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A direct bijection between permutations and a
subclass of totally symmetric self-
complementary plane partitions

Jessica Striker
School of Mathematics, University of Minnesota, Minneapolis, MN, USA

Abstract. We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show
is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the
position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs.
We also discuss the possible extension of this approach to finding a bijection between alternating sign matrices and
all TSSCPPs. Finally, we remark on a new poset structure on TSSCPPs arising from this perspective which is a
distributive lattice when restricted to permutation TSSCPPs.

Résumé. Nous définissons une sous-classe de partitions planes totalement symétriques autocomplémentaires (TSS-
CPPs) que nous montrons est en bijection directe avec des matrices permutation. Cette bijection trace le numéro
inverse de la permutation, la position du 1 dans la derniére colonne, et la position du 1 dans le dernier rayon aux
statistiques naturelles sur cettes TSSCPPs. Aussi, nous discutons l’extension possible de cette approche pour trouver
une bijection entre les matrices á signe alternat et toutes TSSCPPs. Finalement, nous remarquons sur une structure
poset nouvelle sur les TSSCPPs se levant de cette perspective qui est une treillis distributif quand elle est limité aux
TSSCPPs permutation.
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1 Introduction
Alternating sign matrices (ASMs) and their equinumerous friends, descending plane partitions (DPPs) and
totally symmetric self-complementary plane partitions (TSSCPPs), have been bothering combinatorialists
for decades by the lack of an explicit bijection between any two of the three sets of objects. (See [7] [8]
[1] [12] [6] for these enumerations and bijective conjectures and [4] for the story behind these papers.)
In [9], we gave a bijection between permutation matrices (which are a subclass of ASMs) and descending
plane partitions with no special parts in such a way that the inversion number of the permutation matrix
equals the number of parts of the DPP. In this paper, we complete the solution to this bijection problem in
the special case of permutations by identifying the subclass of TSSCPPs corresponding to permutations
and giving a bijection which yields a direct interpretation for the inversion number on these permutation
TSSCPPs.
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In Section 2, we define TSSCPPs and ASMs and give bijections within their respective families. We
recall the standard bijection from ASMs to monotone triangles. We then outline a known bijection from
TSSCPPs to non-intersecting lattice paths and then transform these to new objects we call boolean trian-
gles.

In Section 3, we identify the permutation subclass of TSSCPPs in terms of the boolean triangles of
Section 2. We use this characterization to present a direct bijection between this subclass of TSSCPPs
and permutation matrices. This bijection gives a natural interpretation on the TSSCPP for the inversions
of the permutation as well as the positions of the 1’s in the bottom row and last column of the permutation
matrix.

It is not obvious how to extend this bijection to all ASMs and TSSCPPs. No one knows statistics on
TSSCPPs with distributions corresponding to the inversion number or the number of −1’s in an ASM. In
Section 4, we discuss the outlook of the general bijection problem and compare the bijection of this paper
with another recent bijection of Biane and Cheballah [3].

Finally, in Section 5 we make some remarks about a new partial order on TSSCPPs obtained via boolean
triangles, which reduces in the permutation case to the distributive lattice which is the product of chains
of lengths 2, 3, . . . , n.

2 The objects and their alter egos: ASMs & monotone triangles,
TSSCPPs & non-intersecting lattice paths / boolean triangles

We first define ASMs and recall the standard bijection to monotone triangles. We then define TSSCPPs
and give bijections with non-intersecting lattice paths and new objects we call boolean triangles. Then in
the next section, we give a bijection from permutation ASMs to permutation TSSCPPs via these interme-
diary objects.

Definition 1 An alternating sign matrix (ASM) is a square matrix with entries 0, 1, or−1 whose rows and
columns each sum to 1 and such that the nonzero entries in each row and column alternate in sign.

 1 0 0
0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 0 1 0
1 −1 1
0 1 0

 0 1 0
0 0 1
1 0 0

 0 0 1
1 0 0
0 1 0

 0 0 1
0 1 0
1 0 0


Fig. 1: The seven 3× 3 ASMs.

See Figure 1 for the seven 3× 3 ASMs. It is clear that the alternating sign matrices with no −1 entries
are the permutation matrices.

