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Cycles and sorting index for matchings and
restricted permutations

Svetlana Poznanović
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

Abstract. We prove that the Mahonian-Stirling pairs of permutation statistics (sor, cyc) and (inv, rlmin) are equidis-
tributed on the set of permutations that correspond to arrangements of n non-atacking rooks on a fixed Ferrers board
with n rows and n columns. The proofs are combinatorial and use bijections between matchings and Dyck paths and
a new statistic, sorting index for matchings, that we define. We also prove a refinement of this equidistribution result
which describes the minimal elements in the permutation cycles and the right-to-left minimum letters.

Résumé. Nous prouvons que les paires de statistiques de Mahonian-Stirling (sor, cyc) et (inv, rlmin) suivent la
même distribution pour des permutations correspondant à des placements de n tours sur un tableau de Ferrer fixé avec
n lignes et n colonnes. Les preuves sont combinatoires et utilisent des bijections entre les couplages et les chemins
de Dyck. Nous définissons une nouvelle statistique, l’indice de tri pour les couplages. Nous prouvons également un
résultat plus fin qui décrit les éléments minimaux dans les cycles des permutations et les lettres minimum droite á
gauche.
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1 Introduction
An inversion in a permutation σ is a pair σ(i) > σ(j) such that i < j. The number of inversions in σ is
denoted by inv(σ). The distribution of inv over the symmetric group Sn was first found by Rodriguez [9]
in 1837 and is well known to be∑

σ∈Sn

qinv(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Much later, MacMahon [6] defined the major index maj and proved that it has the same distribution as
inv. In his honor, all permutation statistics that are equally distributed with inv are called Mahonian.
MacMahon’s remarkable result initiated a systematic research of permutation statistics and in particular
many more Mahonian statistics have been described in the literature since then.

Another classical permutation statistic is the number of cycles, cyc. Its distribution is given by∑
σ∈Sn

tcyc(σ) = t(t+ 1)(t+ 2) · · · (t+ n− 1)
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and the coefficients of this polynomial are known as the unsigned Stirling numbers of the first kind.
Given these two distributions, it is natural then to ask which “Mahonian-Stirling” pairs of statistics

(stat1, stat2) have the distribution∑
σ∈Sn

qstat1(σ)tstat2(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1). (1)

As proved by Björner and Wachs [1], (inv, rlmin) and (maj, rlmin) are two such pairs, where rlmin is
the number of right-to-left minimum letters. A right-to-left minimum letter of a permutation σ is a letter
σ(i) such that σ(i) < σ(j) for all j > i. The set of all right-to-left minimum letters in σ will be denoted
by Rlminl(σ). In fact, Björner and Wachs proved the following stronger result∑
σ∈Sn

qinv(σ)
∏

i∈Rlminl(σ)

ti =
∑
σ∈Sn

qmaj(σ)
∏

i∈Rlminl(σ)

ti = t1(t2+q)(t3+q+q
2) · · · (tn+q+· · ·+qn−1).

(2)
A natural Mahonian partner for cyc was found by Petersen [7]. For a given permutation σ ∈ Sn there

is a unique expression
σ = (i1j1)(i2j2) · · · (ikjk)

as a product of transpositions such that is < js for 1 ≤ s ≤ k and j1 < · · · < jk. The sorting index of σ
is defined to be

sor(σ) =

k∑
s=1

(js − is).

The sorting index can also be described as the total distance the elements in σ travel when σ is sorted using
the Straight Selection Sort algorithm [5] in which, using a transposition, we move the largest number
to its proper place, then the second largest to its proper place, etc. For example, the steps for sorting
σ = 6571342 are

6571342
(37)−−→ 6521347

(16)−−→ 4521367
(25)−−→ 4321567

(14)−−→ 1324567
(23)−−→ 1234567

and therefore σ = (2 3)(1 4)(2 5)(1 6)(3 7) and sor(σ) = (3−2)+(4−1)+(5−2)+(6−1)+(7−3) = 16.
The relationship to other Mahonian statistics and the Eulerian partner for sor were studied by Wilson [10]
who called the sorting index DIS.

