
FPSAC 2013 Paris, France DMTCS proc. AS, 2013, 527–538

The Eulerian polynomials of type D have only
real roots

Carla D. Savage1 and Mirkó Visontai2

1Department of Computer Science, North Carolina State University, Raleigh, NC
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Abstract. We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type
D are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian
polynomial of type B are real, as well.

Résumé. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme
eulérien de type D sont réelles. Nous prouvons également une conjecture de Dilks, Petersen, et Stembridge que toutes
les racines du polynôme eulérien affine de type B sont réelles.
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1 Overview
Let Sn denote the group of all permutations of the set [n] = {1, 2, . . . , n}. The descent set of a permuta-
tion π in Sn (given in its one-line notation π = π1 · · ·πn) is defined as

Desπ = {i ∈ [n− 1] : πi > πi+1} .

The Eulerian polynomial, Sn(x), is the generating function for the statistic desπ = |Desπ| on Sn:

Sn(x) =
∑
π∈Sn

xdesπ. (1)

In addition to its many notable properties, Sn(x) has only real roots, which implies that its coefficient
sequence, the Eulerian numbers, is unimodal and log-concave.

The notion of descents, and therefore Eulerian polynomials, extends to all finite Coxeter groups. Brenti
conjectured (Conjecture 5.1 in Brenti (1994)) that the Eulerian polynomials for all finite Coxeter groups
have only real roots. He proved this to be the case for the exceptional groups and for type B. The main
goal of this paper is to prove the last missing part of Brenti’s conjecture, for type D groups:

Conjecture 1.1 (Conjecture 5.2 in Brenti (1994)) The typeD Eulerian polynomials have only real roots.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmASind.html


528 Carla D. Savage and Mirkó Visontai

To be precise, we view the Coxeter group of type B (resp. D) of rank n, denoted by Bn (resp. Dn),
as the set of signed (resp. even-signed) permutations of the set [n]. The type B and D descents have
the following simple combinatorial interpretation (see Brenti (1994); Björner and Brenti (2005)). For a
signed (resp. even-signed) permutation σ given in its “window notation” (σ1, . . . , σn), let

DesB σ = {i ∈ [n− 1] : σi > σi+1} ∪ {0 : if σ1 < 0}, (2)
DesD σ = {i ∈ [n− 1] : σi > σi+1} ∪ {0 : if σ1 + σ2 < 0}. (3)

The type B and type D Eulerian polynomials are, respectively,

Bn(x) =
∑
σ∈Bn

xdesB σ and Dn(x) =
∑
σ∈Dn

xdesD σ ,

where desB σ = |DesB σ| and desD σ = |DesD σ|.
Our approach is novel and general. It applies not only to type D, but also—as we will see—to the

type A and type B Eulerian polynomials. Moreover, we will apply our method to the affine Eulerian
polynomials proposed by Dilks, Petersen, and Stembridge (2009). In doing so, in Section 8, we will
resolve another conjecture:

Conjecture 1.2 (Dilks et al. (2009)) The affine Eulerian polynomials of type B have only real roots.

The type A and C affine Eulerian polynomials are multiples of the classical Eulerian polynomial and
hence, have only real roots. However, the affine type D case remains open. See discussion in Section 8.

Our method makes use of the s-inversion sequences and their ascent statistic, defined in the Section 3.
These were inspired by lecture hall partitions Bousquet-Mélou and Eriksson (1997) and introduced in
Savage and Schuster (2012). The method works as follows.

• First, encode each element, w, of the Coxeter group as an s-inversion sequence, e, in such a way
that the descent set of w is the same as the ascent set of e (Sections 2,3 and 4).

• Secondly, observe that (a refinement of) the generating polynomial for the number of ascents over
inversion sequences satisfies a recurrence of a certain form (Section 5).

• Finally, show that the polynomials defined by such recurrences are “compatible” (a notion closely
related to interlacing) to deduce that the Eulerian polynomials have all roots real (Sections 6, 7).

2 Type D Eulerian polynomials
Let us start with a simple observation. Note that the type D descent statistic, DesD, defined in (3) can
be extended to all signed permutations. Furthermore, DesD is equidistributed over even-signed and odd-
signed permutations. In other words, we have the following equality.

