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Counting Strings over Z2d with Given
Elementary Symmetric Function Evaluations
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Abstract. Let α be a string over Zq , where q = 2d. The j-th elementary symmetric function evaluated at α is
denoted ej(α). We study the cardinalities Sq(m; τ1, τ2, . . . , τt) of the set of length m strings for which ei(α) = τi.
The profile k(α) = 〈k1, k2, . . . , kq−1〉 of a string α is the sequence of frequencies with which each letter occurs.
The profile of α determines ej(α), and hence Sq . Let hn : Z(q−1)

2n+d−1 7→ Z2d [z] mod z2
n

be the map that takes
k(α) mod 2n+d−1 to the polynomial 1 + e1(α)z + e2(α)z

2 + · · · + e2n−1(α)z
2n−1. We show that hn is a

group homomorphism and establish necessary conditions for membership in the kernel for fixed d. The kernel is
determined for d = 2, 3. The range of hn is described for d = 2. These results are used to efficiently compute
S4(m; τ1, τ2, . . . , τt) for d = 2 and the number of complete factorizations of certain polynomials.

Résumé. Soit α un mot sur Zq , où q = 2d. La j−ième fonction symmétrique élémentaire évaluée à α est dénotée
ej(α). Nous étudions les cardinalités Sq(m; τ1, τ2, . . . , τt) de l’ensemble des mots de longueur m pour lesquels
ei(α) = τi. Le profil k(α) = 〈k1, k2, . . . , kq−1〉 d’un mot α est la suite de fréquences d’apparition de chaque
lettre. Le profil de α détermine ej(α) et donc Sq . Soit hn : Z(q−1)

2n+d−1 7→ Z2d [z]mod z2
n

la fonction qui associe à
k(α)mod 2n+d−1 le polynôme 1 + e1(α)z + e2(α)z

2 + · · · + e2n−1(α)z
2n−1. Nous démontrons que hn est un

homomorphisme de groupe et nous établissons des conditions nécessaires à l’appartenance au noyau pour un d fixé.
Le noyau est déterminé pour d = 2, 3. L’image de hn est décrite pour d = 2. Ces résultats sont utilisés pour calculer
de manière efficace S4(m; τ1, τ2, . . . , τt) pour d = 2 ainsi que le nombre de factorisations complètes de certains
polynômes.

Keywords: elementary symmetric function, monomial factorization, integers mod 2d, group homomorphism, kernel.

1 Introduction and motivation
Before getting too deeply into the abstract and technical details let us illustrate the types of computations
that we will be able to easily carry out after proving our results. Let [[P ]] be 1 or 0 depending of whether
the proposition P is true or false, respectively. Consider the problem below.
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EXAMPLE 1 How many strings are there of length 100 over the alphabet 0, 1, 2, 3 that satisfy the follow-
ing six conditions, with arithmetic done mod 4? Conditions: (a) The sum of the characters is 0 and, (b)
the sum of the products of all pairs of characters is 3 and, (c) the sum of the products of all 4-tuples of
characters is 3, (d) the sum of the products of all 8-tuples of characters is 2, (e) the sum of the products of
all 16-tuples of characters is 3, (f) the sum of the products of all 32-tuples of characters is 3. The answer
is approximately 2.33× 1058, or exactly

23283888738988446954113680611180557044216386182393836339200, (1)

which is the value of the sum∑
k0+k1+k2+k3=100

(
100

k0, k1, k2, k3

)
[[k1, k3 even, k2 odd, k1 + k3 ≡ 54 mod 64]].

That is, the answer is the sum of 667 multinomial coefficients. Furthermore, the sum above applies for
strings of length m; one need only replace the 100 by m.

There are several natural questions that should occur to the reader at this point. Firstly, why are the
“tuples” involved all powers of two? The reason is that, for example, the sum of products of all 3-tuples
is determined already by the value of the sum of products of 1-tuples and 2-tuples. Secondly, why do the
mysterious parity and modular conditions arise; in particular why is it some condition mod 64 and not
just mod 4? We will answer all these questions in due course, generalizing from arithmetic done mod 4 to
arithmetic done mod 2d.

