number of a graph G and ρ(G) be the minimum path partition
number of G. We recall here three lemmas that we shall use in this section.

Lemma 3.6 ([15]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. Then

1. ρ(G1 0© G2) = ρ(G1) + ρ(G2),

2. ρ(G1 1© G2) = max{ρ(G2) − |V1|, ρ(G1) − |V2|, 1}.

Lemma 3.7 ([15]) Let G = (R, K , S) be a spider with head R, clique K and stable S. If R is not empty
or if G has thin legs then s(G) = max{s(R), 1}, else s(G) = 0. If G has thin legs then

ρ(G) = ρ(R) +
⌈

max

{

0,
|K | − 2ρ(R)

2

}

⌉

.

If G has thick legs then, if R is not empty, we have ρ(G) = ρ(R), otherwise G is Hamiltonian.

Lemma 3.8 ([25]) Let G = (V, E) be a graph and S be a scattering set of G. Then, for any subset A
of V , s(G \ A) ≤ s(G) + |A|. Moreover, if A is a subset of S then s(G \ A) = s(G) + |A|.
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Let G be a P4-tidy graph and T (G) be the modular decomposition tree of G. In the following, we
shall construct a boolean function B defined on the set of internal nodes of T (G) and verifying the
following property:

For every internal node r of T (G), (B(r) = TRUE) ⇒ G[M(r)] is a Jung graph.
(Since it is not always obvious to show that a graph is a Jung graph, we shall only consider such a

boolean function.)
Let r be an internal node of the modular decomposition tree T (G). As previously, we denote by

M(r) the corresponding module of G, by G(r) the representative graph and by V (r) = {r1, . . . , rk}

the set of children of r in T (G). Let n(r) (resp. n(ri )) be the number of vertices of G[M(r)] (resp.
G[M(ri )]).

Case 1: M(r) is a parallel module.
By Lemma 2.2 (2), Lemma 3.6 (2) and Proposition 2.1, we have

s(G[M(r)]) = max
i∈{1,...,k}

{s(G[M(ri )]) −
∑

j 6=i

n(r j )}

ρ(G[M(r)]) = max
i∈{1,...,k}

{ρ(G[M(ri )]) −
∑

j 6=i

n(r j ), 1}

Let B(r) = B(r1) ∧ · · · ∧ B(rk).

Case 2: M(r) is a series module.
By Lemma 2.2 (1), Lemma 3.6 (1) and Proposition 2.1, we have

s(G[M(r)]) =

k
∑

i=1

s(G[M(ri )])

ρ(G[M(r)]) =

k
∑

i=1

ρ(G[M(ri )]).

Let B(r) = B(r1) ∧ · · · ∧ B(rk).

Case 3: M(r) is a neighbourhood module.

3.1: G[M(r)] is isomorphic to P5 or P5 or C5.
We know that, s(P5) = 1, s(P5) = 2, s(C5) = 2, ρ(P5) = 1, ρ(P5) = 1, ρ(C5) = 1 and we set

B(r) = TRUE.

3.2: G(r) is a weak-marked spider.
We know that G[M(r)] is isomorphic to H1 2© H2 where H1 is a quasi-urchin or a quasi-starfish and

V (H2) is empty or is a strong submodule of M(r). We recall that H1 is a prime spider without head
(K , S) or is obtained from a prime spider without head (K , S) by replacing exactly one vertex in K ∪ S
by a S2 or a K2.

Set K = {k1, . . . , kl}, S = {s1, . . . , sl}. We have H1 = G[K ′ ∪ S′] with K ′ ∪ S′ obtained from K ∪ S
by replacing at most one vertex in K ∪ S by a S2 or a K2. Without loss of generality, we can set

K ′ =
{

K ∪ {k ′
1} if H1 is obtained by replacing k1 in K by {k1, k ′

1}

K otherwise.
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S′ =
{

S ∪ {s ′
1} if H1 is obtained by replacing s1 in S by {s1, s ′

1}

S otherwise.

