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Pattern-avoiding Dyck paths†
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Abstract. We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of
Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set
of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number
of Dyck paths covered by P , as well as for the number of Dyck paths covering P . We then address some typical
pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. Finally, we offer a conjecture
concerning the asymptotic behavior of the sequence counting Dyck paths avoiding a generic pattern and we pose a
series of open problems regarding the structure of the Dyck pattern poset.

Résumé. Nous proposons la notion d’un motif dans le contexte de chemins de treillis, et étudions le cas spécifique
des chemins de Dyck. Comme dans le cas des permutations, on obtient une structure de poset sur l’ensemble de tous
les chemins de Dyck, que nous appelons l’ensemble des chemins de Dyck partiellement ordonné selon le motif. Étant
donné un chemin de Dyck P , nous déterminons une formule pour le nombre de chemins de Dyck couverts par P ,
ainsi que pour le nombre de chemins de Dyck couvrant P . Nous énumérons ensuite les chemins de Dyck évitant
certaines catégories de motif. Enfin, nous proposons une conjecture asymptotique concernant le nombre de chemins
de Dyck évitant un motif générique et nous posons quelques problèmes ouverts concernants la structure du poset
etudié.
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1 Introduction
One of the most investigated and fruitful notions in contemporary combinatorics is that of a pattern.

Historically it was first considered for permutations [Kn], then analogous definitions were provided in the
context of many other structures, such as set partitions [Go, Kl, Sa], words [Bj, Bu], and trees [DPTW, Gi,
R]. Perhaps all of these examples have been motivated or informed by the more classical notion of graphs
and subgraphs. Informally speaking, given a specific class of combinatorial objects, a pattern can be
thought of as an occurrence of a small object inside a larger one; the word “inside” means that the pattern
is suitably embedded into the larger object, depending on the specific combinatorial class of objects. The
main aim of the present work is to introduce the notion of pattern in the context of lattice paths and to
begin its systematic study in the special case of Dyck paths.
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For our purposes, a lattice path is a path in the discrete plane starting at the origin of a fixed Cartesian
coordinate system, ending somewhere on the x-axis, never going below the x-axis and using only a
prescribed set of steps Γ. We will refer to such paths as Γ-paths. This definition is extremely restrictive if
compared to what is called a lattice path in the literature, but it will be enough for our purposes. Observe
that a Γ-path can be alternatively described as a finite word on the alphabet Γ obeying certain conditions.
Using this language, we say that the length of a Γ-path is simply the length of the word which encodes
such a path. Among the classical classes of lattice paths, the most common are those using only steps
U(p) = (1, 1), D(own) = (1,−1) and H(orizontal) = (1, 0); with these definitions, Dyck, Motzkin
and Schröder paths correspond respectively to the set of steps {U,D}, {U,H,D} and {U,H2, D}.

Consider the class PΓ of all Γ-paths, for some choice of the set of steps Γ. Given P,Q ∈ PΓ having
length k and n respectively, we say thatQ contains (an occurrence of) the pattern P whenever P occurs as
a subword of Q. So, for instance, in the class of Dyck paths, UUDUDDUDUUDD contains the pattern
UUDDUD, whereas in the class of Motzkin paths, UUHDUUDHDDUDHUD contains the pattern
UHUDDHUD. When Q does not contain any occurrence of P we will say that Q avoids P . In the
Dyck case, the previously considered path UUDUDDUDUUDD avoids the pattern UUUUDDDD.

This notion of pattern gives rise to a partial order in a very natural way, by declaring P ≤ Q when
P occurs as a pattern in Q. In the case of Dyck paths, the resulting poset will be denoted by D. It is
immediate to notice that D has a minimum (the empty path), does not have a maximum, is locally finite
and is ranked (the rank of a Dyck path is given by its semilength). As an example, we provide the Hasse
diagram of an interval in the Dyck pattern poset:

Observe that this notion of pattern for paths is very close to the analogous notion for words (considered,
for instance, in [Bj], where the author determines the Möbius function of the associated pattern poset).
Formally, instead of considering the set of all words of the alphabet {U,D}, we restrict ourselves to the
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set of Dyck words (so what we actually do is to consider a subposet of Björner’s poset). However, the
conditions a word has to obey in order to belong to this subposet (which translate into the fact of being a
Dyck word) make this subposet highly nontrivial, and fully justify our approach, consisting of the study
of its properties independently of its relationship with the full word pattern poset.