Proposition 2.1 For n ≥ 2, ∑
σ∈Bn

xdesD σ = 2
∑
σ∈Dn

xdesD σ.
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Proof: The involution on Bn that swaps the values 1 and −1 in (the window notation of) σ ∈ Bn is a
bijection between Dn and Bn \Dn that preserves the type D descent statistic.

2

Therefore, in order to avoid dealing with the parity of the signs and to allow for simpler recurrences,
we will be working instead with the polynomial

Tn(x) =
∑
σ∈Bn

xdesD σ. (4)

Clearly, Tn(x) has only real roots if and only ifDn(x) does. In what follows, we will restrict our attention
to permutations and signed permutations, with the goal of showing Tn(x) has all real roots.

3 s-Inversion sequences and s-Eulerian polynomials
For a sequence s = s1, s2, . . . of positive integers, the set I(s)n of s-inversion sequences of length n is
defined by

I(s)n = {e ∈ Zn : 0 ≤ ei < si}.

The ascents of an inversion sequence e ∈ I(s)n are the elements of the set

Asc e =

{
i ∈ [n− 1] :

ei
si
<
ei+1

si+1

}
∪ {0 : if e1 > 0}.

The s-Eulerian polynomial, E(s)
n (x), is the generating polynomial for the ascent statistic asc e =

|Asc e| on I(s)n :

E(s)
n (x) =

∑
e∈I(s)n

xasc e.

Our main result is the following theorem which we will prove in Section 6.

Theorem 3.1 For any n ≥ 1 and any sequence s of positive integers, E(s)
n (x) has only real roots.

Consequently, to show the real-rootedness of a family of polynomials, it suffices to show that it is equal
to E

(s)
n (x) for some sequence s of positive integers. For example, the type A and type B Eulerian

polynomials have the following form (we defer the proof to Section 4).

Proposition 3.2 (Savage and Schuster (2012)) For n ≥ 1,

Sn(x) = E(1,2,...,n)
n (x), (5)

Bn(x) = E(2,4,...,2n)
n (x), (6)

from which it follows by Theorem 3.1 that Sn(x) and Bn(x) have only real roots.

In this paper, we will show how to adapt this idea to type D and affine type B Eulerian polynomials.
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4 Inversion sequence representation of (signed) permutations
To simplify notation for inversion sequences, let

In = I(1,2,...,n)n and IBn = I(2,4,...,2n)n .

In this section, we will prove bijections that imply not only the inversion sequence representations for Sn

(5) and Bn (6), but also the following, novel, inversion sequence representation for Dn.

Proposition 4.1 For n ≥ 1,

Tn(x) =
∑
e∈IBn

xascD e ,

where ascD e = |AscD e| is the number of type D ascents of e = (e1, . . . , en) ∈ IBn given by

AscD e =

{
i ∈ [n− 1] :

ei
i
<

ei+1

i+ 1

}
∪
{
0 : if e1 +

e2
2
≥ 3

2

}
. (7)

4.1 An inversion sequence for permutations
We will make use of the following bijection between permutations and inversion sequences (see, for
example, Lemma 1 in (Savage and Schuster, 2012)). We note that several variants of this map are known
under different names: inversion table, Lehmer code, etc.

Lemma 4.2 The mapping φ : Sn → In defined by φ(π1π2 · · ·πn) = (t1, t2, . . . , tn), where

ti = |{j ∈ [i− 1] : πj > πi}|

is a bijection satisfying

πi > πi+1 if and only if ti < ti+1, for i ∈ [n− 1].

Proof: First, πi > πi+1 if and only if the set {j ∈ [i − 1] | πj > πi} is a proper subset of the set
{j ∈ [i] | πj > πi+1}, which happens if and only if ti < ti+1.

Clearly, φ(Sn) ⊆ In. In particular, t1 = 0 and tn = n − πn. It is clear that φ is a bijection for
n = 1. Let (t1, . . . tn) ∈ In for some n > 1 and assume that φ is a bijection for smaller dimensions.
Let π1 · · ·πn−1 = φ−1(t1, . . . tn−1). Then φ−1(t1, . . . , tn) = π′1 · · ·π′n, where π′n = n − tn and π′i =
πi + χ(πi ≥ πn) for i ∈ [n− 1], where χ(P ) = 1 if P is true and 0, otherwise. 2

We will also use the following basic but useful observation.