In order to simplify notations, set H = G[M(r)]. In the following, if H2 = ∅ then we set ρ(H2) = 0.
Let p = ρ(H2) and Q = {Q1, . . . , Q p} be a minimum path partition of V (H2). For every i ∈ {1, . . . , p},
let qi and q ′

i be the end-vertices of Qi (if |V (Qi )| = 1 then qi = q ′
i ).

If H2 6= ∅, let

A2 =

{

∅ if s(H2) ≤ 0
a scattering set of H2 if s(H2) ≥ 1.

3.2.1: G(r) is a weak-marked urchin.

3.2.1.1: S′ = S and K ′ = K .
If H2 6= ∅ (resp. H2 = ∅) then, by Lemma 3.7, s(H) = max(1, s(H2)) (resp. s(H) = 1) and

ρ(H) = ρ(H2) +
⌈

max

(

0,
|K | − 2ρ(H2)

2

)

⌉

.

If H2 is a non-empty Jung graph (resp. H2 = ∅) then s(H) = ρ(H2) (resp. s(H) = 1). Moreover, if
|K | ≤ 2ρ(H2) (resp. |K | = 2) then ρ(H) = ρ(H2) (resp. ρ(H) = 1). Thus, ρ(H) = s(H) and H is a
Jung graph.

Then, if H2 is a non-empty Jung graph (resp. H2 = ∅) and |K | ≤ 2ρ(H2) (resp. |K | = 2), we set
B(r) = TRUE, otherwise we set B(r) = FALSE.

3.2.1.2: S′ = S ∪ {s ′
1} and s1s ′

1 6∈ E(H).
If H2 6= ∅ then we can see that K ∪ A2 is a scattering set of H . Then, by Lemma 3.8, s(H) =

s(H \ K ) − |K |. By Lemma 2.2, s(H) = max(1, s(H2)) + max(1, s(S′)) − |K |. Thus, s(H) =

max(1, s(H2)) + |S′| − |K |. That is, s(H) = max(1, s(H2)) + 1 .
If H2 = ∅ then we can see that {k1} is a scattering set of H and s(H) = 2.
If |K | = 2 then {[s1, k1, s ′

1], Q1 ∪ [q1, k2, s2], Q2, . . . , Q p} (or {[s1, k1, s ′
1], [k2, s2]} if H2 = ∅) is a

minimum path partition of V (H). Then, ρ(H) = ρ(H2) + 1 (or ρ(H) = 2 if H2 = ∅).
If |K | > 2 then let H ′ = H2 2© (H1 \ {s1, s ′

1, k1}). Clearly, H ′ verifies the hypotheses of Case 3.2.1.1,
then

ρ(H ′) = ρ(H2) +
⌈

max

(

0,
|K | − 1 − 2ρ(H2)

2

)

⌉

.

Since k1 is the unique neighbour of s1 and s ′
1 in H and s1s ′

1 6∈ E(H), adding the path [s1, k1, s ′
1] to a

minimum path partition of V (H ′) gives a minimum path partition of V (H). Then, ρ(H) = ρ(H ′)+ 1.
Thus

ρ(H) = ρ(H2) +
⌈

max

(

0,
|K | − 1 − 2ρ(H2)

2

)

⌉

+ 1.

If H2 is a non-empty Jung graph (resp. H2 = ∅) and |K | ≤ 2ρ(H2) + 1 (resp. |K | ≤ 3), by similar
arguments to those of Case 3.2.1.1, we can set B(r) = TRUE, otherwise we set B(r) = FALSE.
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3.2.1.3: S′ = S ∪ {s ′
1} and s1s ′

1 ∈ E(H).
If H2 6= ∅ (resp. H2 = ∅) then we can see that K ∪ A2 (resp. {k2}) is a scattering set of H . Then, by

Lemmas 3.8 and 2.2, it is easy to prove, as previously, that s(H) = max(1, s(H2)) (resp. s(H) = 1).
Let H ′ = H2 2© (H1 \ {s ′

1}). Clearly, H ′ verifies the hypotheses of Case 3.2.1.1. Then

ρ(H ′) = ρ(H2) +
⌈

max

(

0,
|K | − 2ρ(H2)

2

)

⌉

.