2 The Dyck pattern poset
In the Dyck pattern poset D, following the usual notation for covering relation, we write P ≺ Q (Q

covers P ) to indicate that P ≤ Q and the rank of P is one less than the rank of Q (i.e., rank(P ) =
rank(Q)− 1). Our first result concerns the enumeration of Dyck paths covered by a given Dyck path Q.
We need some notation before stating it. Let k + 1 be the number of points of Q lying on the x-axis (call
such points p0, p1, . . . , pk). Then Q can be factorized into k Dyck factors F1, . . . , Fk, each Fi starting
at pi−1 and ending at pi. Let ni be the number of ascents in Fi (an ascent being a consecutive run of U
steps; ni also counts both the number of descents and the number of peaks in Fi). Moreover, we denote by
|UDU | and |DUD| the number of occurrences in a Dyck path of a consecutive factor UDU and DUD,
respectively. In the path Q of Figure 1, we have n1 = 2, n2 = 1, n3 = 2, |UDU | = 3, and |DUD| = 2.

F
1

p
0

p
1

F
2

p
2

p
3

F
3

Fig. 1: A Dyck path having three factors.

Proposition 2.1 If Q is a Dyck path with k factors F1, . . . Fk, with Fi having ni ascents, then the number
of Dyck paths covered by Q is given by∑k

i=1 ni
2 + (

∑k
i=1 ni)

2

2
− |UDU | − |DUD| . (1)

In a similar fashion, we are also able to find a formula for the number of all Dyck paths which cover a
given path.

Proposition 2.2 If Q is a Dyck path of semilength n with k factors F1, . . . Fk, with Fi having semilength
fi, then the number of Dyck paths covering Q is given by

1 +
∑
i

f2
i +

∑
i<j

fifj . (2)

3 Enumerative results on pattern-avoiding Dyck paths
In the present section we will be concerned with the enumeration of some classes of pattern-avoiding

Dyck paths. Similarly to what has been done for other combinatorial structures, we are going to consider
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classes of Dyck paths avoiding a single pattern, and we will examine the cases of short patterns. Specif-
ically, we will count Dyck paths avoiding any single path of length ≤ 3; each case will arise as a special
case of a more general result concerning a certain class of patterns.

Given a pattern P , we denote by Dn(P ) the set of all Dyck paths of semilength n avoiding the pattern
P , and by dn(P ) the cardinality of Dn(P ).

3.1 The pattern (UD)k

This is one of the easiest cases.

Proposition 3.1 For any k ∈ N, Q ∈ Dn((UD)k) if and only if Q has at most k − 1 peaks.

Since it is well known that the number of Dyck paths of semilength n and having k peaks is given by
the Narayana number Nn,k (sequence A001263 in [Sl]), we have that dn((UD)k) =

∑k−1
i=0 Nn,i (partial

sums of Narayana numbers). Thus, in particular:

- dn(UD) = 0;

- dn(UDUD) = 1;

- dn(UDUDUD) = 1 +
(
n
2

)
.

3.2 The pattern Uk−1DUDk−1

Let Q be a Dyck path of length 2n and P = Uk−1DUDk−1. Clearly if n < k, then Q avoids P , and
if n = k, then all Dyck paths of length 2n except one (Q itself) avoid Q. Therefore:

• dn(P ) = Cn if n < k, and

• dn(P ) = Cn − 1 if n = k,

where Cn is the n-th Catalan number.
Now suppose n > k. Denote by A the end point of the (k − 1)-th U step of Q. It is easy to verify

that A belongs to the line r having equation y = −x + 2k − 2. Denote with B the starting point of the
(k − 1)-th-to-last D step of Q. An analogous computation shows that B belongs to the line s having
equation y = x− (2n− 2k + 2).

Depending on how the two lines r and s intersect, it is convenient to distinguish two cases.

1. If 2n− 2k + 2 ≥ 2k − 4 (i.e. n ≥ 2k − 3), then r and s intersect at height ≤ 1, whence xA ≤ xB
(where xA and xB denote the abscissas of A and B, respectively). The path Q can be split into
three parts (see Figure 2): a prefix QA from the origin (0, 0) to A, a path X from A to B, and a
suffix QB from B to the last point (2n, 0).

