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Patterns in matchings and rook placements

Jonathan Bloom and Sergi Elizalde†

Department of Mathematics, Dartmouth College, Hanover, NH, USA

Abstract. Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc
diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings
and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers
boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the
321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the
number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the
patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelı́nek.

Résumé. Étendant la notion de motifs exclus dans des permutations, nous étudions des appariements et partitions
dont le diagramme d’arc évite une configuration donnée de trois arcs. Ces configurations, qui généralisent les 3-
croissements et les 3-emboı̂tements, ont une interprétation, dans le cas d’appariements, en termes de motifs dans des
placements pleins de tours sur des tables de Ferrers. Nous énumérons les appariements et les partitions qui évitent
312, obtenant des séries génératrices algébriques, contrairement au cas du motif 321. Notre approche fournit aussi
une démonstration plus directe d’une formule de Bóna pour le nombre de permutations qui évitent 1342. En plus,
nous donnons une preuve bijective de l’équivalence au sens de la forme et de Wilf des motifs 321 et 213 qui simplifie
les preuves de Backelin–West–Xin et Jelı́nek.
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1 Introduction
Pattern avoidance in matchings is a natural extension of pattern avoidance in permutations. Indeed, a
permutation of [n] = {1, 2, . . . , n} can be thought of as matching of [2n] where each element of [n] is
paired up with an element of [2n]\ [n]. The natural translation of the definition of patterns in permutations
to this type of matchings extends to all perfect matchings, and more generally, to set partitions —which,
when all the blocks have size 2, are just perfect matchings. We will use the term matching to refer
to a perfect matching, when it creates no confusion. On the other hand, the well-studied notions of
k-crossings and k-nestings in matchings and set partitions, in our language, are simply occurrences of
the patterns k . . . 21 and 12 . . . k, respectively. Additionally, by viewing matchings as certain fillings
of Ferrers boards, patterns in matchings relate to patterns in Ferrers boards, and thus to the concept of
shape-Wilf-equivalence of permutations.
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Motivated by these connections and by the recent work on crossings, nestings, permutation patterns,
and shape-Wilf-equivalence, we study matchings and partitions that avoid patterns of length 3. We con-
solidate and simplify recent work on the classification of these patterns, and we obtain new results on the
enumeration of matchings and partitions that avoid some of these patterns.

1.1 Background
We represent a matching of [2n] as an arc diagram as follows: place 2n equally spaced points on a hori-
zontal line, numbered from left to right, and draw an arc between the two vertices of each of the n pairs.
The picture on the left of Fig. 2 corresponds to the matching (1, 6), (2, 12), (3, 4), (5, 7), (8, 10), (9, 11). If
i < j < k < `, two arcs (i, k), (j, `) form a crossing, and two arcs (i, `), (j, k) form a nesting. Similarly, a
partition of [n] is represented by drawing, for each block {i1, i2, . . . , ia} of size awith i1 < i2 < · · · < ia,
a − 1 arcs (i1, i2), (i2, i3), . . . , (ia−1, ia). A crossing in the partition is then a pair of arcs (i, k), (j, `),
and a nesting is a pair of arcs (i, `), (j, k), where i < j < k < `.

Crossings and nestings in matchings and partitions have been studied for decades. It is well known that
the number of perfect matchings on [2n] with no crossings (or with no nestings) is the n-th Catalan number
Cn, which also equals the number of partitions of [n] of with no crossings, and the number of those with
no nestings. More generally, attention has focused on the study of k-crossings (k-nestings), which are sets
of k pairwise crossing (respectively, nesting) arcs. For set partitions, the above definition, which we use
throughout the paper, is the same given by Chen, Deng, Du, Stanley and Yan [7] and Krattenthaler [16].
However, we point out that different definitions of pattern avoidance for partitions have been introduced
by Klazar [14] and Sagan [17].

