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We compute the Lyndon factorization of the Thue—Morse word. We also compute the Lyndon factoxif dwon
related sequences involving morphisms that give rise to new presentations of these sequences
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1 Introduction

Some attention has recently been given to tredon factorization of infinite words [16], [10], [12]. These
works are themselves related to the earlier works by Reutenauer [d ¥paricchio [17], concerned with
unavoidable regularities and semigroup theory.

The results we present here reinforce those in [10] and [12], and give an additionahtpplaf the
general Lyndon factorization theorem for infinite words ([16, Theorem 2.4]; see [11] for a gergraliza
In [10] we explicitely compute the Lyndon words appearing in the factorization of Starmomds and
identify them as Christoffel primitive words (a result obtained differehthBerstel and de Luca [3]). In
this paper, we concentrate on the Thue—Morse word and give the computation of its lfgnttoization
(Theorem 3.1) and describe some of its properties (Corollary 3.2, Remark 3.3 and Corollary 3.4jh-Incide
tally, we are able to compute the factorization for the ‘dual’ Thue—Morse word in wiigkas an infinite
Lyndon word (cf Theorem 3.7). We also look at relatives (Equations (4) and (6)) of the Thue—Morse word
from the same point of view; these were first studied in [7] and [4], and later in [1]. Therizations
given here for these infinite words (cf Theorems 4.6 and 4.7) use morphisms having specialgzopert
with respect to Lyndon words. Moreover, we give identities involving these morphisms for these infinite
words.

2 Basic Results and Notations

The notations used are those usual in theoretical computer science (cf [8]). Throughout thepaise
the alphabetd = {a, b}, totally ordered by < b, and we denote byi* the set of all words with the
lexicographical order.
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2.1 Lyndon words

Let L denote the set of Lyndon words ovér they are words strictly smaller than any of their proper non
empty right factors. For instance, letters are Lyndon wordsgéngzb, abb are Lyndon words ifi, b € A
satisfya < b. More generally, given two Lyndon wordsv € L, we haveuv € L iff u < v. The central
result about Lyndon words is Lyndon’s factorization theorem:

Theorem 2.1 ([5]) Any non-empty words € A* is a unique non-increasing product of Lyndon words:
w=4~ - Ly,witht; e L(i=1,...,n)andl; > - > {,.

For a proof, see [8]. The expression of a Lyndon word as an increasing product of two Lyndon words
may not be unique. For example, we hangabb = (a)(ababb) = (aab)(abb) = (aabab)(b). Given
w € L, definew” to be thelongestright factor ofw qualifying as a Lyndon word. Denote hy' the
unique left factor ofw such thatw = w’w”. Then we havev’,w” € L andw’ < w < w”. Thus, we
have e.g(aababb)’ = a, (aababb)” = ababb.

Proposition 2.2 (cf [8, Prop. 5.1.4])Letu = v'v’ € L andv € L be Lyndon words such that < v.
Then the factorizationv is standard (i.e(uv)’ = u, (uv)" = v) iff «” > v.
2.2 Infinite Lyndon Words

Siromoneyet al. [16] have extended Lyndon’s theorem to (right) infinite words. They define an infinite
words = agay - - - to be aninfinite Lyndon wordf an infinite number of its left factors qualify as Lyndon
words. For instance, the infinite wordbb - - - = lim,, ab™ is an infinite Lyndon word; more generally,
givenu, v € L with v < v the infinite wordlim,, uv™ is an infinite Lyndon word. The central result in
[16] is:

Theorem 2.3 ([16, Theorem 2.4])Any infinite words factorizes uniquely into one of the following forms:
o either there exists an infinite non-increasing sequence of finite Lyndon Woigs , such that:

s =ALoly - 1)
e or there exist finite Lyndon words, . . . , ¢,,_1 (m > 0) and an infinite Lyndon worélsuch that:
SIE()"'Em_lt, Wlthgozzgm_1>t (2)

Remark 2.4 In [17], the author implicitely shows the existence of the Lyndon factorization of type (1)
for certain infinite words. This work, as well as [13], is related to the stfdynavoidable regularities in
infinite words. This is echoed by results in [10, Sect. 4] and [11].