Let P a minimum path partition of V (H ′). Since the degree of s1 in H ′ is one, s1 is necessary an
end-vertex of a path P0 in P . Thus, (P \ P0) ∪ {P0 ∪ [s1, s ′

1]} is a minimum path partition of V (H).
Then

ρ(H) = ρ(H ′) = ρ(H2) +
⌈

max

(

0,
|K | − 2ρ(H2)

2

)

⌉

.

As in Case 3.2.1.1, if H2 is a non-empty Jung graph (resp. H2 = ∅) and |K | ≤ 2ρ(H2) (resp. |K | = 2),
we set B(r) = TRUE, otherwise we set B(r) = FALSE.

3.2.1.4: K ′ = K ∪ {k ′
1}.

If H2 6= ∅ and s(H2) > 1 (resp. H2 = ∅ or s(H2) = 1) then K ∪ A2 (resp. {k2}) is a scattering set.
Then, by Lemmas 3.8 and 2.2, s(H) = max(1, s(H2)) − 1 (resp. s(H) = 1).

Claim 3.1 If |K | ≥ 2ρ(H2) then ρ(H) = ⌊
|K |

2 ⌋ else ρ(H) = ρ(H2) − 1.

Proof.

a: H2 = ∅.

If |K | = 2 then [s2, k2, k1, s1, k ′
1] is a Hamiltonian path of H .

If |K | is odd (resp. even ≥ 4) let |K | = 2t − 1 (resp. |K | = 2t). Then,

P = {[s2, k2, k1, s1, k ′
1, k3, s3], [s4, k4, k5, s5], . . . , [s2t−2, k2t−2, k2t−1, s2t−1]}

(resp. P ∪ {[s2t , k2t ]}) is a minimum path partition of V (H).

b: H2 6= ∅ and |K | ≥ 2ρ(H2).

If |K | is even (resp. odd), then let 2t (resp. 2t + 1) be the value of |K |.

Then, if p = |Q| ≥ 2,

P = {[s2, k2, q1] ∪ Q1 ∪ [q ′
1, k1, s1, k ′

1, q2] ∪ Q2 ∪ [q ′
2, k3, s3], [s4, k4, q3] ∪ Q3

∪[q ′
3, k5, s5], . . . , [s2p−2, k2p−2, qp] ∪ Q p

∪[q ′
p, k2p−1, s2p−1], [s2p, k2p, k2p+1, s2p+1], . . . , [s2t−2, k2t−2, k2t−1, s2t−1], [s2t , k2t ]}

(resp. (P \ {[s2t , k2t ]}) ∪ {[s2t , k2t , k2t+1, s2t+1]}) is a minimum path partition of V (H).

If |Q| = 1 then

P = {[s2, k2, q1] ∪ Q1

∪[q ′
1, k1, s1, k ′

1, k3, s3], [s4, k4, k5, s5], . . . , [s2t−2, k2t−2, k2t−1, s2t−1], [s2t , k2t ]}

(resp. (P \ {[s2t , k2t ]}) ∪ {[s2t , k2t , k2t+1, s2t+1]}) is a minimum path partition of V (H).
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c: H2 6= ∅ and |K | < 2ρ(H2).

If |K | = 2 then {[s2, k2, q1] ∪ Q1 ∪ [q ′
1, k1, s1, k ′

1, q2] ∪ Q2, Q3, . . . , Q p} is a minimum path
partition of H .

If |K | is odd (resp. even ≥ 4) then let 2t − 1 (resp. 2t) be the value of |K |. Then

P = {[s2, k2, q1] ∪ Q1 ∪ [q ′
1, k1, s1, k ′

1, q2] ∪ Q2 ∪ [q ′
2, k3, s3], [s4, k4, q3] ∪ Q3

∪[q ′
3, k5, s5], . . . , [s2t−2, k2t−2, qt ] ∪ Qt ∪ [q ′

t , k2t−1, s2t−1], Qt+1, . . . , Q p}

(resp. (P \ {Qt+1}) ∪ {[s2t , k2t , qt+1] ∪ Qt+1}) is a minimum path partition of V (H).