EXAMPLE 2 In this example all computations are done mod 8. The following equation illustrates the
non-unique factorization of a polynomial into monomials.

(1 + z)3(1 + 5z)5 = (1 + 3z)9(1 + 7z)1 (2)

Given a polynomial factored into monomials, we do not know a nice or efficient way to express the number
of its other such factorizations, but we can count them mod z2

n

(simply meaning that we ignore all terms
involving z2

n

for k ≥ 2n). For example,

(1 + z)6(1 + 2z)1(1 + 4z)1(1 + 6z)3 = (1 + 3z)20(1 + 5z)14(1 + 7z)4 mod z8 (3)

and we will show that the total number of possible distinct right hand sides in (3) is 222 if the exponents
on the monomials (1 + jz)k (j = 1, 2, . . . , 7) are restricted so that 0 ≤ k < 32; here 32 is the minimum
value required to ensure “periodicity.”

One aim of this paper is to explain this example and to generalize it to other powers of 2. We hope that
these examples entice the reader to keep reading.

The theory of symmetric functions has long been a basic tool of combinatorial enumeration. In some
combinatorial settings it is useful to enumerate the number of variable substitutions to symmetric func-
tions so that the functions achieve given values. Stanley discusses some of these issues in Section 7.8
of [6]. Our initial interest in the elementary symmetric functions stems from the counting of degree n
monic irreducible polynomials over finite fields with prescribed coefficients for xn−1 and xn−2. If such
a polynomial is factored in a splitting field, these coefficients can be interpreted as the first and second
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elementary symmetric functions evaluated at the (circular) string of coefficients occurring in the factor-
ization.

If a string α has its alphabet in a finite commutative ring R, we can evaluate the j-th elementary
symmetric function ej at α. This evaluation depends on the profile k = 〈k1, k2, . . .〉 of α where ki is the
frequency with which the ring element xi occurs in α. The relationship between strings, polynomials, an
elementary symmetric functions is contained in the mapEk(z) :=

∏
(1+jz)kj since ej(α) = [zj ]Ek(z).

This relationship can be refined to give a sequence of mappings hn : Z(|R|−1)
m → G, where G is an

appropriate multiplicative subgroup of Z`[[z]] where m and ` depend on n.
In [3] we studied the the case R = Zp, where p is prime. These results were then used in [4] in order

to enumerate certain circular strings. Here we choose the substitutions to come from the ring of integers
mod 2d. A fundamental difference between the case considered in [3] is that in the Zp case the hn are
one-to-one, whereas in the Z2d case, they are not. However, there is an underlying group homomorphism
and a periodic repetition which will allow us to provide much structural information and a complete
characterization for specific small values of d. As a byproduct, we are able to enumerate the number of
non-unique factorizations of certain types of polynomials in Z2d [z].

A primary aim in this extended abstract is to state/prove some basic facts about hn, particularly about its
kernel; most proofs have been omitted, although a few proof sketches are given. In doing so we will make
use of some binomial coefficient congruences and manipulations of formal power series. Interestingly,
it will prove useful to allow the profiles contain negative integers and to use the infinite version of the
homomorphism which we call h∞. In the final part of the paper we apply the necessary conditions
established earlier to determine the kernel for d = 2 and d = 3 and give the range for d = 2. In principle,
the same approach would work for higher values of d, but the computations required become prohibitive.

2 Notation and Preliminaries
In this section we carefully define the problem and introduce some of the basic tools. All computations
are done mod q. We set Zq = Z/qZ to denote the ring of integers mod q.

2.1 Strings
Consider a string α = a1a2 · · · am where each ai ∈ Zq . The j-th elementary symmetric function evalu-
ated at α, denoted ej(α), is the sum

ej(α) :=
∑

1≤i1<i2<···<ij≤m

ai1ai2 · · · aij (mod q).