2.3 Morphisms and Lyndon Words

This last subsection contains a proposition we shall need in the sequel. It formulates a condition for a
morphisms to preserve Lyndon words and lexicographical order.

Proposition 2.5 Let A = {a < b} andZ be finite alphabets. Suppoge A* — Z* is a morphism given
byf#(a) = a™b? andd(b) = a™b? with a™b? < a™bq.

Thend is strictly increasing overd*. Moreover,d sends Lyndon words to Lyndon words and preserve
their standard factorizations. That is, given € L(A4), we haved(w) € L(B) andf(w) = #(v'),
O(w)” = 0(w").

As a consequence, the seque(®¥b)), >, forms a strictly decreasing sequence of Lyndon words.
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Remark 2.6 The last statement of Proposition 2.5 has a geometrical interpretatieachdyndon word

is associated a (planar rooted) binary tree having its leaves latislliedters. Indeed, the tree associated
with w € L is either a single vertex labelled hyif w = a € A, or is formed of a left tree associated
with w’ and a right tree associated witl. Hence, for a morphisi to preserve standard factorization
means that the tree structuredgts) is obtained from that ofy by attaching to a leave labelled bythe
tree associated witf{a) (see Fig. 1).

Fig. 1: Computing the image afbabb unders (preserving standard factorization).

Proof of Proposition 2.5That? is strictly increasing over* is easy. An induction then allows to show
6(L) C L since any Lyndon word is an increasing product of two Lyndon words of smaller length. The
last part of the propositionis proved using Prop. 2.2. The last part of the statenoberi |

3 Factorizing Thue—Morse’s Word

In this section, we give the computation of the Lyndon factorization (1) for the Thue—Morse \wetrd.
A = {a,b} and setuy = a andvy = b. Define for alln > 1, u, = up—19,—1 @ndv, = vy_1Up_1.
Hence,u; = ab, vy = ba, us = abba, vo = baab, and so on. The sequente, ), >, converges to a
unique infinite wordu, called the Thue—Morse word (ovét, b}). This infinite word possess numerous
interesting properties (cf [8, Chap. 2]), and has been studied by a large number of autharterdstad
reader is refered to (the bibliography of) the survey by Berstel [2]. The wardsay alternatively be
obtained using a morphism we denate A* — A*, defined bya(a) = ab anda(b) = ba. One then
findsu, = a(u,_1), foralln > 1. Iteratinga to infinity leads tox = lim,,—, ., @™ (a); this is equivalent
to the fact thaj: is a fixed-point ofa.

Recall that ifu € A* anda € A then the expressiona~! consists in deleting the lagtin « (if
possible). Our main result concerning the Thue—Morse word is:

Theorem 3.1 Letw; = abb, wy = ab, and for alln > 2, w,41 = aa(w,)a™t. The words(wy, )n>1
form a strictly decreasing sequence of Lyndon words, and we have:

w= T wn 3)

n>1
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The following corollary is a straightforward consequence of a general result concerning the Lyndon
factorization of infinite words. See [10, Proposition 15].

Corollary 3.2 Equation 3 shows that the Thue—Morse waris w-divided.

Remark 3.3 For alln > 2, the wordw,, is a conjugate of.,,_; (and ofv,_;). This is straightforward
from the definition forw,, in terms ofu,,_1, sincea(u,_1) = uy.

As a consequence of Theorem 3.1, we obtain a second recursive construction for thevyvdinds
does not use the morphism This result was announced in [10] (without proof). We prove it here for
sake of completeness.

Corollary 3.4 Forall n > 2, we havew,, = (w,_1b71)wy -+ wy_s.