The number of 3-nonnesting matchings of [2n] (viewed as fixed-point-free involutions with no decreas-
ing sequence of length 6) was found by Gouyou-Beauchamps [12], who recursively constructed a bijection
onto pairs of noncrossing Dyck paths with 2n steps, counted by CnCn+2−C2

n+1. More recently, Chen et
al. [7] showed that the number of k-noncrossing matchings (i.e., containing no k-crossing) of [2n] equals
the number of k-nonnesting (i.e., containing no k-nesting) ones, for all k, and that the analogous results
for partitions hold as well. Their proof, which uses vacillating tableaux and a variation of Robinson-
Schensted insertion and deletion, also provides a bijection between k-noncrossing matchings and certain
(k − 1)-dimensional closed lattice walks, from where a determinant formula for the generating function
in terms of hyperbolic Bessel functions follows.

Less is known about the enumeration of k-noncrossing set partitions. Bousquet-Mélou and Xin [5]
settled the case k = 3 using a bijection into lattice paths to derive a functional equation for the generating
function, which then is solved by the kernel method. They showed that the generating function for 3-
noncrossing set partitions is D-finite, that is, it satisfies a linear differential equation with polynomial
coefficients. This is conjectured not to be the case for k > 3. For k-nonnesting set partitions, additional
functional equations for the generating functions have been obtained by Burrill et al. [6] using generating
trees for open arc diagrams.

By interpreting matchings and partitions as rook placements on Ferrers boards and using the growth
diagram construction of Fomin, Krattenthaler [16] gave a simpler description of the bijections in [7]
proving the symmetry of crossing and nesting number on matchings and partitions. He extended the
results to fillings of Ferrers boards with nonnegative integers. Other extensions have been given by de
Mier [9] to fillings with prescribed row and column sums.

As mentioned before, k-crossings (respectively, k-nestings) in matchings have a simple interpretation
as occurrences of the monotone decreasing (respectively, increasing) pattern of length k. In this paper we
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study and enumerate matchings that avoid other patterns of length 3, and in some cases, we extend our
results to the enumeration of pattern-avoiding partitions. The translation of crossings and nestings to the
language of permutation patterns becomes natural via a bijection between matchings and certain fillings
of Ferrers boards, called full rook placements, described in Section 2.2. For such fillings, the definitions
of pattern containment and avoidance in permutations generalize routinely, and they have been widely
studied in the literature. In this setting, Stankova and West [19] introduced the concept of shape-Wilf-
equivalence, and they showed that the patterns 231 and 312 are shape-Wilf-equivalent. A simpler proof
of this fact was later given by Bloom and Saracino [3]. As we will see, if two patterns are shape-Wilf-
equivalent, then the number of matchings avoiding one is the same as the number of those avoiding the
other, and the same is true for partitions. Backelin, West and Xin [1] showed that 12 . . . k and k . . . 21
are shape-Wilf-equivalent. A more direct proof of their result, which implies again that k-nonnesting and
k-noncrossing matchings are equinumerous, was given by Krattenthaler [16]. It also follows from [1] that
123 and 213 are shape-Wilf-equivalent. Thus, there are three shape-Wilf-equivalence classes of patterns
of length 3, namely 123 ∼ 321 ∼ 213, 231 ∼ 312, and 132.

Jelı́nek [13] reproved some of these results independently in the context of matchings, by giving bijec-
tions between 231-avoiding matchings and 312-avoiding ones, and between 213-avoiding matchings and
123-avoiding (i.e. 3-nonnesting) ones.

Finally, let us mention that Stankova [18] compared, for each one of the three shape-Wilf-equivalence
classes of patterns of length 3, the number of full rook placements on any given Ferrers board avoiding
each a pattern in the class. She showed that the number of 231-avoiding placements is no larger than
the number of 321-avoiding placements (this is also proved in [13]), which is in turn no larger than the
number of 132-avoiding ones.