Clearly, (−1)jej(α) is the coefficient of zn−j in the polynomial (z − a1)(z − a2) · · · (z − am).
By Sq(m; τ1, τ2, . . . , τt) we denote the number of strings α over Zq of length m for which ei(α) = τi

for i = 1, 2, . . . , t. Obviously if t = 0, then Sq(m) = qm. It is also true that Sq(m; s) = qm−1 for any
s ∈ Zq , since e1(αx) takes on distinct values for each x ∈ Zq . The numbers Sq(m; τ1, τ2, . . . , τt) satisfy
the following recurrence relation. If n = 1, then Sq(m; τ1, τ2, . . . , τt) = [[τ2 = · · · = τt = 0]], and for
m > 0,

Sq(m; τ1, τ2, . . . , τt) =
∑
x∈Zq

Sq(m− 1; ρ1, ρ2, . . . , ρt), (4)

where ρ0 = 1, and ρi = τi − ρi−1x for i = 1, 2, . . . , t.
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Recurrence relation (4) implies that the power series
∑

m≥0 Sq(m; τ1, τ2, . . . , τt)z
m is rational. We

can evaluate Sq(m; τ1, τ2, . . . , τt) by creating a table of size mqt consisting of Sq for all strings of length
at most m and over the first t elementary symmetric functions. Each table entry requires Θ(qt) ring oper-
ations and Θ(q) arithmetic operations, for a total of Θ(mtqt+1) ring operations and Θ(mqt+1) arithmetic
operations. An aim of this paper is to reduce the number of ring and arithmetic operations required to
evaluate Sq .

2.2 Profiles
Suppose that the string α has kx occurrences of the symbol x for x ∈ Zq . We refer to the (q− 1)-tuple of
natural numbers k = 〈k1, k2, . . . , kq−1〉 as the profile of the string. The elementary symmetric function
ej() depends only on the profile. Note that k0 is omitted since it does not affect ej(). It will prove useful
to have profiles consisting of integers, positive or negative; and to have profiles consisting of integers mod
a natural number. Which case is in effect will usually be obvious from context. From now on, a bold letter
will only denote a profile. We add profiles componentwise and define xk = 〈xk1, xk2, . . . , xkq−1〉.

For k = 〈k1, k2, . . . , kq−1〉 ∈ Zq−1, define in Zq[[z]] the formal power series

Ek(z) :=

q−1∏
j=1

(1 + jz)kj (5)

We make no assumption here that the ki are positive.
Observe that ej(α) = [zj ]Ek(z), where the notation [zj ]A(z) means the coefficient of zj in the gener-

ating function A(z). Clearly,
Ea+b(z) = Ea(z)Eb(z) (6)

We also denote the ej(α) by ej(k) or ej(〈k1, k2, . . . , kq−1〉) when we wish to emphasize the role of
profiles.

The evaluation of Sq in terms of profiles is given by

Sq(m; τ1, τ2, . . . , τt) =
∑

k0+k1+···+kq−1=m

k:=〈k1,...,kq−1〉

(
m

k0, k1, . . . , kq−1

) t∏
i=1

[[ei(k) = τi]]. (7)

In order to evaluate (7) efficiently we need to be able to determine efficiently those profiles k for which
ei(k) = τi for i = 1, 2, . . . , t. We do this by recasting the conditional as

t∏
i=1

[[ei(k) = τi]] = [[Ek(z) mod zt+1 =

t∑
i=0

τiz
i]],

where τ0 is defined to be 1.
This approach to the problem was established in [3] in the case where p = q is prime. There it is proven

that there is a bijection between the set of all polynomials
∑

0≤i<p τiz
i in Zp[z] andEk(z) mod zp where

k ∈ Z(p−1)
p . This bijection is then extended to a bijection between polynomials

m−1∑
j=0

p−1∑
i=0

τipjzip
j

where τipj ∈ Zp
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and Ek(z) mod zp
m

where k ∈ Z(p−1)
pm . For q = 2d the situation is considerably more complicated. Our

first goal is to determine the algebraic structure of those k for which Ek(z) = 1.

3 General Results
3.1 Periodicity and group structure
Our initial aim is to establish the periodic nature of the profiles k when used to determine Ek(z). In this
section all computation is done mod 2d unless noted otherwise.