We must first observe that it makes sense to compytie ! since every words,, ends withb, as
follows from their definition given in Theorem 3.1.
We proceed byriduction and compute, for > 1:

Wpy1 = aoz(wn)a_1
= aa((Wp_1b”)wy - -wp_a)a -1
= aa(un1)(ba) La(wi)ales) - aluwn_s)a!

(

)a” )b a(wi)a(ws) - - a(wn_z)a
ac(wp—1)a” 1)b 1(abbaba)(abba) a(wy_2)a -1

_1)a” 1)b 1(abb)( )(aabba)~~~a(wn_2)a_1

_1)a” 1)b 1(abb)( )(wga)oz(wg)a_lw~~aa(wn_2)a_1
aa(w,ll 1)a 1)b 1(abb)(ab)w3(aa(w3)a_1)~~~(aa(wn_2)a_1)

Wb wrwy - wp 1

Proof of Theorem 3.1First observe that i, ends with &, then the last letter of (w,,) is equal toa. So
we may compute (w,, )a~', showing thatu,, is well defined for all > 1. To show thaj: is obtained by
the infinite product expansion (3) we only have to verify thit. , w, is kept fixed by. We have:

a(H wy) = «alabb) H a(wy)

n>1 n>2

= (abb)(ab)a [ ] e(wn)

n>2

= wiws H aa(wy)a
n>2

= wwz [[wn =[] w,

n>3 n>1

Now, we need to show thatv(w,, )a~! form a decreasing sequence of Lyndon words. Observe first that
« isincreasing, since(a) and«(b) have the same length anda) < «(b). Hence, assuming,, > w11
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forn > 1, we finda(w,) > a(ws41) from which followsw,, 11 = aa(wy)a™ > aa(wpi1)a™ =
wy42. Hence the sequence,, ), > is decreasing.

Again, we use the fact that is increasing to show by induction that, (» > 1) is a Lyndon word.
This holds true forw,, ws. By virtue of Remark 3.3, we know that, is a conjugate of,,_;. Since
Lyndon words are minimal representatives of their conjugacy classes, assume elgubt the least
element of the conjugacy class @f_; is w,. Now, observe that the elements of the conjugacy class
for u, = a(u,—1) are of the forma(v), aa(v)a=!, ba(v)b~! wherev is a conjugate ofi,, since
|a(a)| = |a(b)| = 2. So we deduce that the least element among these(iga~! wherew is the least
element of the conjugacy class fo. This shows thatv,.; = aa(w,)a=! is a Lyndon word. That

concludes the proof of Theorem 3.1. O

Remark 3.5 The idea of using the pattein, ;1 = aa(w,)a~! for proving Theorem 3.1 was suggested
tous by G. &hizergues, who happened to read a first version of the manuscript. This idea mpioiie@
to obtain the factorization for the ‘dual’ Thue—Morse word, naniély, v,, (see the next remark).

Remark 3.6 Note that we could have set > b; this would amount to imposing oA* the inverse
lexicographical order. Note that, for all> 0, v, is obtained fromy,, by exchanging:'s andb’s. Hence,
the factorization ofu,, using the total ordet > b is directly obtained from that of, with a < b. The
next theorem fully answers the question just raised.

Theorem 3.7 Let w; = aeb and and for alln > 1, w,41 = aa(w,)a™t. The words(w, ), >1 form a
stricly increasing sequence of Lyndon words such thats a left factor ofw,,+,. Thus,( = lim,, w,, IS

an infinite Lyndon word, and we hawé = «(¢). Moreover, the factorization of the ‘dual’ Thue—Morse
word is of type (2) and i&m,, v,, = bL.