Petersen showed that∑
σ∈Sn

qsor(σ)tcyc(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1),

which implies equidistribution of the pairs (inv, rlmin) and (sor, cyc).
In this article we show that the pairs (inv, rlmin) and (sor, cyc) have the same distribution on the set

of restricted permutations
Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers r = (r1, . . . , rn) with 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. These
can be described as permutations that correspond to arrangements of n non-atacking rooks on a Ferrers
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board with rows of length r1, . . . , rn. To obtain the results, in Section 2 we define a sorting index and
cycles for perfect matchings and study the distributions of these statistics over matchings of fixed type. We
use bijections between matchings and weighted Dyck paths which enable us to keep track of set-valued
statistics and obtain more refined results similar to (2) for restricted permutations.

Analogously to sor, Petersen defined the sorting index for signed permutations of type Bn and Dn.
Using algebraic methods he proved that

∑
σ∈Bn

qsorB(σ)t`
′
B(σ) =

∑
σ∈Bn

qinvB(σ)tnminB(σ) =

n∏
i=1

(1 + t[2i]q − t), (3)

where for an element σ ∈ Bn, `′B(σ) denotes its reflection length, invB(σ) denotes the type Bn inver-
sion number, and nmin is a signed permutation statistic similar to rlmin. Petersen also defined sorD, a
sorting index for type Dn permutations and showed that it is equidistributed with the number of type Dn

inversions: ∑
σ∈Dn

qsorD(σ) =
∑
σ∈Dn

qinvD(σ) = [n]q ·
n−1∏
i=1

[2i]q. (4)

While space constraints prevent us from providing details in this extended abstract, we mention that
in [8] we define a sorting index and cycle number for bicolored matchings in a fashion analogous to
what we will show for ordinary matchings. In particular, this gives a combinatorial proof that the pairs
(sorB , `

′
B) and (invB ,nminB) are equidistributed on the set of restricted signed permutations

Br = {σ ∈ Bn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Using bijections between
bicolored matchings and weighted Dyck paths with bicolored rises, we in fact prove equidistribution of
set-valued statistics and their generating functions. Moreover, we find natural Stirling partners for sorD
and invD and prove equidistribution of the two Mahonian-Stirling pairs on sets of restricted permutations
of type Dn:

Dr = {σ ∈ Dn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}.

2 Statistics on perfect matchings
A matching is a partition of a set in blocks of size at most two and if it has no single-element blocks the
matching is said to be perfect. The set of all perfect matchings with n blocks is denoted by Mn. All
matchings in this work will be perfect and henceforth we will omit this adjective.

2.1 Statistics based on crossings and nestings
A matching in Mn can be represented by a graph with 2n labeled vertices and n edges in which each
vertex has a degree 1. The vertices 1, 2, . . . , 2n are drawn on a horizontal line in natural order and two
vertices that are in a same block are connected by a semicircular arc in the upper half-plane. We will use
i · j to denote an arc with vertices i < j. The vertex i is said to be the opener while j is said to be the
closer of the arc. For a vertex i, we will denote by M(i) the other vertex which is in the same block in
the matching M as i. Two arcs i · j and k · l with i < k can be in three different relative positions. We
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say that they form a crossing if i < k < j < l, they form a nesting if i < k < l < j, and they form an
alignment if i < j < k < l. The arc with the smaller opener will be called the left arc of the crossing,
nesting, or the alignment, respectively, while the arc with the larger opener will be called the right arc.
The numbers of crossings, nestings, and alignements in a matching M are denoted by cr(M), ne(M),
and al(M), respectively.

If o1 < · · · < on and c1 < · · · < cn are the openers and the closers in M , respectively, let

Long(M) = {k : ok ·M(ok) is not a right arc in a nesting}

and
Short(M) = {k :M(ck) · ck is not a left arc in a nesting}.

Similarly, let
Left(M) = {k : ok ·M(ok) is not a right arc in a crossing}.