The reader can verify that in each case we obtain the announced formulas. ✷

By Claim 3.1, if H2 is a non-empty Jung graph (resp. H2 = ∅) and |K | < 2ρ(H2) (resp. |K | ≤ 3),
we set B(r) = TRUE, otherwise we set B(r) = FALSE.

3.2.2: G(r) is a weak-marked starfish.
If |K | = 2 then we are in Case 3.2.1, so we suppose that |K | ≥ 3. Let us remark that every scattering

set contains necessarily |K | − 1 vertices of K . Let t = ⌈
|K |

2 ⌉.
We describe two particular Hamiltonian paths of G[K ∪ S] that shall be used in the following:
If |K | > 6 and K is odd (resp. even) then let

P = [kl , s1, kl−1, s2, . . . , kt , st+1, kt−1, st , kt−2, st+2, . . . , k2, sl , k1, sl−1]

(resp. P = [kl , s1, kl−1, s2, . . . , kt+1, st , kt−1, st+1, kt , st+2, kt−2, st+3, . . . , k2, sl , k1, sl−1]).
Then, P is a Hamiltonian path of G[K ∪ S] joining kl and sl−1. For |K | ≤ 6, it is easy to construct

such a Hamiltonian path P .
By permuting {k1, s1} and {kl−1, sl−1}, we obtain from P a Hamiltonian path P ′ of G[k ∪S] joining kl

and s1.

3.2.2.1: S′ = S and K ′ = K .
If H2 6= ∅ (resp. H2 = ∅) then K ∪ A2 (resp. K ) is a scattering set. By Lemma 3.7, s(H) =

max(1, s(H2)) (resp. s(H) = 0), ρ(H) = ρ(H2) (resp. ρ(H) = 1).
If H2 = ∅ then P ∪ [kl , sl−1] is a Hamiltonian cycle of H .
If H2 6= ∅ and H2 is a Jung graph then, since ρ(H) = ρ(H2), ρ(H) = s(H).
Then, if H2 = ∅ or H2 is a non-empty Jung graph, we set B(r) = TRUE; otherwise, we set

B(r) = FALSE.

3.2.2.2: S′ = S ∪ {s ′
1} and s1s ′

1 6∈ E(H).
If H2 6= ∅ (resp. H2 = ∅) then we can see that K ∪ A2 (resp. K ) is a scattering set of H . Then, by

Lemmas 3.8 and 2.2, it is easy to prove that s(H) = max(1, s(H2)) + 1 (resp. s(H) = 1).
Moreover, {P ∪ [kl , s ′

1], Q1, Q2, . . . , Q p} is a minimum path partition of V (H) (resp. P ∪ [kl , s ′
1] is

a Hamiltonian path of H ). Then, ρ(H) = ρ(H2) + 1 (resp. ρ(H) = 1).
If H2 is a non-empty Jung graph (resp. H2 = ∅), then s(H) = ρ(H2) = ρ(H) (resp. s(H) = ρ(H) =

1), that is, H is a Jung graph. Thus, if H2 = ∅ or H2 is a Jung graph then we set B(r) = TRUE;
otherwise we set B(r) = FALSE.
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3.2.2.3: S′ = S ∪ {s ′
1} and s1s ′

1 ∈ E(H).
If H2 6= ∅ (resp. H2 = ∅) then K ∪ A2 (resp. K ) is a scattering set of H . Then, by Lemmas 3.8

and 2.2, s(H) = max(1, s(H2)) (resp. s(H) = 0).
Moreover, {[s ′

1, s1] ∪ P ′ ∪ [kl , q1] ∪ Q1, Q2, . . . , Q p} is a minimum path partition of V (H) (resp.
P ′ ∪ [kl , s ′

1, s1] is a Hamiltonian cycle of H ). Then, ρ(H) = ρ(H2) (resp. ρ(H) = 1).
It is clear that, if H2 is a non-empty Jung graph or H2 = ∅, H is a Jung graph. Thus, if H2 = ∅

or H2 is a Jung graph then we set B(r) = TRUE; otherwise we set B(r) = FALSE.