Proof. That(w,),>1 is an increasing sequence of Lyndon words is proved as in Theorem 3.1w,Jhat
is a left factor ofw,, 1, is a property gained from the morphisim So, we may indeed define the limit
¢ = lim, w, which is by definition an infinite Lyndon word (cf. Sect. 2.2). The identity= o(¢)

is equivalent to/ = a~a(¢), which comes at once from the definition far To show that we have
lim,, v,, = b¢, we verify that the latter is kept fixed ky. We have:

albl) = afb lim wy,)
n—o00
= ba nh_}n(}o a(wy)

= b nh_}n(}o ac(wy)

_ ~ -1
= bnli}H;o aa(wy)a

= bnli}H;o Wp41 = bL

Remark 3.8 Another proof of Theorem 3.1 proceeds bgliiction and first computes the Lyndon factor-
ization of all«,, (and allv,). It then exploits the fact that these factorizations stabilize, i.e. fivey
a converging sequence of finite decreasing sequence of Lyndon words. This proof we first developed
enabled us to obtain the exact number of factors occuring in the factonfatiu,, (andv,,).

More precisely, itis possible to show that the wotgdactorize as a decreasing producp6i ) Lyndon
words,u, = wi - --w  wherep(n) = 3k — 1if n = 2k andp(n) = 3k if n = 2k + 1, and thaw] ~'
andw} coincide fori = f ...,n — 2. For more details, the reader is referred to [6].
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Remark 3.9 There exists a generalization of the Thue—Morse word over an arbitrary finite alphabet
We define it here over the three letters and refer the interested rea@r efine three sequence of
words by setting:y = a, vo = b, wy = c ANAUp 41 = UK VLW, Vpgl = UpWpln, Whil = WyllyUp.
Then the wordy = lim,, u,, is the Thue—Morse word ovdi, b, c}. It may also be obtained as the limit
lim,, & (a), wherea is the morphism sending— abe, b — bea ande — cab.

It is natural to look at the Lyndon factorization for this general Thue—Morse word. However, the
problem of describing this factorization is still open. Indeed, our teclasqlid not enable us to obtain
any result as for the two letter case.

4 Factorization and Properties of Thue—Morse’s Relatives

In this section, we give a complete description of the Lyndon factorizatiow@frfinite wordsd and
obtained from infinite bi-valued sequend@s ), >0 and(x, ), >o related to the Thue—Morse word. These
were first studied in [7] and [4], and later in [1].

Definition 4.1 ([7]) Letc = (¢n)n>0, ¢n € N, be defined inductively by, = 1 and:

- en+1life, +1/2¢ ¢
ntl = ¢, + 2 otherwise

Thus,c = 1, 3,4,5,7,9, 11, 12, 13,.. Equivalently,c is the lexicographically least sequence of
positive integers satisfying € ¢ implies2n ¢ ¢ (cf[1]). Note that the difference between two consecutive
terms in the sequenceds;; — ¢, = 1 or 2. Hence, we may define:

Definition 4.2 Letd = dqd; - - - denote the infinite word defined by
dp, = Cny1 — Cn (4)

Hence, we have = 21122211211211222 ---. The link between this sequence gnds given by the
following result:

Theorem 4.3 ([1, Theorem 4])The Thue—Morse word has a coding:
0= adopdigdpds . .. (5)

The sequencgd, ), >0 and the coding given in Equation 5 appeared for the first time in [4]. In[1], itis
proved thatl,, = ¢,+1 — ¢,,. The sequencemay also be studied by means of its characteristic function
(or sequence) we now define.

Definition 4.4 Let(x,),>1 denote theharacteristisequence of (overN*). That is, we define

[ 0ifnéde
X”_{lianc (6)

forall n > 1. We then define the infinite woxdby settingy = xoxi1x2 - - -

Hence, we havg = 1011101010111 - - -. We will make use of a result borrowed from [1].
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Lemma 4.5 ([1, Lemma 2])The infinite wordy is completely determined by the following conditions:

Xont1 =1
Xant2 =0 (7)
X4n = Xn

We define two morphisms : {1,2}* — {0,1}* andy : {1,2}* — {1,2}* by setting3(1) = 01,
£(2) = 0111, andy(1) = 112 and~(2) = 11222. Note that, by virtue of Proposition 2.5, baghand~y
preserve the lexicographical order din and send Lyndon words to Lyndon words. As a consequence,
we are able to show thatis, except for its first letter, a morphic imagedfAs we will see, that is in fact
a consequence of [1, Lemma 2] (Lemma 4.5 above). We have the following theorems:

Theorem 4.6 Consider the sequence of wor@ds, ),,>o With so = 2, 5,41 = 7(s,) (n > 0). The words
(sn)n>o form a strictly decreasing sequence of Lyndon words and we have:

d= HS” (8)

n>0
Moreover, this infinite product expansion féimpliesd = 2v(d).