We will use lower-case letters to denote the cardinalities of the sets. For example, long(M) = |Long(M)|.
Example 2.1. For the matching M in Figure 1 we have ne(M) = cr(M) = al(M) = 5, Long(M) =
{1, 2}, Short(M) = {1, 2, 3, 5}, and Left(M) = {1, 5}.

The pair of sets ({o1, . . . , on}, {c1, . . . , cn}) of openers and closers of a matching M is called the type
of M . There is a natural one-to-one correspondence between types of matchings inMn and Dyck paths
of semilength n, i.e., lattice paths that start at (0, 0), end at (2n, 0), use steps (1, 1) (rises) and (1,−1)
(falls), and never go below the x-axis. The set of all such Dyck paths will be denoted by Dn. Namely,
the openers in the type correspond to the rises in the Dyck path while the closers correspond to the falls.
Therefore, for convenience, we will say that a matching inMn is of typeD, for some Dyck pathD ∈ Dn,
and we will denote the set of all matchings of type D byMn(D).

The height of a rise of a Dyck path is the y-coordinate of the right endpoint of the corresponding (1, 1)
segment. The sequence (h1, . . . , hn) of the heights of the rises of a D ∈ Dn when read from left to right
will be called shortly the height sequence of D. For example, the height sequence of the Dyck path in
Figure 1 is (1, 2, 3, 3, 3, 4). A weighted Dyck path is a pair (D, (w1, . . . , wn)) whereD ∈ Dn with height
sequence (h1, . . . , hn) and wi ∈ Z with 1 ≤ wi ≤ hi. There is a well-known bijection ϕ from the set
WDn of weighted Dyck paths of semilength n to Mn [2]. Namely, the openers o1 < o2 < · · · < on
of the matching that corresponds to a given (D, (w1, . . . , wn)) ∈ WDn are determined according to the
type D. To construct the corresponding matching M , we connect the openers from right to left, starting
from on. After on, on−1, . . . , ok+1 are connected to a closer, there are exactly hk unconnected closers that
are larger than ok. We connect ok to the wk-th of the available closers, when they are listed in decreasing
order (see Figure 1).

2

1

2

32

1

ϕ1

c6c5c4c3o6o5c2o4c1o2o1 o3

Fig. 1: The bijection ϕ between weighted Dyck paths and matchings.

Via the bijection ϕ we immediately get the following generating function.
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Theorem 2.2. If D ∈ Dn has a height sequence (h1, . . . , hn), then

∑
M∈Mn(D)

pcr(M)qne(M)
∏

i∈Left(M)

si
∏

i∈Long(M)

ti =

n∏
k=1

(tkp
hk−1 + phk−2q+ · · ·+ pqhk−2 + skq

hk−1).

(5)

Proof: The edge ok ·M(ok) will be a right arc in exactly wk − 1 nestings and exactly hk −wk crossings
in M = ϕ(D, (w1, . . . , wn)). So, k ∈ Long(M) if and only if wk = 1 while the closer that is connected
to ok is in Left(M) if and only if wk = hk.

The map ϕ also has the following property. The definition of Rlminl was given for permutations but it
extends to words in a straightforward way.

Proposition 2.3. Let (D, (w1, . . . , wn)) ∈ WDn and M = ϕ(D, (w1, . . . , wn)). Then

Short(M) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn). (6)

2.2 Cycles and sorting index for matchings
Let M0 be a matching inMn(D). For M ∈ Mn(D) define cyc(M,M0) as the number of cycles in the
graph G = (M,M0) on 2n vertices in which the arcs from M are drawn in the upper half-plane as usual
and the arcs of M0 are drawn in the lower half-plane, reflected about the number axis. If the openers of
M are o1 < · · · < on, we define

Cyc(M,M0) = {k : ok is a minimal vertex in a cycle in the graph (M,M0)}.

Figure 2 shows the calculation of cyc and Cyc for all matchings of type with respect to the nonnesting
matching of that type.

cyc(M3,M4) = 2cyc(M1,M4) = 1

Cyc(M1,M4) = {1} Cyc(M2,M4) = {1, 2} Cyc(M3,M4) = {1, 3} Cyc(M4,M4) = {1, 2, 3}

cyc(M2,M4) = 2 cyc(M4,M4) = 3

Fig. 2: Counting cycles in matchings.