THEOREM 1 If 0 ≤ s ≤ d− 1, then as polynomials in two variables y and z,

(1 + (y + 2d−s)z)2
s

= (1 + yz)2
s

mod 2d.

LEMMA 1 With arithmetic mod 2d and 0 < t ≤ d, where b, t, d,m are integers,

(1 + 2tbz)m = (1 + 2tbz)m mod 2d−t

.

THEOREM 2 With arithmetic mod 2d, for any n ≥ 1, we have E2d+n−1k(z) = E2d−1k(z2
n

).

Proof: Our proof is by induction on n; details omitted. 2

COROLLARY 1 (PERIODICITY) In Z2d [[z]] mod z2
n

,

Ea+2d+n−1b(z) = Ea(z).

Proof: Follows from (6) and Theorem 2. 2

This last corollary implies that if we are only considering ej() with j < 2n, then we need only consider
values of the profile taken mod 2d+n−1.

THEOREM 3 The set Mn = {Ea(z) mod z2
n | a ∈ Z(2d−1)

2d+n−1} is a multiplicative group in Z2d [[z]] mod

z2
n

, where the multiplication operation is polynomial multiplication mod z2
n

.

For each n ∈ Z+, define the map hn : Z(2d−1)
2d+n−1 7→Mn that takes a to Ea(z) (mod z2

n

). We also define
the set M∞ = {Ea(z) ⊆ Z2d [[z]] | a ∈ Z(2d−1)} and the map h∞ : Z(2d−1) 7→ M∞ that takes a to
Ea(z) (no mod-ing by z2

n

). Clearly M∞ is also a group, where the operation is multiplication of power
series in Z2d [[z]].

THEOREM 4 For each n > 0, the map hn is a group homomorphism. The map h∞ is also a group
homomorphism.
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The fact that hn is a homomorphism can be used to garner information about certain polynomials. In
general the kernel, Ker h of a homomorphism h is the set of elements in the domain that are mapped to
the identity element in the range. In our case Ker hn = {a ∈ Z(2d−1)

2d+n−1 | 1 = Ea(z)}. Since there are
2(2

d−1)(d+n−1) elements in the domain of hn, the number of distinct polynomials of the form Ea(z) in
the range of hn is

2(2
d−1)(d+n−1)

|Ker hn|
. (8)

Note also that |Ker hn| is the number of distinct complete factorizations of any polynomial Ek(z) in
Z2d [[z]] mod z2

n

. The value of |Ker hn| is computed for d = 2, 3 later in the paper.
Since Ker h∞ is closed under component-wise addition and scalar multiplication by integers, Ker h∞

is a Z-module. Similarly, Ker hn is a Z2d+n−1 -module. We will show below that Ker h∞ has a basis but
Ker hn does not, and determine the rank of Ker h∞ for d = 2, 3 in later sections of the paper.

THEOREM 5 A profile k ∈ Ker h∞ if and only if k mod 2d+n−1 ∈ Ker hn for all n ≥ 0.

For example, with d = 2, the identity 1 = (1 + z)−2(1 + 3z)2 holds and thus 〈−2, 0, 2〉 ∈ Ker h∞.
Hence, with n = 3 we have 〈14, 0, 2〉 ∈ Ker h3 and so 1 = (1 + z)14(1 + 3z)2 mod z8.

We will need a variant of Theorem 5 which says that if k is in the kernel of hn and n is large enough,
then k, appropriately normalized, is also in the kernel of h∞. Before stating that result we need to define
some notation and prove a small technical lemma. Let uj denote the unit profile whose i-th entry is equal
to [[i = j]]. For 0 ≤ s ≤ d− 1 and x, y ∈ Z2d we define the profile

u(s;x, y) := 2sux − 2sux+y2d−s ,

and the set of profiles
Us := {u(s;x, y) | x, y ∈ Z2d}.

By Theorem 1Us ⊆ Ker h∞ for each s. For example, with d = 3 we have u(2; 1, 3) = 〈4, 0, 0, 0, 0, 0,−4〉 ∈
Ker h∞ since (1 + z)4 = (1 + 3z)4 = (1 + 5z)4 = (1 + 7z)4 by Theorem 1.