Alternating sign matrices are known to be in bijection with monotone triangles, which are certain
semistandard Young tableaux (that are also strict Gelfand-Tsetlin patterns). See Figure 2.

Definition 2 A monotone triangle of order n is a triangular arrays of integers with i integers in row i for
all 1 ≤ i ≤ n, bottom row 1 2 3 · · · n, and integer entries ai,j for 1 ≤ i ≤ n, n − i ≤ j ≤ n − 1 such
that ai,j−1 ≤ ai−1,j ≤ ai,j and ai,j < ai,j+1.

It is well-known that monotone triangles of order n are in bijection with n×n alternating sign matrices
via the following map [4]. For each row of the ASM note which columns have a partial sum (from the top)
of 1 in that row. Record the numbers of the columns in which this occurs in increasing order. This process
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1
1 2

1 2 3

1
1 3

1 2 3

2
1 2

1 2 3

2
1 3

1 2 3

2
2 3

1 2 3

3
1 3

1 2 3

3
2 3

1 2 3

Fig. 2: The seven monotone triangles of order 3, listed in order corresponding to Figure 1.

yields a monotone triangle of order n. Note that entries ai,j in the monotone triangle satisfying the strict
diagonal inequalities ai,j−1 < ai−1,j < ai,j are in bijection with the −1 entries of the corresponding
ASM. Also, recall that the inversion number of an ASM A is defined as I(A) =

∑
AijAk` where the

sum is over all i, j, k, ` such that i > k and j < `. This definition extends the usual notion of inversion in
a permutation matrix.

We now define plane partitions.

Definition 3 A plane partition is a two dimensional array of positive integers which weakly decreases
across rows from left to right and down columns.

We can visualize a plane partition as a stack of unit cubes pushed up against the corner of a room. If we
identify the corner of the room with the origin and the room with the positive orthant, then denote each
unit cube by its coordinates in N3, we obtain the following equivalent definition. A plane partition π is a
finite set of positive integer lattice points (i, j, k) such that if (i, j, k) ∈ π and 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and
1 ≤ k′ ≤ k then (i′, j′, k′) ∈ π. A plane partition is totally symmetric if whenever (i, j, k) ∈ π then all
six permutations of (i, j, k) are also in π.

Definition 4 A totally symmetric self–complementary plane partition (TSSCPP) inside a 2n × 2n × 2n
box is a totally symmetric plane partition which is equal to its complement, that is, the collection of empty
cubes in the box is of the same shape as the collection of cubes in the plane partition itself.

6 6 6 3 3 3
6 6 6 3 3 3
6 6 6 3 3 3
3 3 3
3 3 3
3 3 3

6 6 6 4 3 3
6 6 5 3 3 2
6 6 6 3 3 3
4 3 3 1
3 3 3
3 3 2

6 6 6 4 3 3
6 6 5 4 3 3
6 6 4 3 2 2
4 4 3 2
3 3 2
3 3 2

6 6 6 5 5 3
6 5 5 4 3 1
6 5 4 3 2 1
5 4 3 2 1
5 3 2 1 1
3 1 1

6 6 6 5 5 3
6 5 5 3 3 1
6 5 5 3 3 1
5 3 3 1 1
5 3 3 1 1
3 1 1

6 6 6 5 4 3
6 6 5 3 3 2
6 5 5 3 3 1
5 3 3 1 1
4 3 3 1
3 2 1

6 6 6 5 4 3
6 6 5 4 3 2
6 5 4 3 2 1
5 4 3 2 1
4 3 2 1
3 2 1

Fig. 3: TSSCPPs inside a 6× 6× 6 box

See Figure 3 for the seven TSSCPPs of order 3.
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In [5], Di Francesco gives a bijection from TSSCPPs of order n to a collection of nonintersecting lattice
paths. The bijection proceeds by taking a fundamental domain of the TSSCPP, and instead of reading the
number of boxes in each stack, one looks at the paths going alongside those boxes. This yields a collection
of nonintersecting paths with two types of steps. With a slight further deformation, he obtains that the
following objects are in bijection with TSSCPPs. See Figure 4.