For M,M0 ∈Mn(D), we define the sorting index of M with respect to M0, denoted by sor(M,M0),
in the following way. Let o1 < o2 < · · · < on be the openers in M and M0. We construct a sequence
of matchings Mn,Mn−1, . . . ,M2,M1 as follows. First, set Mn = M . Then, if Mk(ok) = M0(ok), set
Mk−1 = Mk. Otherwise, set Mk−1 to be the matching obtained by replacing the edges ok ·Mk(ok) and
Mk(M0(ok))·M0(ok) in the matchingMk by the edges ok ·M0(ok) andMk(M0(ok))·Mk(ok). It follows
from the definition thatM1 =M0. In other words, we gradually sort the matchingM by reconnecting the
openers to the closers as “prescribed” by M0. Note that when swapping of edges takes place, it is always
true thatMk(M0(ok)) < ok and therefore all the intermediary matchings we get in the process are of type
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D. Define

sork(M,M0) =

{
|{c : c > ok, c ∈ [Mk(ok),M0(ok)] and M0(c) < ok}|, if Mk(ok) ≤M0(ok)

|{c : c > ok, c /∈ (M0(ok),Mk(ok)) and M0(c) < ok}|, if M0(ok) < Mk(ok)

and

sor(M,M0) =

n∑
k=1

sork(M,M0).

Example 2.4. Figure 3 shows the intermediate matchings that are obtained when M = M6 is sorted to
M0 =M1. So,

sor6(M,M0) = |{c3, c5, c6}| = 3, sor5(M,M0) = |{c3, c5}| = 2, sor4(M,M0) = |{c2, c5}| = 2,
sor3(M,M0) = |∅| = 0, sor2(M,M0) = |{c5}| = 1, sor1(M,M0) = |∅| = 0,

and sor(M,M0) = 0 + 1 + 0 + 2 + 2 + 3 = 8.

o1

M6 : M3 :

M2 :M5 :

M4 : M1 :

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2 o3

Fig. 3: Sorting of the matching M = M6 to the matching M0 = M1. The dashed lines indicate arcs that are about
to be swapped while the bold lines represent arcs that have been placed in correct position.

Theorem 2.5. Let D be a Dyck path with height sequence (h1, . . . , hn). For each M0 ∈ Mn(D), there
is a bijection

φ : {(w1, w2, . . . , wn) : 1 ≤ wi ≤ hi} →Mn(D)

which depends on M0 such that

(a) sor(φ(w1, . . . , wn),M0) =
∑n
i=1(wi − 1),

(b) Cyc(φ(w1, . . . , wn),M0) = {k : wk = 1}.
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Additionally, if M0 is the unique nonnesting matching of type D, then

(c) Short(φ(w1, . . . , wn)) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

Proof: Fix M0 ∈ Mn(D). We construct the bijection φ in the following way. Draw the matching
M0 with arcs in the lower half-plane. Suppose o1 < · · · < on are the openers of M0. To construct
M = φ(w1, . . . , wn), we draw arcs in the upper half plane by connecting the openers from right to left to
closers as follows.

Suppose that the openers on, on−1, . . . , ok+1 are already connected to a closer and denote the partial
matching in the upper half-plane by Nk. To connect ok, we consider all the closers c with the property
c > ok and M0(c) ≤ ok. There are exactly hk such closers, call them candidates for ok.