Proposition 4.3 Let a, b, p be nonnegative integers such that 0 ≤ a/p < 1 and 0 ≤ b/(p+ 1) < 1. Then

a

p
<

b

p+ 1
⇐⇒ a < b.

Proof: If a < b, then a+ 1 ≤ b. Thus, since a < p, (p+ 1)a = pa+ a < pa+ p = p(a+ 1) ≤ pb. So,
(p+ 1)a < pb. Conversely, if a ≥ b, then (p+ 1)a ≥ (p+ 1)b > pb, so (p+ 1)a > pb. 2

Remark 4.4 The proposition does not hold without the hypothesis. For example, 4 < 5, but 4/3 > 5/4.

Proof of (5) in Proposition 3.2: Follows from Lemma 4.2 and Proposition 4.3. 2
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4.2 The bijection for signed permutations and its properties
Clearly, the set of signed permutations, Bn, has the same cardinality as the set of “type B” inversion
sequences, IBn . Next, we define a bijection between these sets that maps type B descents in signed
permutations to ascents in the inversion sequences. We will prove several other properties of Θ as well.
Some will be used to establish the real-rootedness of Tn(x)—and hence Dn(x)—and others will be
needed in Section 8 for the affine Eulerian polynomials. Throughout this paper we will assume the natural
ordering of integers,

−n < · · · < −1 < 0 < 1 < · · · < n.

Theorem 4.5 For σ = (σ1, . . . , σn) ∈ Bn, let (t1, . . . tn) = φ(|σ1| · · · |σn|) where φ is the map defined
in Lemma 4.2 and |σ1| · · · |σn| denotes the underlying permutation in Sn. Define the map Θ : Bn → IBn
as follows. Let

Θ(σ) = (e1, . . . , en),

where, for each i ∈ [n], ei =

{
ti if σi > 0,

2i− 1− ti if σi < 0.

Then Θ is a bijection satisfying the following properties.

1. σ1 < 0 if and only if e1 > 0.

2. σn > 0 if and only if en < n.

3. σ1 + σ2 < 0 if and only if e1 + e2
2 ≥

3
2 .

4. σi > σi+1 if and only if eii <
ei+1

i+1 , for i ∈ [n− 1].

5. σn−1 + σn > 0 if and only if en−1

n−1 + en
n < 2n−1

n .

Proof: Θ is a bijection since φ is. Note that σi < 0 if and only if ei ≥ i which proves 1. and 2.

3. It is not too hard to see that it is sufficient to verify this claim for all σ ∈ B2. See Table 1.

σ ∈ B2 e ∈ IB2 AscD e ascD e
(1,2) (0,0) { } 0
(-1,2) (1,0) { } 0
(2,1) (0,1) {1} 1
(-2,1) (1,1) {0} 1
(2,-1) (0,2) {1} 1
(-2,-1) (1,2) {0} 1
(1,-2) (0,3) {0, 1} 2
(-1,-2) (1,3) {0, 1} 2

Tab. 1: An example of the bijection for n = 2.

4. To prove this claim, we consider four cases, based the signs of σi and σi+1.
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(a) If σi > 0 and σi+1 > 0. Then ei = ti < i and ei+1 = ti+1 < i + 1. By Lemma 4.2,
σi > σi+1 if and only if ti < ti+1, i.e, if and only if ei < ei+1. By Proposition 4.3, this is
equivalent to ei/i < ei+1/(i+ 1).

(b) If σi < 0 and σi+1 < 0. Then ei = 2i−1−ti and ei+1 = 2(i+1)−1−ti+1. Now σi > σi+1

if and only if |σi| < |σi+1|, which, applying Lemma 4.2, is equivalent to ti ≥ ti+1.

If ti ≥ ti+1,

ei
i
= 2− ti + 1

i
≤ 2− ti+1 + 1

i
< 2− ti+1 + 1

i+ 1
=

ei+1

i+ 1
.

On the other hand, if ti < ti+1, then ti + 1 ≤ ti+1 and by Proposition 4.3, ti+1/i < (ti+1 +
1)/(i+ 1), so

ei
i
= 2− ti + 1

i
≥ 2− ti+1

i
> 2− ti+1 + 1

i+ 1
=

ei+1

i+ 1
.