LEMMA 2 For all n, d ≥ 1, if 2n−1 ≤ k < 2d+n−1, then
(

k
2n−1

)
6≡ 0 mod 2d.

THEOREM 6 There is a smallest value N(d), dependent only on d, with the following property: If n ≥
N(d) and k ∈ Ker hn, then there is a k′ ≡ k mod 2d+n−1 such that k′ ∈ Ker h∞.

Proof: (sketch) Assume that 1 = Ek(z) mod z2
n

for some n. The main idea of the proof is to apply an
“exponent reduction” of the ki with i > 1 using the sets Us for s = d − 1, d − 2, . . . , 2, 1 for the odd
i and Lemma 1 for the even i. At the end of the reduction process, we can express k = a + v where
v ∈ Ker h∞ is a linear combination of the u(s;x, y) and the ui. In addition

∑2d−1
i=2 ai ≤ Dd, where

Dd := (2d + 2d−1 − 2d− 1) + (d− 1) = 2d + 2d−1 − d− 2.

We can thus write
(1 + z)a1 mod 2d+n−1

= P (z) +O(z2
n

) (9)

where P (z) is a polynomial of degree at most Dd.
Below is a table of the values of Dd. Note that 1 + dlg(Dd+1)e = d+ 2 for d ≥ 4.
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d 2 3 4 5 6 7 8 9 10 11 12
Dd 2 7 18 41 88 183 374 757 1524 3059 6130

1 + dlg(Dd+1)e 3 4 6 7 8 9 10 11 12 13 14
We now want to show that (a1 mod 2d+n−1) ≤ 2n for large enough n. It then follows that (1 + z)a =

P (z) where a = a1 mod 2d+n−1, which will prove the theorem. Let n be such that deg(P (z)) ≤ Dd <

2n−1. By Lemma 2, [z2
n−1

](1 + z)a 6= 0 for any a in the range 2n−1 ≤ a < 2d+n−1. Thus a < 2n−1

and so
(1 + z)a = P (z) in Zd[[z]].

Taking n = 1 + dlg(Dd+1)e the theorem is proven, 1 + dlg(Dd+1)e is an upper bound on N(d). 2

EXAMPLE 3 We illustrate the proof technique of the preceding theorem. In this example we take d = 3
(so arithmetic is mod 8). Consider the profile k = 〈63, 67, 3, 1, 61, 5, 65〉. A Maple calculation reveals
that

(1+z)63(1+2z)67(1+3z)3(1+4z)1(1+5z)61(1+6z)5(1+7z)65 = 1 +O(z16)

Thus we want n = 4, and so d+ n− 1 = 6. The even indexed factors give

(1 + 2z)67(1 + 4z)1(1 + 6z)5 = (1 + 2z)3(1 + 4z)1(1 + 6z)1 = 1.

We can write the linear combination

k = 16 · 〈4, 0, 0, 0, 0, 0,−4〉+ 30 · 〈2, 0, 0, 0,−2, 0, 0〉+ 〈187, 3, 3, 1, 1, 1, 1〉
= 16 · u(2; 1, 3) + 30 · u(1; 1, 1) + 4 · u6 + 〈187, 3, 3, 1, 1, 1, 1〉

Thus
(1 + z)−187 = (1 + 3z)3(1 + 5z)1(1 + 7z)1 mod z16,

from which it follows that (1 + z)−5(1 + 3z)3(1 + 5z)(1 + 7z) = 1 and so 〈−5, 3, 3, 1, 1, 1, 1〉 ∈ Ker h∞
and k′ = 〈−129, 3, 3, 1, 61, 5, 65〉 ∈ Ker h∞, where k′ ≡ k mod 2d+n−1.

3.2 An even-odd decomposition of the kernel
Define

En := {(k2, k4, . . . , k2d−2) | 1 =

2d−1∏
j=1

(1 + jz)kj [[j even]] in Z2d [[z]] mod z2
n

},

On := {(k1, k3, . . . , k2d−1) | 1 =

2d−1∏
j=1

(1 + jz)kj [[j odd]] in Z2d [[z]] mod z2
n

}.