Proposition 5 (Di Francesco) Totally symmetric self-complementary plane partitions inside a 2n×2n×
2n box are in bijection with nonintersecting lattice paths (NILP) starting at (i,−i), i = 1, 2, . . . , n − 1,
and ending at positive integer points on the x-axis of the form (ri, 0), i = 1, 2, . . . , n − 1, making only
vertical steps (0, 1) or diagonal steps (1, 1).
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Fig. 4: The seven TSSCPP NILP of order 3.

In [5], Di Francesco uses the Lindström-Gessel-Viennot formula for counting nonintersecting lattice
paths via a determinant evaluation to give an expression for the generating function of TSSCPPs with a
weight of τ per vertical step. We will show that when restricted to permutation TSSCPPs, this weight
corresponds to the inversion number of the permutation. Note that the distribution of the number of
vertical steps in all TSSCPP NILPs does not correspond to the inversion number distribution on ASMs.

With another slight deformation, we obtain a tableaux version of these NILPs. See Figures 5 and 6.

Definition 6 A boolean triangle of order n is a triangular integer array {bi,j} for 1 ≤ i ≤ n − 1,
n− i ≤ j ≤ n− 1 with entries in {0, 1} such that the diagonal partial sums satisfy

1 +

i′∑
i=j+1

bi,n−j−1 ≥
i′∑

i=j

bi,n−j . (1)

b1,n−1
b2,n−2 b2,n−1

b3,n−3 b3,n−2 b3,n−1
...

bn−1,1 bn−1,2 · · · bn−1,n−2 bn−1,n−1

Fig. 5: A generic boolean triangle

Proposition 7 Boolean triangles of order n are in bijection with TSSCPPs inside a 2n× 2n× 2n box.

Proof: The bijection proceeds by replacing each vertical step of the NILP with a 1 and each diagonal
step with a 0 and vertically reflecting the array. The inequality on the partial sums is equivalent to the
condition that the lattice paths are nonintersecting. 2
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1
1 1

1
1 0

0
1 1

0
0 1

1
0 0

0
1 0

0
0 0

Fig. 6: The seven TSSCPP boolean triangles of order 3, listed in order corresponding to Figure 4 (and Figure 2 via
the bijection of Theorem 9).

3 A bijection on permutations
In this section, we give a bijection between n×n permutation matrices and a subclass of totally symmetric
self-complementary plane partitions inside a 2n× 2n× 2n box, preserving the inversion number statistic
and two boundary statistics. First, we identify the permutation subclass of TSSCPPs.

Definition 8 Let permutation TSSCPPs of order n be all TSSCPPs of order n whose corresponding
boolean triangles have weakly decreasing rows. (In the NILP picture, each row has some number of
vertical steps followed by some number of diagonal steps.)

It is easy to see that there are n! permutation TSSCPPs. The condition on the boolean triangle that
the rows be weakly decreasing means that all the 1’s must be left-justified, thus the defining partial sum
inequality (1) is never violated. To construct a permutation TSSCPP, freely choose any number of left-
justified 1’s in each row of the boolean triangle and the rest zeros; there are i + 1 choices for row i, and
the choices are all independent.

We are now ready to state and prove our main theorem.

Theorem 9 There is a natural, statistic-preserving bijection between n × n permutation matrices with
inversion number p whose 1 in the last row is in column k and whose 1 in the last column is in row `
and permutation TSSCPPs of order n with p zeros in the boolean triangle, exactly n − k of which are
contained in the last row, and for which the lowest 1 in diagonal n− 1 is in row `− 1.

Proof: We first describe the bijection map. An example of this bijection is shown in Figure 7.
Begin with a permutation TSSCPP of order n. Consider its associated boolean triangle b = {bi,j} for

1 ≤ i ≤ n − 1, n − i ≤ j ≤ n − 1. Define a = {ai,j} for 1 ≤ i ≤ n, n − i ≤ j ≤ n − 1 as follows:
an,j = j + 1 and for i < n, ai,j = ai+1,j if bi,j = 0 and ai,j = ai+1,j−1 if bi,j = 1. We claim a is
a monotone triangle. Clearly ai,j−1 ≤ ai−1,j ≤ ai,j . Also, ai,j < ai,j+1, since if ai,j = ai,j+1, then
ai,j = ai+1,j and ai,j+1 = ai+1,j+1 so that we would need bi,j = 0 and bi,j+1 = 1. This contradicts the
fact that the rows of permutation boolean triangles must weakly decrease. Furthermore, a is a monotone
triangle with no −1’s in the corresponding ASM, since each entry is defined to be equal to one of it’s
diagonal neighbors in the row below. This process is clearly invertible.