3.2.2.4: K ′ = K ∪ {k ′
1}.

If H2 6= ∅ (resp. H2 = ∅) then K ∪ A2 (resp. K if |K | > 3, {k2, k3} if |K | = 3) is a scattering
set of H . Then, by Lemmas 3.8 and 2.2, s(H) = max(1, s(H2)) − 1 (resp. s(H) = −1 if |K | > 3,
s(H) = 0 if |K | = 3).

If H2 = ∅ then C ′ = P ∪ [sl−1, k ′
1, kl] is a Hamiltonian cycle of H .

If H2 6= ∅ and p = |Q| > 1 (resp. p = 1) then {Q1 ∪ [q1, kl] ∪ P ∪ [sl−1, k ′
1, q2] ∪ Q2, Q3, . . . , Q p}

is a minimum path partition (resp. C = [k ′
1, q1] ∪ Q1 ∪ [q ′

1, kl] ∪ P ∪ [sl−1, k ′
1] is a Hamiltonian cycle

of H ).
Then, if H2 6= ∅ (resp. H2 = ∅), ρ(H) = max(1, ρ(H2) − 1) (resp. ρ(H) = 1).

Claim 3.2 If H2 is a non-empty Jung graph or H2 = ∅ then H is a Jung graph.

Proof. For any Hamiltonian cycle D of H , and any vertices u and v, ‘v is a neighbour of u in D’
means that uv is an edge of D.

a: H2 is a non-empty Jung graph.

Clearly, s(H) = ρ(H2) − 1. If ρ(H2) > 1 then ρ(H) = ρ(H2) − 1 = s(H). If ρ(H2) = 1 then
s(H) = 0 and we know that H has a Hamiltonian cycle C . Thus, H is a Jung graph.

b: H2 = ∅ and |K | = 3.

Then, S(H) = 0 and we know that H has a Hamiltonian cycle C ′. Thus, H is a Jung graph.

c: H2 = ∅ and |K | > 3.

Then, s(H) = −1. Let x and y be two arbitrary vertices of H .

c.1: x or y is in {k1, k ′
1}.

Without loss of generality, we suppose that x = k ′
1. H ′ = H \ {x} verifies the hypotheses of

Case 3.2.2.1. Then, there exists a Hamiltonian cycle D of H ′. Let a and b be the two neighbours
of y in D. Note that, if y ∈ K (resp. y ∈ S) then {a, b} ⊆ S (resp. {a, b} ⊆ K ). Since x is
adjacent to all the vertices of H ′ \ {s1, k1}, x is adjacent to a or b. We suppose that x is adjacent
to a. Then, (D \ ay) ∪ [a, x] is a Hamiltonian path of H joining x and y.

c.2: x or y is in K .

Without loss of generality, we suppose that x = k2. H ′ = H \ {x, s2, k ′
1} verifies the hypotheses

of Case 3.2.2.1. Then, there exists a Hamiltonian cycle D of H ′. Remark that x is adjacent to
all the vertices of H ′.

If y ∈ {k3, . . . , kl} then let a and b be the two neighbours of y in D. Note that {a, b} ⊆ (S \ s2).
Then [x, b] ∪ (D \ {ay, by}) ∪ [a, k ′

1, s2, y] is a Hamiltonian path of H joining x and y.



On P4-tidy graphs 39

If y = s2 then let a be a neighbour of k3 in D. Hence, [x, a] ∪ (D \ ak3) ∪ [k3, k ′
1, y] is a

Hamiltonian path of H joining x and y.

If y = s1 then let a and b be the two neighbours of y in D and c be a neighbour of b in D.
Note that {a, b} ⊆ (K \ {k1, k2}) and c ∈ (S \ {s1, s2}). Then [x, a] ∪ (D \ {ay, bc})∪ [b, s2, k ′

1, c]
induces a Hamiltonian path of H joining x and y.