(c) If σi < 0 < σi+1. In this case, ei = 2i − 1 − ti and ei+1 = ti+1 ≤ i. Since ti ≤ i − 1,
ei ≥ 2i− 1− (i− 1) = i. Thus we have

ei
i
≥ 1 >

i

i+ 1
≥ ei+1

i+ 1
.

(d) If σi > 0 > σi+1. In this case, ei = ti < i and ei+1 = 2(i + 1) − 1 − ti+1. Since ti+1 ≤ i,
ei+1 ≥ 2(i+ 1)− 1− (i) = i+ 1. Thus we have

ei
i
< 1 ≤ ei+1

i+ 1
.

5. The proof of this claim is a tedious case analysis which we defer to the full paper. We make use of
the fifth claim only at the end of the paper where we propose an inversion sequence characterization
of the type D affine Eulerian polynomials.

2

Proof of (6) in Proposition 3.2: Follows from Theorem 4.5 (parts 1 and 4). 2

Remark 4.6 The bijection Θ is different from the one given in (Pensyl and Savage, 2013).

Proof of Proposition 4.1: Follows from Theorem 4.5 (parts 3 and 4). 2

For example, for n = 2, from Table 1, T2(x) = 2 + 4x+ 2x2 = 2D2(x), as expected.
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5 A recurrence for refined Eulerian polynomials
The inversion sequence representation of E(s)

n (x) and Tn(x) allows us to refine these polynomials as
follows. Let χ(P ) = 1 if P is true and let χ(P ) = 0, otherwise. Define

E
(s)
n,i (x) =

∑
e∈I(s)n

χ(en = i) · xasc e , (8)

Tn,i(x) =
∑
e∈IBn

χ(en = i) · xascD e . (9)

Clearly, E(s)
n (x) =

∑si
i=0E

(s)
n,i (x) and Tn(x) =

∑2n−1
i=0 Tn,i(x). We have the following recurrences.

Proposition 5.1 Let s = {si}∞i=1. For n ≥ 1 and 0 ≤ i < sn+1,

E
(s)
n+1,i(x) =

dni/(n+1)e−1∑
`=0

xE
(s)
n,`(x) +

sn−1∑
`=dni/(n+1)e

E
(s)
n,`(x),

with initial conditions E(s)
1,0(x) = 1 and E(s)

1,i (x) = x for 0 < i < s1.

Proof: Omitted. 2

Proposition 5.2 For n ≥ 2 and 0 ≤ i < 2(n+ 1),

Tn+1,i(x) =

dni/(n+1)e−1∑
`=0

xTn,`(x) +

2n−1∑
`=dni/(n+1)e

Tn,`(x),

with initial conditions T2,0(x) = 2, T2,1(x) = T2,2(x) = 2x, and T2,3(x) = 2x2.

Proof: The initial conditions can be checked from the Table 1. For n ≥ 2 and e = (e1, . . . , en+1) ∈ IBn+1

with en+1 = i, let ` = en. Then by the definition of the type D ascent set, n+ 1 ∈ AscD e if and only if
`/n < i/(n+ 1) or, equivalently, whenever 0 ≤ ` ≤ dni/(n+ 1)e − 1. So,

xascD e =

{
x1+ascD(e1,...,en) if 0 ≤ ` ≤ dni/(n+ 1)e − 1
xascD(e1,...,en) if dni/(n+ 1)e ≤ ` < 2n.

2

In Section 7, we will show that Tn,i(x) has real roots for all 0 ≤ i < 2n and so also does Tn(x).

6 Preserving real-rootedness via compatible polynomials
A classical way to show that a recurrence given by a linear combination of two polynomials preserves
real-rootedness is to show that the roots of the two polynomials interlace. We say that two real-rooted
polynomials f(x) =

∏deg f
i=1 (x−xi) and g(x) =

∏deg g
j=1 (x−ξj) interlace if their roots alternate, formally,

· · · ≤ x2 ≤ ξ2 ≤ x1 ≤ ξ1.
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Note that this requires the degrees to satisfy the following inequalities: deg f ≤ deg g ≤ deg f + 1. In
particular, the order of polynomials is important.

Interlacing implies real-rootedness by the following theorem.