Let ck0 be the closer which is wk-th on the list when all those hk candidates are listed starting from
M0(ok) and then going cyclically to left. If ck0 is not connected to an opener by an arc in the up-
per half-plane, draw the arc ok · ck0 . Otherwise, there is a maximal path in the graph of the type:
ck0 , Nk(ck0),M0(Nk(ck0)), Nk(M0(Nk(ck0))), . . . , c

∗ which starts with ck0 , follows arcs in Nk and M0

alternately and ends with a closer c∗ which has not been connected to an opener yet (see Figure 4). Due
to the order in which we have been drawing the arcs in the upper half-plane, all vertices in the aforemen-
tioned path are to the right of ok. In particular, c∗ is to the right of ok and is not one of the candidates
for ok. Draw an arc in the upper half-plane connecting ok to c∗. After all openers are connected in this
manner, the resulting matching in the upper half-plane is M = φ(w1, . . . , wn).

c6c5c1o2

Fig. 4: The solid arcs in the top half-plane represent the partial matching N2. The candidates for o2 are c1 and c5. If
w2 = 1, o2 will try to connect to c1, but since it is already connected to an opener, we follow the bold path that starts
with c1 to reach c∗ = c6 and connect it to o2.

LetMn =M,Mn−1, . . . ,M2,M1 =M0 be the intermediary sequence of matchings constructed when
sorting M to M0. Then Mk(ok) is exactly the closer ck0 defined above. This means that sork(M,M0) =
wk − 1 and therefore sor(M,M0) =

∑n
k=1(wk − 1). This property also gives us a way of finding the

sequence (w1, . . . , wn) which corresponds to a given M ∈Mn(D). Namely, wk = sork(M,M0) + 1.
To prove the second property of φ, we analyze when connecting ok by an arc will close a cycle. There

are two cases.

1. The closer ck0 which was wk-th on the list of candidates for ok was not incident to an arc in the
partial matching Nk and we drew the arc ok · ck0 . If wk = 1, then ck0 = M0(ok) and the arcs
connecting ok and ck0 in the upper and lower half-planes close a cycle. Otherwise, M0(ck0) < ok
and therefore M0(ck0) is not incident to an arc in Nk and the arc ok · ck0 will not close a cycle.
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2. The closer ck0 which was wk-th on the list of candidates for ok was incident to an arc in the partial
matching Nk and we drew the arc ok · c∗. If wk = 1, the path traced from ck0 to c∗, the arc ok · ck0
in M0, and the newly added arc ok · c∗ form a cycle. Otherwise, connecting ok to c∗ does not close
a cycle since the opener M0(ck0) is in the same connected component of the graph (M,M0) as ok,
but is not connected to a closer yet, since M0(ck0) < ok.

We conclude that a cycle is closed exactly when wk = 1 and therefore

Cyc(φ(w1, . . . , wn),M0) = {k : wk = 1}.

Finally, we prove the third property of φ. IfM0 is a nonnesting matching, its edges are ok ·ck where the
openers and closers are indexed in ascending order. LetM = φ(w1, . . . , wn). The following observations
are helpful. When connecting ok in the construction of M , the first choice for ok, i.e., the wk-th candidate
for ok is exactly ck+1−wk

. Also, M(ok) ≥ ck+1−wk
. Furthermore, if ck was not a candidate for M(ck),

i.e. if the edge ck was chosen as a partner for M(ck) by following a path in the graph as described above,
then k /∈ Short(M). Namely the edge M(ck0) · ck0 , where ck0 was the first choice when the opener
M(ck) was connected in the construction of M , is nested below it.

For a number k ∈ [n] there are three possibilities:

1. k /∈ {2− w1, 3− w2, . . . , n+ 1− wn}
In this case, ck was not a first choice for any of the openers and therefore must have been connected
to an opener by following a path in the graph (M,M0). It follows from the observation above that
k /∈ Short(M).

2. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} and k ∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)
Then ck was a first choice for at least one opener. Let o be the largest one. Then all openers to the
right of o got connected to a closer which is greater than ck, so no edge is nested below o · ck ∈M .
Consequently, k ∈ Short(M).

3. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} but k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)
In this case, let m + 1 − wm be the rightmost number in the sequence (2 − w1, . . . , n + 1 − wn)
which is smaller than k. It is necessarily to the right of k in this sequence and belongs to Rlminl(2−
w1, . . . , n+ 1−wn). This implies that the edge om · cm+1−wm is in M , while M(ol) > ck for all
l > m. So, M(ck) < om and therefore the edge om · cm+1−wm

is nested below M(ck) · ck, which
means that k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

As a consequence, we get the following generating functions. Note that their explicit formulas imply
that in fact the distributions are independent of the choice of M0.