We now show that this map takes a permutation TSSCPP boolean triangle with p zeros to a permutation
matrix with p inversions. Recall that the inversion number of any ASM A (with the matrix entry in row i
and column j denoted Aij) is defined as I(A) =

∑
AijAk` where the sum is over all i, j, k, ` such that

i > k and j < `. This definition extends the usual notion of inversion in a permutation matrix. In [10]
we found that I(A) satisfies I(A) = E(A) +N(A), where N(A) is the number of −1’s in A and E(A)
is the number of entries in the monotone triangle equal to their southeast diagonal neighbor (entries ai,j
satisfying ai,j = ai+1,j). Since in our case, N(A) = 0 and E(A) equals the number of zeros in the
corresponding TSSCPP boolean triangle, we have that I(A) equals the number of zeros in b.
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Boolean triangle

1
0 0

1 1 0
0 0 0 0

1 0 0 0 0

⇔

Monotone triangle

4
4 6

3 4 6
3 4 5 6

1 3 4 5 6
1 2 3 4 5 6

⇔

Permutation matrix
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


Fig. 7: An example of the bijection. The bold entries in the monotone triangle are the entries equal to their southeast
diagonal neighbor. These are exactly the diagonal steps of the TSSCPP. Note that the matrix on the right represents the
permutation 463512 which has 11 inversions. These inversions correspond to the 11 diagonal steps of the TSSCPP
on the left.

We can see that the zeros of b correspond to permutation inversions directly by noting that to convert
from the monotone triangle representation of a permutation to a usual permutation σ such that i → σ(i),
we set σ(i) equal to the unique new entry in row i of the monotone triangle. Thus for each entry of the
monotone triangle ai,j such that ai,j = ai+1,j , there will be an inversion in the permutation between ai,j
and σ(i+1). This is because ai,j = σ(k) for some k ≤ i and σ(k) = ai,j > σ(i). These entries ai,j such
that ai,j = ai+1,j correspond exactly to zeros in row i of the boolean triangle b. Thus if a permutation
TSSCPP has p zeros in its boolean triangle, its corresponding permutation will have p inversions.

Also, observe that if the number of zeros in the last row of the boolean triangle is k, then the 1 in the
bottom row of the permutation matrix will be in column n− k. So the missing number in the penultimate
monotone triangle row shows where the last row of the boolean triangle transitions from ones to zeros. So
by the bijection between monotone triangles and ASMs, the 1 in the last row of A is in column n− k.

Finally, if the lowest 1 in diagonal n − 1 of the boolean triangle is in row ` − 1, this means that the
entries {ai,n−1} for ` ≤ i ≤ n are all equal to n. So the 1 in the last column of the permutation matrix is
in row `. 2

See Figure 7 for an example of this bijection.

4 Toward a bijection between all TSSCPPs and ASMs
In [9], we discussed the obstacles to turning the bijection between permutations and descending plane
partitions presented there into a bijection between all ASMs and DPPs. Here we discuss some of the
challenges to the ASM-TSSCPP bijection in full generality.
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While DPPs have the property that the number of parts equals the inversion number of the ASM (this
is now proved, though not bijectively [2]), TSSCPPs do not have such a statistic as of yet. We showed
that the number of diagonal steps in a permutation-NILP gives the inversion number of the permutation
matrix, but this is not true for general TSSCPPs and ASMs. Furthermore, while the number of special
parts of a DPP corresponds to the number of −1’s in the ASM, there is no such statistic on TSSCPP.
It would seem reasonable to conjecture that the −1 of the ASM should correspond to all instances of a
vertical step followed by a diagonal step as you go from left to right along a row of the NILP (or a 0
followed by a 1 as you go across a row of the boolean triangle). This holds up to n = 4, and it seems to
hold for arbitrary n in the special cases of one −1 and the maximal number of −1’s (bn