The sets E∞ and O∞ are defined analogously by removing the modz2
n

.

THEOREM 7 The kernels can be decomposed into the following cartesian products

Ker h∞ = E∞ ×O∞, and

Ker hn = En ×On, if n ≥ N(d),

subject to a shuffling of the indices.
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Proof: (Sketch.) We first treat h∞. By Lemma 1 we may assume that all the even indexed profile
numbers k2i are non-negative. Re-arranging the equation Ek(z) = 1, we have the following equality of
polynomials

2d−1∏
j=1

(1 + jz)kj [[j even]]
2d−1∏
j=1

(1 + jz)kj [[kj>0]][[j odd]] =

2d−1∏
j=1

(1 + jz)−kj [[kj<0]][[j odd]].

The leading coefficient,
∏

j odd j
−kj , of the polynomial on the right must be odd. The leading coefficient

of the polynomial on the left will be even unless 1 =
∏2d−1

j=1 (1+jz)kj [[j even]]. Thus (k2, k4, . . . , k2d−2) ∈
E∞ and hence (k1, k3, . . . , k2d−1) ∈ O∞.

If k ∈ Ker hn, then by Theorem 6 there is a k′ ∈ Ker h∞ such that k′ ≡ k mod 2d+n−1. By our
previous discussion k′ = e′ × o′ where e′ ∈ E∞ and o′ ∈ O∞. By Theorem 5, it follows that e ∈ En

and o ∈ On, where e and o are defined as expected.
The hn case follows from Theorem 6. 2

LEMMA 3 The following two conditions are necessary for membership in the respective kernels.

• If k ∈ Ker h∞, then
∑2d−1

j=1 kj [[j odd]] = 0. This is an integer sum.

• If k ∈ Ker hn and n ≥ N(d), then
∑2d−1

j=1 kj [[j odd]] = 0 mod 2d+n−1.

COROLLARY 2 The Z-module Ker h∞ has a basis.

Proof: (Sketch.) Show that Ker h∞ is finitely-generated and torsion-free. Any finitely-generated torsion-
free module has a basis. 2

The rank of Ker h∞ is at most 2d − 1 since it is a sub-module of Z(2d−1). After proving the following
technical lemma, we will establish a useful necessary condition for membership in Ker h.

LEMMA 4 For all j ∈ Z2d , where d ≥ 4,

j2
d−2

≡ [[jodd]] (mod 2d)

If d = 2 exceptions occur for j = 2, 3, since 22
0 ≡ 2 and 32

0 ≡ 3 mod 4. If d = 3 exceptions occur for
j = 2, 6, since 22

1 ≡ 62
1 ≡ 4 mod 8.

LEMMA 5 The logarithmic derivative of Ek(z) can be written as

d

dz
logEk(z) =

d−2∑
k=0

(−z)k
2d−1∑
j=1

kjj
k+1[[j even]] +

∑
k≥0

(−z)k
2d−1∑
j=1

kjj
(k+1) mod P [[j odd]],

where P = 2d−2 if d ≥ 3 and P = 2 if d = 2.

Proof: (Sketch.) Expand. The left part of the sum is a polynomial since if j is even and k + 1 ≥ d, then
jk+1 = 0 mod 2d. The right part of the sum has periodic coefficients by Lemma 4. 2
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LEMMA 6 The conditions listed below are necessary for a profile k to be in Ker h∞ or in Ker hn if
n ≥ N(d).

0 =

2d−1∑
j=1

kjj
k+1[[j even]] mod 2d, for k = 0, 1, . . . , d− 2 (10)

0 =

2d−1∑
j=1

kjj
k+1[[j odd]] mod 2d for k = 0, 1, . . . , P − 1, (11)

where P = 2d−2 if d ≥ 3 and P = 2 if d = 2.

Proof: Omitted. 2

The k = d − 2 condition in (10) is implied by the k = d − 3 condition. In a similar vein, when
k = 2d−2 − 1 condition (11) becomes 0 =

∑2d−1
j=1 kj [[j odd]].