Corollary 2.6. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then

∑
M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =

n∏
k=1

(tk + q + · · ·+ qhk−1). (7)

Combining Theorem 2.2 and Corollary 2.6 we get the following corollary.
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Corollary 2.7. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then∑
M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =
∑

M∈Mn(D)

qne(M)
∏

i∈Long(M)

ti.

Corollary 2.8. If M0 is the unique nonnesting matching of type D then the multisets

{(sor(M,M0),Cyc(M,M0),Short(M)) :M ∈Mn(D)}

and
{(ne(M),Long(M),Short(M)) :M ∈Mn(D)}

are equal.

2.3 Connections with restricted permutations
For a fixed n, let r denote the non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Let

Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}.

Note that Sr 6= ∅ precisely when rk ≥ k, for all k, so we will consider only the sequences that satisfy
this condition without explicitly mentioning it. Let D(r) be the unique Dyck path whose k-th fall is
preceded by exactly rk rises. Consider the following bijection fr : Sr → Mn(D(r)). If σ ∈ Sr, then
fr(σ) is the matching in Mn(D(r)) with edges oσ(k) · ck, where o1 < · · · < on are the openers and
c1 < · · · < cn are the closers. It is not difficult to see that fr is well defined and that it is a bijection.

Two arcs oσ(j) · cj and oσ(k) · ck in fr(σ) with j < k form a nesting if and only if σ(j) > σ(k). So,
ne(fr(σ)) = inv(σ). Moreover, σ(j) ∈ Rlminl(σ) if and only if σ(j) does not form an inversion with
a σ(k) for any k > j, which means if and only if oσ(j) · cj is not nested within anything in fr(σ), i.e.,
σ(j) ∈ Long(fr(σ)). From Theorem 2.2 we get the following corollary.

Corollary 2.9. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with rk ≥ k,
for all k. Then ∑

σ∈Sr

qinv(σ)
∏

i∈Rlminl(σ)

ti =

n∏
k=1

(tk + q + q2 + · · ·+ qhk−1)

where (h1, . . . , hn) is the height sequence of D(r). In particular,

∑
σ∈Sr

qinv(σ)trlminl(σ) =

n∏
k=1

(t+ q + q2 + · · ·+ qrk−k).

Proof: The first result follows directly from the discussion above and Theorem 2.2. For the second equal-
ity, note that the height sequence (h1, . . . , hn) of the Dyck path D(r) is a permutation of the sequence
of the heights of the falls in D(r), where the height of a fall is the y-coordinate of the higher end of the
corresponding (1,−1) step. The height of the k-th fall is easily seen to be rk − k + 1.

In particular, when r1 = r2 = · · · = rn = n, we have Sr = Sn. The height sequence of D(r) is
(1, 2, . . . , n) and we recover the result of Björner and Wachs about the distribution of (inv,Rlmin) given
in (2).
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If M0 ∈ M(D(r)) the sorting index sor( · ,M0) induces a permutation statistic on Sr. Namely, if
σ, σ0 ∈ Sr, define

sorr(σ, σ0) = sor(f−1r (σ), f−1r (σ0)).

Equivalently, the statistic sorr(σ, σ0) on Sr can be defined directly via a sorting algorithm similar
to Straight Selection Sort. Namely, permute the elements in σ ∈ Sr by applying transpositions which
place the largest element n in position σ−10 (n), then the element n − 1 in position σ−10 (n − 1), etc.
Let σn = σ, σn−1, . . . , σ1 = σ0, be the sequence of permutations obtained in this way. Specifically,
σ−1k (i) = σ−10 (i) for i > k, and σk−1 is obtained by swapping k and σk(σ−10 (k)) in σk.

Let l = σ−1k (k) and m = σ−10 (k). Define

ak =


|{i : l ≤ i ≤ m,σ0(i) < k}|, l < m

0, l = m

|{i : ri ≥ k, i /∈ (m, l), σ0(i) < k}|, l > m.