Theorem 6.1 (Satz 5.2 in Obreschkoff (1963)) Let f, g ∈ R[x]. Then f and g interlace if and only if
their arbitrary linear combination, c1f(x) + c2g(x) for all c1, c2 ∈ R has only real roots.

Unfortunately, the interlacing property cannot be extended to linear combinations of more than two
polynomials (as pointed out in Chudnovsky and Seymour (2007)). So, instead, we will be working with a
weaker property, called compatibility, that can be defined for an arbitrary number of polynomials. In fact,
these properties are closely related as we will see in Lemmas 6.2 and 6.4.

Following Chudnovsky and Seymour (2007), we call a set of polynomials f1, . . . , fm ∈ R[x] com-
patible if their arbitrary conic combination, i.e.,

∑
i cifi(x) for ci ≥ 0, has real roots only. We say that

f1, . . . , fm are pairwise compatible if fi and fj are compatible for all 1 ≤ i < j ≤ m. Several useful
properties of compatible polynomials were summarized in the following lemma.

Lemma 6.2 (3.6 in Chudnovsky and Seymour (2007)) Let f1(x), . . . , fk(x) be polynomials with posi-
tive leading coefficients and all roots real. The following four statements are equivalent:

• f1, . . . , fk are pairwise compatible,

• for all s, t such that 1 ≤ s < t ≤ k, the polynomials fs, ft have a common interlacer,

• f1, . . . , fk have a common interlacer,

• f1, . . . , fk are compatible,

where f and g have a common interlacer if there is a polynomial h such that h and f interlace and also
h and g interlace.

Next we give a transformation that maps a set of compatible polynomials to another set of compatible
polynomials under the following conditions.

Theorem 6.3 Given a set of polynomials f1, . . . , fm ∈ R[x] with positive leading coefficients that satisfy
for all 1 ≤ i < j ≤ m that

(a) fi(x) and fj(x) are compatible, and

(b) xfi(x) and fj(x) are compatible

define another set of polynomials g1, . . . , gm′ ∈ R[x] by the equations

gk(x) =

tk−1∑
`=0

xf`(x) +

m∑
`=tk

f`(x), for 1 ≤ k ≤ m′

where 0 ≤ t0 ≤ t1 ≤ . . . ≤ tm′ ≤ m. Then, for all 1 ≤ i < j ≤ m′ we have that

(a’) gi(x) and gj(x) are compatible, and

(b’) xgi(x) and gj(x) are compatible.
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Proof: We first show (a’), i.e., that the polynomial cigi(x)+ cjgj(x) has only real roots for all ci, cj ≥ 0.
By the definition of gi(x), gj(x) and the assumption that ti ≤ tj it is clear that

cigi(x) + cjgj(x) =

ti−1∑
α=0

(cix+ cjx)fα(x) +

tj−1∑
β=ti

(ci + cjx)fβ(x) +

m∑
γ=tj

(ci + cj)fγ(x),

that is, cigi(x) + cjgj(x) can be written as a conic combination of the following polynomials, which we
group into three (possibly empty) sets:

{xfα(x) : 0 ≤ α < ti} ∪ {(ci + cjx)fβ(x) : ti ≤ β < tj} ∪ {fγ(x) : tj ≤ γ ≤ m} .

Therefore, it suffices to show that these m polynomials are compatible. In fact, by Lemma 6.2, it is
equivalent to show that they are pairwise compatible. This is what we do next.

First, two polynomials from the same sets are compatible by (a). Secondly, a polynomial from the first
set is compatible with another from the third set by (b), since α < γ. To show compatibility between a
polynomial from the first set and one from the second, we need that axfα(x)+ b(ci+ cjx)fβ(x) has only
real roots for all a, b, ci, cj ≥ 0 and α < β. Note that this expression is a conic combination of xfα(x),
xfβ(x), and fβ(x). Since α < β, these three polynomials are again pairwise compatible by (a) and (b)
(and the basic fact the f(x) and xf(x) are compatible), and hence compatible, by Lemma 6.2. Finally,
the compatibility of a polynomial in the second set and one in the third set follows by a similar argument,
exploiting the fact that, xfβ(x), fβ(x), and fγ(x) are pairwise compatible for β < γ.