To finish this section we will determine the cardinality of Ker h1. In the case where n = 1 the condition
0 = [z]Ek(z) =

∑
j jkj is both necessary and sufficient since mod2d+n−1 = 2d. Since we can solve

for k1 for any values of k2, k3, . . . , k2d−1,

|Ker h1| = 2d(2
d−2). (12)

4 The kernel for small values of d
In this section we determine the kernels of h∞ and hn for d = 2 and d = 3.

4.1 The kernel when d = 2

THEOREM 8 Ker h∞ = {k | k1 ≡ k2 ≡ k3 ≡ 0 mod 2 and k1 + k3 = 0}.

COROLLARY 3 For the Z-module Ker h∞, {〈−2, 0, 2〉, 〈0, 2, 0〉} is a basis.

THEOREM 9 If n = 1, then

Ker h1 = {〈0, 0, 0〉, 〈0, 2, 0〉, 〈2, 0, 2〉, 〈2, 2, 2〉, 〈1, 1, 3〉, 〈3, 1, 1〉, 〈1, 3, 3〉, 〈3, 3, 1〉,
〈0, 0, 2〉, 〈0, 2, 2〉, 〈2, 0, 0〉, 〈2, 2, 0〉, 〈1, 0, 1〉, 〈3, 0, 3〉, 〈1, 2, 1〉, 〈3, 2, 3〉}.

If n > 1, then

Ker hn = {a | a1 = a2 = a3 = 0 mod 2 and a1 + a3 = 0 mod 2n+1}

Proof: An exhaustive computation can be used to verify the result for n = 1 and n = 2. Assume that
n > 2. The result follows from applying Theorem 6 to the kernel of h∞ as expressed in Theorem 8.
Theorem 6 can be used for any n ≥ N(2) = 3. 2
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LEMMA 7

|Ker hn| =

{
16 if n = 1

22n if n > 1

Proof: The n = 1 result is clear from the previous theorem. Use Theorem 9. Mod 2n+1 the value of k3
is determined by the value of k1. There are 2n even elements in Z2n+1 . Thus there are 2n choices for k1
and 2n choices for k2, for a total of 22n choices. 2

Since there are 22n elements in the kernel of hn, by the properties of homomorphisms, the number of
distinct polynomials in the range of hn is 23n+3/22n = 2n+3 if n > 1. Another consequence is that the
number of distinct factorizations of Ek(z) mod z2

n

in Z4[z] is 22n if n > 1.

4.2 The kernel when d = 3

The necessary conditions from Lemma 6 imply the following for the even indexed profile numbers:

k2 + 2k4 + 3k6 ≡ 0 mod 4. (13)

For the odd indexed profile numbers we have

k1 + k3 + k5 + k7 = 0

k1 + 3k3 + 5k5 + 7k7 ≡ 0 mod 8

k1 + k3 + k5 + k7 ≡ 0 mod 8

These conditions are not sufficient, but the changes required to make them sufficient are small.

THEOREM 10 The set E∞, is a Z-module with basis B = {(4, 0, 0), (2, 0, 2), (3, 1, 1)}.

Proof: By Lemma 1, we have with arithmetic mod 8, (1 + 2z)k = (1 + 2z)k mod 4, (1 + 6z)k =
(1 + 6z)k mod 4, and (1 + 4z)k = (1 + 4z)k mod 2.

The profiles that satisfy the necessary condition (13) can therefore be classified as (k2 mod 4, k4 mod
2, k6 mod 4), where an exhaustive listing gives

{(0, 0, 0), (2, 0, 2), (1, 1, 3), (3, 1, 1)} ∪ {(1, 0, 1), (3, 0, 3), (0, 1, 2), (2, 1, 0)}.

A routine calculation shows that the left set is in the kernel, but the right set is not. To show that B is a
basis, we first note that it is linearly independent, since the system of equations (14) has only the solution
n1 = n2 = n3 = 0. 0

0
0

 =

4 2 3
0 0 1
0 2 1

n1n2
n3

 (14)

To show that B spans E∞ note that (0, 2, 0) = 2 · (3, 1, 1)− (4, 0, 0)− (2, 0, 2), (0, 0, 4) = 2 · (2, 0, 2)−
(4, 0, 0), and (1, 1, 3) = (3, 1, 1) + (2, 0, 2)− (4, 0, 0). 2

COROLLARY 4 A profile k = 〈k2, k4, k6〉 is in E∞ if and only if k2 ≡ k4 ≡ k6 mod 2 and k2 + 2k4 +
3k6 ≡ 0 mod 4.
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We now turn our attention to the odd indexed profile numbers.