(8)

Then

sorr(σ, σ0) =

n∑
k=1

ak.

Note that, sorr(σ, σ0) in general depends on r. However, the case when σ0 is the identity permutation
is an exception.

Lemma 2.10. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with rk ≥ k,
for all k. Let σ ∈ Sr. Then

sorr(σ, id) = sor(σ).

Proof: First note that the case l > m in (8) cannot occur. Namely, in the case when σ0 = id, we have
m = k and if l > k, σ−1k (l) = σ−10 (l) = l. This contradicts l = σ−1k (k). Therefore, the definition of ak
simplifies to

ak = |{i : l ≤ i < k}|.

This is precisely the “distance” that k travels when being placed in its correct position with the Straight
Selection Sort algorithm.

Corollary 2.11. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Let σ0 ∈ Sr. Then

∑
σ∈Sr

qsorr(σ,σ0)
∏

i∈Cyc(σσ−1
0 )

ti =

n∏
i=1

(ti + q + · · ·+ qhi−1), (9)

where (h1, . . . , hn) is the height sequence of D(r) and Cyc(σ) is the set of the minimal elements in the
cycles of σ. In particular,

∑
σ∈Sr

qsor(σ)
∏

i∈Cyc(σ)

ti =

n∏
i=1

(tk + q + · · ·+ qhk−1) (10)
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and ∑
σ∈Sr

qsor(σ)tcyc(σ) =
∑
σ∈Sr

qinv(σ)trlminl(σ) (11)

Proof: Let fr(σ0) = M0 and fr(σ) = M . The cycle k → σ0σ
−1(k) → · · · → (σ0σ

−1)s(k) = k of the
permutation σ0σ−1 corresponds to the cycle ok M(ok) M0(M(ok)) · · · ok in the
graph (M,M0). So, k ∈ Cyc(σ0σ

−1) if and only if k ∈ Cyc(M,M0). Now, (9) follows from (7) and the
fact that the cycles of σσ−10 are equal to the cycles of σ0σ−1 reversed. Since id ∈ Sr for every sequence
r, we get (10) as a corollary of Lemma 2.10.

Let Lrmaxp(σ) denote the set of left-to-right maximum places in the permutation σ, i.e,

Lrmaxp(σ) = {k : σ(k) > σ(j) for all j < k}.

From Corollary 2.8 we get the following result for restricted permutations.

Corollary 2.12. The triples (inv,Rlminl,Lrmaxp) and (sor,Cyc,Lrmaxp) are equidistributed on Sr.
That is, the multisets

{(inv(σ),Rlminl(σ),Lrmaxp(σ)) : σ ∈ Sr}

and
{(sor(σ),Cyc(σ),Lrmaxp(σ)) : σ ∈ Sr}

are equal.

The equidistribution of the pairs (Rlminl,Lrmaxp) and (Cyc,Lrmaxp) on Sr for the special case
when the corresponding Dyck path D(r) is of the form uk1dk1uk2dk2 · · ·uksdks was shown by Foata and
Han [3] .

Corollary 2.13. Let σ0 ∈ Sr. Then

∑
σ∈Sr

tcyc(σσ
−1
0 ) =

n∏
k=1

(t+ rk − k). (12)

In particular, the left-hand side of (12) does not depend on σ0.

We remark that the sets {σσ−10 : σ ∈ Sr} and Sr are in general not equal. For example, let σ0 =
143265 ∈ S[4,4,4,6,6,6]. Then σ = 231546 ∈ S[4,4,4,6,6,6] but σσ−10 = 251364 /∈ S[4,4,4,6,6,6].

The polynomial
∏n
k=1(t+ rk − k) is well-known in rook theory. It is equal [4] to the polynomial

n∑
k=0

rn−k(t− 1)(t− 2) · · · (t− k)

where rk is the number of placements of k non-atacking rooks on a Ferrers board with rows of length
r1, r2, . . . , rn.
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