Now we are left to show (b’), that xgi(x) and gj(x) are compatible for all i < j. Similarly as before,
cixgi(x) + cjgj(x) is real-rooted for all ci, cj ≥ 0 if

{x(cix+ cj)fα(x) : 0 ≤ α < ti} ∪ {(ci + cj)xfβ(x) : ti ≤ β < tj} ∪ {(cix+ cj)fγ(x) : tj ≤ γ ≤ m}

is a set of compatible polynomials. This follows from analogous reasoning to the above. Two polynomials
from the same subsets are compatible by (a). Considering one from the first and one from the third:
xfα(x) and fγ(x) are compatible by (b). Similarly, x2fα(x), xfα(x), and xfβ(x) are pairwise compatible
which settles the case when we have a polynomial from the first and one from the second subset. Finally,
xfβ(x), xfγ(x), and fγ(x) are compatible, settling the case of one polynomial from the second subset
and one from the third. 2

Proof of Theorem 3.1: We use induction on n. When n = 1, for 0 ≤ i ≤ j < s1, (E(s)
1,i (x), E

(s)
1,j (x)) ∈

{(1, 1), (1, x), (x, x)} and thus (xE
(s)
1,i (x), E

(s)
1,j (x)) ∈ {(x, 1), (x, x), (x2, x)}. Clearly, each of the

pairs of polynomials (1, 1), (1, x), (x, x), (x2, x), is compatible. From Proposition 5.1 we see that the
polynomials E(s)

n,i (x) satisfy a recurrence of the form required in Theorem 6.3, hence, by induction, they

are real-rooted for all 0 ≤ i < 2n. In particular, E(s)
n (x) has only real roots for n ≥ 1 (and arbitrary

sequence s).
2

6.1 Connection to interlacing
The condition of Theorem 6.3 can be simplified since our polynomials have positive coefficients.
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Lemma 6.4 Let f, g ∈ R[x] be polynomials with positive coefficients. Then the following are equivalent:

• f(x) and g(x) are compatible, and xf(x) and g(x) are also compatible.

• f(x) and g(x) interlace.

Proof: Let nf (x0) denote the number of roots of the polynomial f in the interval [x0,∞). There is an
equivalent formulation for both compatibility and interlacing in terms of this notion. First, f and g are
compatible if and only if |nf (x0) − ng(x0)| ≤ 1 for all x0 ∈ R (see 3.5 in Chudnovsky and Seymour
(2007)). Secondly, by definition, f and g interlace, if and only if 0 ≤ ng(x0) − nf (x0) ≤ 1 for all
x0 ∈ R. We also have that nxf (x0) = nf (x0) + χ(x0 ≤ 0). Therefore, the following equivalence settles
the lemma (since all roots of f and g are nonpositive, we can assume that x0 ≤ 0):

|nf (x0)− ng(x0)| ≤ 1 and |nf (x0) + 1− ng(x0)| ≤ 1⇐⇒ 0 ≤ ng(x0)− nf (x0) ≤ 1 .

2

Remark 6.5 Lemma 6.4 appeared (without a proof) as Lemma 3.4 in Wagner (2000).

7 The Eulerian polynomials of type D have only real roots
Now we are in position to prove Conjecture 1.1.

Theorem 7.1 For n ≥ 2, the polynomial Tn(x) has only real roots. In fact, for 0 ≤ i < 2n, Tn,i(x) has
only real roots.

Proof: Clearly, T2(x) = 2(x + 1)2 has only real roots, but T2,0(x) = 2, T2,1(x) = T2,2(x) =
2x, T2,3(x) = 2x2 fail to be compatible. Using the recurrence given in Proposition 5.2 we can com-
pute Tn,i for n = 3. It is easy to check that T3,0 = 2(x+1)2, T3,1(x) = 2x(x+3), T3,2(x) = T3,3(x) =
4x(x + 1), T3,4(x) = 2x(3x + 1), T3,5(x) = 2x(x + 1) are compatible polynomials—hence T3(x) has
only real roots—but xT3,0(x) and T3,1(x) do not interlace and thus they don’t satisfy the assumption
needed for Theorem 6.3. However, iterating one more time, we obtain the following polynomials.