2

4 c). But for the
number of −1’s between 1 and bn

2

4 c, these statistics diverge.
Di Francesco has noted that the distribution of diagonal steps in the top row of the TSSCPP-NILP

corresponds to the refined enumeration of ASMs. So one might hope to begin a general bijection by
determining the (n− 1)st row of the monotone triangle from the top row of the NILP (or the bottom row
of the boolean triangle) by left-justifying all the vertical steps and then bijecting in the same way as in
the permutation case. After that, though, it is unclear how to proceed. See Figure 4 for a summary of the
various statistics which are preserved in the permutation case DPP-ASM-TSSCPP bijections and which
should correspond in full generality. (See [9] for further explanation on the DPP case.)

DPP ASM TSSCPP boolean triangle
no special parts* no −1’s rows weakly decrease
number of parts* number of inversions number of zeros
number of n’s* position of 1 in last column position of lowest 1 in last diagonal

largest part value that position of 1 in last row number of zeros in last row*
does not appear

Fig. 8: This table show the statistics preserved by the permutation case bijections of this paper and [9]. There is a star
by the DPP and TSSCPP statistics that have the same distribution as the ASM statistic in the general case.

Finally, we compare this work with another recent bijection due to Biane and Cheballah. In [3], the
authors give a bijection between Gog and Magog trapezoids of two diagonals. (Gog triangles are exactly
monotone triangles. Magog triangles can be seen to be in bijection with the TSSCPP boolean triangles
considered here. The term trapezoid indicates the truncation of the triangle to a fixed number of diago-
nals.) Their bijection is both more and less general than the one of this paper. It is more general in the
sense that it includes configurations corresponding to the −1 in an ASM, where we consider only permu-
tations. It is less general in that it uses only two diagonals of the triangle, where we are able to consider
the full triangle.

Experimental evidence suggests the bijection of [3] and the bijection of this paper may coincide (up to
slight deformation) in the case of permutation monotone triangles, truncated to two diagonals. Perhaps
the combination of these two perspectives will provide insight on the full bijection.

5 Poset Structure
In [10], we examined a poset structure on TSSCPPs, which turned out to be a distributive lattice with
poset of join irreducibles very similar to that of the ASM lattice. In this final section, we remark on a new
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partial order on TSSCPPs arising from this perspective which is not a distributive lattice, but which has
nice distributive lattice structure when restricted to the permutation case.

Define the boolean partial order on TSSCPPs of order n as the boolean triangles of order n ordered
by componentwise comparison of the entries. This is an induced subposet of the Boolean lattice on

(
n
2

)
elements given by only taking the elements corresponding to TSSCPPs. This order on TSSCPPs is not a
distributive lattice. But if we further restrict this order to the permutation TSSCPPs, the poset formed is
[2]× [3]× · · · × [n], that is, the product of chains of length 2, 3, 4, . . . , n, where the order ideal composed
of k elements in the chain [i] corresponds to row i − 1 of the boolean triangle containing k 1’s. This
permutation TSSCPP lattice is a partial order on permutations which sits between the weak and strong
Bruhat orders on the symmetric group. It contains all of the ordering relations of the weak order plus
some of the additional relations of the strong order. See Figure 9.
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•
@@@@ •

~~~~
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Fig. 9: From left to right: The weak order on S3, the boolean partial order on permutation TSSCPPs of order 3, and
the strong Bruhat order on S3.

Conversely, the natural partial order on all ASMs is the distributive lattice of monotone triangles, but
its restriction to permutations is the strong Bruhat order, which is not a lattice. In fact, the ASM lattice is
the smallest lattice to contain the Bruhat order on the permutations as a subposet (i.e. it is the MacNeille
completion of the Bruhat order [11]). See Figure 10 for a comparison of this order on ASMs with the
TSSCPP boolean order.
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Fig. 10: Left: The boolean partial order on TSSCPPs of order 3. Right: The lattice of 3× 3 ASMs.

We hope that the study of this new partial order on TSSCPPs will provide insight on the combinatorics
of these objects and the associated outstanding bijection problems.
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