THEOREM 11 The set O∞ is a Z-module with basis B = {(1, 1,−1,−1), (−1, 1, 1,−1), (4,−4, 0, 0)}.

By Theorems 10 and 11, the rank of Ker h∞ is 6.

LEMMA 8 The value of |En| · |On| over Z8 is

23n+3 ·


512 if n = 1,

1024 if n = 2,

23n+3 if n ≥ 3.

Proof: The number of kernel elements in En is 23n+3.
In the case where operations are done mod 2d+n−1 = 2n+2, a certain linear system, used in the proof

of the previous theorem, has 8 distinct solutions, namely

n1 = n2 ∈ {0, 2n+1} and n3 ∈ {0, 2n, 2n+1, 3 · 2n}.

Note that these solutions are the submodule with basis {〈2n+1, 2n+1, 0〉, 〈0, 0, 2n〉}. The number of
kernel elements in On is therefore 23(n+2)/8 = 23n+3, since there are three basis elements and any
kernel element can be written in exactly 8 distinct ways as linear combination of basis elements, where
the coefficients of the combination come from Z2d+n−1 = Z2n+2 . 2

LEMMA 9 The value of |Ker hn| over Z8 is
218 = 262144 if n = 1,

219 = 524288 if n = 2,

222 = 4194304 if n = 3,

26n+6 if n ≥ 4.

Proof: The value for |Ker h1| is from (12). The value for |Ker h2| and |Ker h3| is from an exhaustive
computer listing [5]. Since N(3) ≤ 4, the value for n ≥ 4 follows from Lemma 8. Note that N(3) = 4
since 22 6= 24 = 6 · 3 + 6. 2

4.3 The range of the kernel when d = 2

In this subsection all computation is done mod 4. We will show that the indices of certain “critical”
elementary symmetric functions determine the remaining elementary symmetric function values. These
critical indices occur at the powers of two. We can use this information to get fast algorithms for convert-
ing between a profile and elementary symmetric function evaluations.

LEMMA 10 Let k′ = 2n + k. Then

[z2
n−1

]Ek′,x,y(z) = 2 + [z2
n−1

]Ek,x,y(z).
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It is easy to see, for example, by an exhaustive listing, that there is a bijection between profiles in
Z16 × Z(2)

2 and triples (e1, e2, e4) ∈ Z(3)
4 .

EXAMPLE 4 This is an explanation of Example 2 from the Introduction. What is the profile, if any,
that corresponds to the sequence of six elementary symmetric function values e1, e2, e4, e8, e16, e32 =
0, 3, 3, 2, 3, 3? Consider first e1, e2, e4 = 0, 3, 3 which corresponds to profile 6, 1, 0 mod 16. Here
e8(6, 1, 0) = 0, so Lemma 10 tells us to add 16 to k1 to get e8(22, 1, 0) = 2, while preserving the
values of e1, e2, e4. In a similar manner, since e16(22, 1, 0) = 1, we add 32 to k1 to get e16(54, 1, 0) = 3.
Now e32(54, 1, 0) = 3, so we are done. Any profile that has k1 and k3 even, k2 odd, and k1 + k3 ≡ 54
mod 64 has the required trace values. Furthermore, these determine all traces ej where j = 1, 2, . . . , 63
as per the theorem stated below.

We can extrapolate this example to an algorithm whose running time is O(n). The running time of this
algorithm is clearlyO(n) so long as the values of e2j (k) can be computed in constant time. We show how
to do this, essentially by a table lookup, in the full paper.

THEOREM 12 The values of e2i for i = 0, 1, . . . , n−1 determine the values of ej for j = 1, 2, . . . , 2n−1.
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