T4,0(x) = 2(x+ 1)(x2 + 10x+ 1) {−9.899,−1,−0.101}
T4,1(x) = 4x(x+ 1)(x+ 5) {−5,−1, 0}
T4,2(x) = 2x(3x2 + 14x+ 7) {−4.097,−0.569, 0}
T4,3(x) = 2x(5x2 + 14x+ 5) {−2.380,−0.420, 0}
T4,4(x) = 2x(5x2 + 14x+ 5) {−2.380,−0.420, 0}
T4,5(x) = 2x(7x2 + 14x+ 3) {−1.756,−0.244, 0}
T4,6(x) = 4x(x+ 1)(5x+ 1) {−1,−0.2, 0}
T4,7(x) = 2x(x+ 1)(x2 + 10x+ 1) {−9.899,−1,−0.101, 0}.

One can check the roots explicitly (approximate values are given above for the reader’s convenience) to
see that T4,i(x) and T4,i+1(x) interlace for all 0 ≤ i ≤ 6. By Lemma 6.4, this means that the polynomials
T4,0(x), . . . , T4,7(x) are compatible and also that xT4,i(x) and T4,j(x) are compatible for 0 ≤ i < j ≤ 7.
Therefore, by induction on n, and successive applications of Theorem 6.3 we get that for all n ≥ 4,
{Tn,i(x)}0≤i≤2n−1 is a set of pairwise interlacing polynomials. In particular, this implies that they are
compatible, hence Tn(x) has only real roots for all n ≥ 4 as well. 2
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8 Further implications: real-rooted affine Eulerian polynomials
Dilks, Petersen, and Stembridge (2009) recently defined Eulerian-like polynomials associated to irre-
ducible affine Weyl groups and proposed two companion conjectures to Brenti’s conjecture. In this sec-
tion, we prove one of them. The affine Eulerian polynomial of type B is defined in (Dilks et al., 2009,
Section 5.3) as the generating function of the “affine descents” over the corresponding finite Weyl group,
Bn,

B̃n(x) =
∑
σ∈Bn

xd̃esBσ,

where for a signed permutation σ = (σ1, . . . , σn) ∈ Bn the affine descent statistic is computed as

d̃esBσ = χ(σ1 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn−1 + σn > 0).

We now prove Conjecture 1.2. Notice the affine Eulerian polynomial of type B is intimately related to the
type D Eulerian polynomial in the following way.

Theorem 8.1 For n ≥ 2,
B̃n(x) = Tn+1,n+1(x) ,

where Tn,i(x) is the refined Eulerian polynomial of type D defined in (9).

Proof: It is easy to see, under the involution (σ1, . . . , σn) 7→ (−σn, . . . ,−σ1), that d̃esB has the same
distribution over Bn as the statistic

s̃tatBσ = χ(σn > 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σ2 + σ1 < 0).

From Theorem 4.5 part 3 it follows that σ2 +σ1 < 0 is equivalent to e1 + e2/2 > 3/2 and from part 2 we
have that σn > 0 if and only if en < n. Note that en < n is equivalent to en/n < 1 = (n+ 1)/(n+ 1).
So, B̃n(x) = Tn+1,n+1(x). 2

Corollary 8.2 For n ≥ 2, B̃n(x) has only real roots.

Proof: Follows from the fact that Tn,i(x) have only real roots (see Theorem 7.1). 2

We should mention that there is an analogous conjecture for type D which remains unsolved.

Conjecture 8.3 (Dilks et al. (2009)) Let

d̃esDσ = χ(σ1 + σ2 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn−1 + σn > 0) .

Then the affine Eulerian polynomial of type D ∑
σ∈Dn

xd̃esD

has only real roots.

By Theorem 4.5 (parts 2, 4 and 5) we can at least express the type D affine Eulerian polynomial in terms
of ascent statistics on inversion sequences.
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Corollary 8.4 The type D affine Eulerian polynomial satisfies

2
∑
σ∈Dn

xd̃esDσ =
∑
e∈IBn

xãscDe,

where the type D affine ascent statistic is given by

ãscDe = χ

(
e1 +

e2
2
≥ 3

2

)
+

∣∣∣∣{i ∈ [n− 1] :
ei
i
<

ei+1

i+ 1

}∣∣∣∣+ χ

(
en−1
n− 1

+
en
n
<

2n− 1

n

)
.
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