Theorem 4.7 Consider the sequence of words ),,>o witht, = 1 andt,, = 3(s,) (n > 0). The
words(t, ), >0 form a strictly decreasing sequence of Lyndon words and we have:

X = th (9)

n>0
Moreover, this infinite product expansion feiimpliesy = 15(d).

Remark 4.8 Theorems 4.7 and 4.6 should be looked at from a point of view developed in [15], where the
author answers a question asking for conditions for the characteristic word of a sequbadhé image
of a fixed point of a morphism.

Define the sequence of integers = (m;);>o With mg = 1 andm,, ;1 = 4m,, + 1, hence we have
m = 1,5, 21,85, .. Let(w,),>0 be the unique consecutive factorsdfstarting withw, = dy = 2
defined byw, 11 = dmgt 4ma+1 - Dot +mp+mag » Satistyinglw, | = m,. Hence, we have, =
2,wy = 11222, ws = 112112112221122211222, . ..

Proposition 4.9 We have, for anyt > 0, wp+1 = Y(wy, ).

As we will see, this proposition is a consequence of Equation (7). First, observe that by definitjon of
we have for anyw € A*,

Y(w)li = 2(lwls + |w]2)
)l =l + 3l (10)
Then observe that, sineg, = 2, we may show by induction that" (wg)|: = |y" (wo)|1 + 1 and

|[¥*(wo)| = m,. Recall from Equation (4) that for any, the letterd,, is determined by the difference
¢nt1 — cn. Moreover, we have,; = (3., di) +1 = (3_i_,cit1 — ¢i) + 1. Hence, itis natural to
think of the letterd,, as corresponding to the integer, 1. Any integerm € ¢ is of the formm = ¢ for
a givenk > 0. We denote this unique integer by’ (m). So for instances=!(3) = 1,¢~!(4) = 2 and
C_1(5) =3; hencedc_l(S)_l =dy =2, anddc_1(4)_1 =d; = dc—1(5)_1 =ds; = 1.
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Lemma4.10 Letn > 0. Suppose first that, = ¢,+1 — ¢, = 1. Thende, € ¢, butde, + 2 &€ c.
Consequentlyl.-1(4c,)—1 = de-1(4c,41)—1 = L ANAdo—1 (4, 43)-1 = 2.

Suppose now thal, = ¢,,+1 — ¢, = 2. Therde,, € ¢, butde, +2, 4¢, +4, 4c, +6 & ¢. Consequently,
de=1(ac,)=1 = de=1(ac,+1)—1 = L @NAde—1(4c, 18)—1 = de=1(4c,45) = de=1(4c,4+7) = 2-

Supposel,, = 1. That4c,, € c follows from the fact thae,, ¢ ¢, sincec,, € ¢. Thatde,, + 2 € cis
given by Equation (7). Thatc,, — 1, 4¢, + 1, 4n + 3 € ¢ follows from the fact that contains every odd
integer. Hence the integets,, — 1, 4c,,4c, + 1,4c, + 3 are consecutive terms in Hence, we have
de=1(4¢,)=1 = de=1(ac,+1)—1 = L @Nddo-1(4c, 43y-1 = 2.