If y ∈ {s3, . . . , sl} then let a and b be the two neighbours of y in D. Note that {a, b} ⊆ (K \{k2}).
Then k ′

1 is adjacent to a or b. We suppose that k ′
1 is adjacent to a. Then [x, b] ∪ (D \ ay) ∪

[a, k ′
1, s2, y] is a a Hamiltonian path of H joining x and y.

c.3: x and y are in S.

Without loss of generality, we suppose that x = s2. H ′ = H \ {x, k2, k ′
1} verifies the hypotheses

of Case 3.2.2.1. Then, there exists a Hamiltonian cycle D of H ′. Remark that k2 is adjacent
to all the vertices of H ′. Let a be a neighbour of y in D. Then, [x, k ′

1, k2, a] ∪ (D \ ay) is a
Hamiltonian path of H joining x and y.

Since in every case there exists a Hamiltonian path of H joining x and y, H is a Jung graph. ✷

Thus, by Claim 3.2, if H2 = ∅ or H2 is a Jung graph then we set B(r) = TRUE; otherwise we set
B(r) = FALSE.

Concluding remarks
For every internal node r of the modular decomposition tree T (G), we compute the values of
s(G[M(r)]), ρ(G[M(r)]) and B(r). Since these values are computable in O(|V (r)|) time for the
P-nodes and S-nodes and in constant time for the N -nodes, the scattering number s(G), the minimum
path partition number ρ(G) and B(G) are computable in O(n) time. Thus, for P4-tidy graphs, the
Hamiltonian Path Decision Problem is linear and we can easily deduce, from the proofs, an efficient
algorithmic construction of a minimum path partition.

Moreover, for the family F of P4-tidy graphs G such that B(G) = TRUE, the Hamiltonian Cycle
and the Hamilton-Connected Decision Problems are linear. We also obtain an efficient algorithmic
construction of a Hamiltonian cycle. We note, for example, that the family of 3-sun-free P4-tidy graphs
is a subfamily of F .

Problem
Characterize the family of Jung P4-tidy graphs (determine more precisely B such that G is a Jung graph
if and only if B(G) = TRUE).
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[1] V. Chvátal, Tough graphs and Hamiltonicity, Discrete Math. 5, 215–228, 1973.

[2] R. M. McConnel and J. Spinrad, Linear-Time Modular Decomposition and Efficient Transitive
Orientation of Comparability Graphs, Dept. of Computer Science, University of Colorado, CO
80309 USA, 1993.

[3] D. G. Corneil, H. Lerchs and L. Stewart Burlingham, Complement reducible graphs, Discrete
Appl. Math. 3, 163–174, 1981.

[4] D. G. Corneil, Y. Perl and L. K. Stewart, A linear recognition algorithm for cographs, SIAM J.
on Computing 14, 926–934, 1985.

[5] A. Cournier and M. Habib, A new linear Algorithm for Modular Decomposition, LNCS 787,
Springer-Verlag, 68–84, April 1994.

[6] J-L. Fouquet and V. Giakoumakis, On semi-P4-sparse graphs, Discrete Math., 165–166, 277–300,
1997.

[7] T. Gallaı̈ Transitiv orientierbar graphen, Acta Math. Acad. Sci. Hung. 18, 25–66, 1967.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-
completeness (W. H. Freeman, San Francisco, CA, 1979).

[9] V. Giakoumakis, On extended P4-sparse graphs, extended abstract, 4th Twente Workshop on Graphs
and Combinatorial Optimization, June 1995.

[10] V. Giakoumakis, F. Roussel and H. Thuillier, Scattering number and modular decomposition,
Discrete Math., 165–166, 321–342, 1997.

[11] V. Giakoumakis and J. M. Vanherpe, On extended P4-reducible graphs, submitted.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[13] R. B. Hayward, Weakly triangulated graphs, J. Combinatorial Theory (B) 39, 200–209, 1985.
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