We point out that QA has exactly k − 1 U steps and its last step is a U step. Analogously, QB has
exactly k− 1 D steps and its first step is a D step. Notice that there is a clear bijection between the
set A of Dyck prefixes having k − 1 U steps and ending with a U and the set B of Dyck suffixes
having k − 1 D steps and starting with a D, since each element of B can be read from right to left
thus obtaining an element ofA. Moreover,A is in bijection with the set of Dyck paths of semilength
k − 1 (just complete each element of A with the correct sequence of D steps), hence |A| = Ck−1.
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Fig. 2: Avoiding Uk−1DUDk−1, with n ≥ 2k − 3

If we require Q to avoid P , then necessarily X = U iDj , for suitable i, j (for, if a valley DU
occurred in X , then Q would contain P since Uk−1 and Dk−1 already occur in QA and QB ,
respectively). In other words, A and B can be connected only in one way, using a certain number
(possibly zero) of U steps followed by a certain number (possibly zero) of D steps. Therefore, a
path Q avoiding P is essentially constructed by choosing a prefix QA fromA and a suffix QB from
B, whence:

dn(P ) = C2
k−1, (if n ≥ 2k − 3). (3)

2. Suppose now k + 1 ≤ n < 2k − 3 (which means that r and s intersect at height > 1). Then it can
be either xA ≤ xB or xA > xB .

a) If xA ≤ xB , then we can count all Dyck paths Q avoiding P using an argument analogous
to the previous one. However, in this case the set of allowable prefixes of each such Q is
a proper subset of A. More specifically, we have to consider only those for which xA =
k − 1, k, k + 1, . . . , n (see Figure 3). In other words, an allowable prefix has k − 1 U steps

k 
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ep
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 steps
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X=U  D
i j

Q
B

Q
A

r
s

2n − 2k + 2

(2k − 4,0) (2k − 2,0) (2n,0)

Fig. 3: Avoiding Uk−1DUDk−1, with xA ≤ xB

and 0, 1, 2, . . . or n − k + 1 D steps. If bi,j denotes the numbers of Dyck prefixes with i U
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steps and j D steps (i ≥ j), then the contribution to dn(P ) in this case is

d(1)
n (P ) =

n−k+1∑
j=0

bk−2,j

2

.

The coefficients bi,j are the well-known ballot numbers (sequence A009766 in [Sl]), whose
first values are reported in Table 1.

b) If xA > xB , then it is easy to see that Q necessarily avoids P , since A clearly occurs after
B, and so there are strictly less than k − 1 D steps from A to (2n, 0). Observe that, in this
case, the path Q lies below the profile drawn by the four lines y = x, r, s and y = −x+ 2n.
In order to count these paths, referring to Figure 4, just split each of them into a prefix and a
suffix of equal length n and call C the point having abscissa n.

P

A

B

C

(n, 2k−2)

(2n,0)

s

r

Fig. 4: Avoiding Uk−1DUDk−1, with xA > xB

Since C must lie under the point where r and s intersect, then its ordinate yC equals −n +
2k− 2− 2t with t ≥ 1 (and also recalling that yC = −n+ 2k− 2− 2t ≥ 0). A prefix whose
final point is C has k − j U steps and n − k + j D steps, with j ≥ 2. Since, in this case, a
path Q avoiding P is constructed by gluing a prefix and a suffix chosen among bk−j,n−k+j

possibilities (j ≥ 2), we deduce that the contribution to dn(P ) in this case is:

d(2)
n (P ) =

∑
j≥2

b2k−j,n−k+j .

Summing up the two contributions we have obtained in a) and b), we get:

dn(P ) = d(1)
n (P ) + d(2)

n (P )

=

n−k+1∑
j=0

bk−2,j

2

+
∑
j≥2

b2k−j,n−k+j , if k + 1 ≤ n < 2k − 3. (4)
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HH
HHHi

j
0 1 2 3 4 5 6 7 8 9

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430
9 1 9 44 154 429 1001 2002 3432 4862 4862

Tab. 1: The sum of the gray entries gives the bold entry in the line below. The sum of the squares of the bold entries
gives an appropriate element of Table 2.

Notice that formula (4) reduces to the first sum if n ≥ 2k− 3, since in that case n− k+ j > k− j, for
j ≥ 2. We then have a single formula including both cases 1. and 2.:

dn(P ) =

n−k+1∑
j=0

bk−2,j

2

+
∑
j≥2

b2k−j,n−k+j , if n ≥ k + 1 . (5)

Formula (5) can be further simplified by recalling a well known recurrence for ballot numbers, namely
that, when j ≤ i+ 1,

bi+1,j =

j∑
s=0

bi,s.