Suppose now that, = 2. Again, we havelc, € c. Thatde,, + 2,4¢, + 6 ¢ ¢ follows from Equa-
tion (7). Observe that,,1 — ¢, = 2 implies thate,, + 1 ¢ ¢, hencee,, +2 € ¢ s04e, +4 € c.
Thatdc, + k € cfor k = —1,1,3,5,7 follows from the fact that they all are odd. Hence, the in-
tegerde, — 1,4c,,4c, + 1,4c, + 3,4c, + 5,4c, + 7 are consecutive terms in Hence, we have

de=1(4c,)=1 = de=1(4c,+1)—1 = LANAde—1(4c 43)—1 = de=1(ac, +5)=1 = de=1(4c,47)=1 = 2.

Proof of Proposition 4.9We first associate to any integer a subsequencg(c,, ) of ¢ by setting:

s S(en) = {4e, — 1,4cp, 4 + 1,4, + 3} ifcpypr — e =1
“n 7 {de, —1,4cpn, 4en + 1, 4en + 3, 4c,, + 5, 4c,, + T} otherwise

Observe thaf(c,) andS(c,+1) only have a single element in common, namely the greatest element of
S(cn) which is also the least element®&fc,, +1). This element is equal o, + 3 if ¢,,41 —c, = 1,and to
4¢p, 4+ 7 Otherwise, as is easily checked. This shows¢ha$(cg), S(c1), . . . coincides with:. Moreover,
associating te,,+; (n > 0) the letterd,,, we see that the mappiis nothing else but the morphisi
Indeed, supposé, = ¢,,+1 — ¢, = 1 then we haveS(c,,) = {4c, — 1,4¢p,4en + 1, 4c¢y, + 3}; the three
letter word associated with this subsequence, which is a factr®i12. The casel,, = 2 is similar.

We now define for all. > 0 a subsequench, of ¢. Putly = {¢o}, andl,11 = S(I,). We have
¢ = Iy, I1, ... ;thisfollows frome = ¢g, S(co), S(e1), ... Now, we claim that the number of elements
in I, (n > 0) is equal tom,, + 1. Indeed, this follows from the observation tifatoincides withy when
going frome to d. Hence, a simple induction counting the number of consecutive tefrmas; of I,
according to the value, 11 — ¢y = 1 Orcx41 — ¢ = 2 leads to a result identical with Equations (10).
This implies that the factor of associated witld,, is equal tow,,, since its lengthi$l,,| — 1 = m,,. This,
together with the previous observation tiSatoincides withy, concludes the proof of Proposition 4[9.

Proof of Theorem 4.6The first part of the statement follows directly from Proposition 2.5 applied to
and from Lemma 4.9. The last part of the statement is clear. |

Proof of Theorem 4.7The first part of the statement is also proved using Proposition 2.5. Next, we use
a technique similar to the one developed for the proof of Proposition 4.9.
We first associate to any integer a subsequencg(c,,) of consecutivéntegers by setting:

 {2en,2en+ 1} if g1 —en =1
en = Tlen) = { {20, 2¢n + 1,200 + 2,2 + 3} if Cpp1 — cn = 2
Observe tha¥ (c,) and7 (c,+1) are disjoint and that the greatest elemenf ¢¢,,) is one less than the
least element of (c,,+1). This shows that every integer except 1 appeais(iny), 7 (c1), . .. Moreover,
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associating te,,+; (n > 0) the letterd,,, we see that the mappirg is nothing else but the morphism
3. Indeed, the only integer ifi (¢, ) not belonging ta: is the least element &f (¢, ), namely2c,,. Let
us prove this claim. Supposk, = 1; then we have, 11 — ¢, = 1 and7 (c,) = {2¢n,2¢, + 1}
and2c¢, € ¢,2¢, + 1 € c is obviously true. Suppose no#, = 2. We obviously havee, ¢ ¢,
2¢, + 1,2¢, + 3 € ¢. Moreover, we havéc,, + 2 € ¢ sincee,, + 1 ¢ ¢ because,, 11 — ¢, = 2. The
equalityy = 18(d) is straightforward. This concludes the proof of Theorem 4.7. |
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