Therefore, we get the following interesting expression for dn(P ) (when n ≥ k + 1) in terms of sums
of squares of ballot numbers along a skew diagonal (see also Tables 1 and 2):

dn(P ) =

{
C2

k−1 if n ≥ 2k − 3;∑
j≥1 b

2
k−j,n−k+j otherwise. (6)

Therefore we obtain in particular:

dn(UUDUDD) = 4, when n ≥ 3.

3.3 The pattern UkDk

The case P = UkDk is very similar to the previous one. We just observe that, when xA ≤ xB , the two
points A and B can be connected only using a sequence of D steps followed by a sequence of U steps.
This is possible only if n ≤ 2k − 2, which means that r and s do not intersect below the x-axis. Instead,
if n ≥ 2k − 1, Q cannot avoid P . Therefore we get (see also Table 3):

dn(P ) =

{
0 if n ≥ 2k − 1;∑

j≥1 b
2
k−j,n−k+j otherwise.
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HH
HHk
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 . . .
4 1 1 2 5 13 25 25 25 25 25 25 25 25 25 . . .
5 1 1 2 5 14 41 106 196 196 196 196 196 196 196 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 1764 1764 1764 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 17424 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Tab. 2: Number of Dyck paths of semilength n avoiding Uk−1DUDk−1 . Entries in boldface are the nontrivial ones
(k + 1 ≤ n < 2k − 3).

HH
HHk
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
3 1 1 2 4 4 0 0 0 0 0 0 0 0 0 . . .
4 1 1 2 5 13 25 25 0 0 0 0 0 0 0 . . .
5 1 1 2 5 14 41 106 196 196 0 0 0 0 0 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 0 0 0 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 0 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Tab. 3: Number of Dyck paths of semilength n avoiding UkDk . Entries in boldface are the nontrivial ones (k+1 ≤
n < 2k − 3).

In particular, we then find:

- dn(UUDD) = 0, when n ≥ 3;

- dn(UUUDDD) = 0, when n ≥ 5.

3.4 The pattern Uk−1Dk−1UD

This is by far the most challenging case.
Let Q be a Dyck path of length 2n and P = Uk−1Dk−1UD. If Q avoids P , then there are two distinct

options: either Q avoids Uk−1Dk−1 or Q contains such a pattern. In the first case, we already know that
dn(Uk−1Dk−1) is eventually equal to zero. So, for the sake of simplicity, we will just find a formula for
dn(P ) when n is sufficiently large, i.e. n ≥ 2k−3. Therefore, for the rest of this section, we will suppose
that Q contains Uk−1Dk−1.

The (k − 1)-th D step of the first occurrence of Uk−1Dk−1 in Q lies on the line having equation
y = −x+2n. This is due to the fact that Q has length 2n and there cannot be any occurrence of UD after
the first occurrence of Uk−1Dk−1. The path Q touches the line of equation y = −x+ 2k− 2 for the first
time with the end point A of its (k − 1)-th U step. After that, the path Q must reach the starting point B
of the (k − 1)-th D step occurring after A. Finally, a sequence of consecutive D steps terminates Q (see
Figure 5).
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Therefore,Q can be split into three parts: the first part, from the beginning toA, is a Dyck prefix having
k − 1 U steps and ending with a U step; the second part, from A to B, is a path using n− k + 1 U steps
and k − 2 D steps; and the third part, from B to the end, is a sequence of D steps (whose length depends
on the coordinates of A). However, both the first and the second part of Q have to obey some additional
constraints.

The height of the point A (where the first part of Q ends) must allow Q to have at least k − 1 D steps
after A. Thus, the height of A plus the number of U steps from A to B minus the number of D steps from
A to B must be greater than or equal to 1 (to ensure that the pattern Uk−1Dk−1 occurs in Q). Hence,
denoting with x the maximum number of D steps which can occur before A, either x = k − 2 or the
following equality must be satisfied:

(k − 1)− x+ (n− k + 1)− (k − 2) = 1.

k 
− 1

 U
 st

ep
s

n−
k+

1 
U

 s
te

ps

k−
2 D

 stepsP

y = − x + 2k − 2

( k−1) − th D step of the first occurrence of P
B

A

y = − x + 2n

Fig. 5: A path Q avoiding P = Uk−1Dk−1UD

Therefore, x = min{n− k + 1, k − 2}. Observe however that, since we are supposing that n ≥ 2k − 3,
we always have x = k − 2.

Concerning the part of Q between A and B, since we have to use n− k+ 1 U steps and k− 2 D steps,
there are

(
n−1
k−2

)
distinct paths connecting A and B. However, some of them must be discarded, since they

fall below the x-axis. In order to count these “bad” paths, we split each of them into two parts. Namely,
if A′ and B′ are the starting and ending points of the first (necessarily D) step below the x-axis, the part
going from A to A′, and the remaining part (see Fig. 6).

k 
− 1

 U
 st

ep
s

B

A’

B’

A

P

y = − x + 2k − 2

y = − x + 2n

Fig. 6: A forbidden subpath from A to B.

It is not too hard to realize that the number of possibilities we have to choose the first part is given
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HH
HHHk

n
0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 2 4 6 8 10 12 14 16
4 1 1 2 5 13 28 48 73 103 138
5 1 1 2 5 14 41 110 245 450 739
6 1 1 2 5 14 42 131 397 1069 2427

Tab. 4: Avoiding Uk−1Dk−1UD

by a ballot number (essentially because, reading the path from right to left, we have to choose a Dyck
prefix from A′ to A), whereas the number of possibilities we have to choose the second part is given by a
binomial coefficient (essentially because, after having discarded the step starting at A′, we have to choose
an unrestricted path from B′ to B). After a careful inspection, we thus get to the following expression for
the total number dn(P ) of Dyck paths of semilength n ≥ 2k − 3 avoiding P :

dn(P ) =

(
n− 1

k − 2

)
Ck−1

−
k−2∑
s=2

bk−2,s ·

(
s−2∑
i=0

bk−3−i,s−2−i

(
n− k − s+ 3 + 2i

i

))
. (7)

Formula (7) specializes to the following expressions for low values of k (see also Table 4):

- when k = 3, dn(P ) = 2n− 2 for n ≥ 3;

- when k = 4, dn(P ) = 5n2−15n+6
2 for n ≥ 5;

- when k = 5, dn(P ) = 14n3−84n2+124n−84
6 for n ≥ 7.

4 Some remarks on the asymptotics of pattern-avoiding Dyck
paths

In this final section we collect some thoughts concerning the asymptotic behavior of integer sequences
counting pattern-avoiding Dyck paths. Unlike the case of permutations, for Dyck paths it seems plausible
that a sort of “master theorem” exists, at least in the case of single avoidance. This means that all the
sequences which count Dyck paths avoiding a single pattern P have the same asymptotic behavior (with
some parameters, such as the leading coefficient, depending on the specific path P ). We have some
computational evidence which leads us to formulate a conjecture, whose proof we have not been able to
complete, and so we leave it as an open problem.

Let P denote a fixed Dyck path of semilength x. We are interested in the behavior of dn(P ) when
n→∞. Our conjecture is the following:
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Conjecture. Suppose that P starts with a U steps and ends with b D steps. Then, setting k = 2x −
2− a− b, we have that dn(P ) is asymptotic to

αP · Ca · Cb

k!
nk,

whereCm denotes them-th Catalan numbers and αP is the number of saturated chains in the Dyck lattice
of order x (see [FP]) from P to the maximum UxDx.

Equivalently, αP is the number of standard Young tableaux whose Ferrers shape is determined by the
region delimited by the path P and the path UxDx, as shown in Figure 7.

36
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33 3231

3028 27
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24

23 22 20

1918 171615

14 12 11

10 8

7

6

5 4

3

1

2

13

21

29

9

Fig. 7: The standard Young tableau determined by a Dyck path.

We close our paper with some further conjectures concerning the order structure of the Dyck pattern
poset.

• What is the Möbius function of the Dyck pattern poset (from the bottom element to a given path?
Of a generic interval?)?

• How many (saturated) chains are there up to a given path? Or in a general interval?

• Does there exist an infinite antichain in the Dyck pattern poset?

The last conjecture has been suggested by an analogous one for the permutation pattern poset which has
been solved in the affirmative (see [SB] and the accompanying comment). In the present context we have
no intuition on what could be the answer, though we are a little bit less optimistic than in the permutation
case.
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