1.2 Structure of the paper
In Section 2 we define patterns in matchings, in set partitions, and in rook placements on Ferrers boards,
and we set the notation for the rest of the paper. In Sections 3 and 4 we study two of the three shape-Wilf-
equivalence classes of patterns of length 3. In Section 3 we give a new simple bijection between 123-
avoiding matchings and 213-avoiding ones, as well as an extension of work of Gouyou-Beauchamps [12]
for matchings with fixed points (i.e., not necessarily perfect). In Section 4 we enumerate 231-avoiding
(equivalently, 312-avoiding) matchings and partitions, and we show that their generating functions are
algebraic, in contrast to the case of 123-avoiding matchings [12] and partitions [5]. We then use our
techniques for matchings to obtain a new proof of Bóna’s formula enumerating 1342-avoiding permuta-
tions [4]. This leaves one pattern of length 3, namely 132, for which we have been unable to find a formula
for the number of 132-avoiding matchings or partitions. We argue in [2] that this question is related to the
outstanding open problem of enumerating 1324-avoiding permutations [4, 8]. Finally, Section 5 summa-
rizes some results about matchings and partitions that avoid pairs of patterns of length 3. The proofs that
are omitted in this extended abstract can be found in [2].

2 Matchings, partitions, and rook placements
2.1 Ferrers boards
A Ferrers board is a left-justified array of unit squares so that the number of squares in each row is less
than or equal to the number of squares in the row below. To be precise, consider an n × n array of unit
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squares in the xy-plane, whose bottom left corner is at the origin (0, 0). The vertices of the unit squares
are lattice points in Z2. For any vertex V = (a, b), let Γ(V ) be the set of unit squares inside the rectangle
[0, a]× [0, b]. Then, a subset F of the n× n array with the property that Γ(V ) ⊆ F for each vertex in F
is a Ferrers board. Equivalently, F is bounded by the coordinate lines and by a lattice path from (0, n) to
(n, 0) with east steps (1, 0) and south steps (0,−1). We call this path the border of F , and we denote its
vertices by V0, . . . , V2n, where V0 = (0, n), Vn = (n, 0) and Vi+1 is immediately below or to the right
of Vi. An example of these definitions appears in [2, Fig. 1].

Definition 1 A full rook placement is a pair (R,F ) where F is a Ferrers board and R is a subset of
squares of F (marked by placing a rook in each one of them) such that each row and each column of F
contains exactly one rook. LetRF denote the set of full rook placements on F .

In this paper, the term placement will always refer to a full rook placement. For a Ferrers board F to
admit a full rook placement, the number or nonempty rows must equal the number of nonempty columns,
and the coordinates (x, y) of the vertices in the border of F must satisfy x ≥ y. We denote by Fn the
set of Ferrers boards satisfying this condition and having n nonempty rows and columns. The border of
F ∈ Fn, which we denote by DF , is a lattice path from (0, n) to (n, 0) with steps east (e = (1, 0)) and
south (s = (0,−1)) that remains above the line y = n− x. We denote by Dn the set of such paths, which
we call Dyck paths of semilength n (despite being rotated from other standard ways of drawing them).
The map F 7→ DF is a trivial bijection between Fn and Dn. A peak on a Dyck path is an occurrence of
es (as consecutive steps), and a valley is an occurrence of se.

We let
Rn =

⋃
F∈Fn

RF

be the set of all placements on boards in Fn. Denote by Sn the set of permutations of {1, 2, . . . , n}. To
each full rook placement (R,F ) where F ∈ Fn, one can associate a permutation πR ∈ Sn by letting
πR(i) = j if R has a rook in column i and row j (our convention is to number the columns of F from left
to right and its rows from bottom to top, as in the usual cartesian coordinates). In the case that F ∈ Fn
is the square Ferrers board, this map is a bijection betweenRF and Sn. More generally, given a vertex V
of the border of F , the restriction of the placement R to the rectangle Γ(V ), which consists of the squares
R ∩ Γ(V ), determines a unique permutation in Sk, where k = |R ∩ Γ(V )|. This permutation is obtained
by disregarding empty rows and columns, and then applying the above map. Under this correspondence
it makes sense to consider concepts such as the longest increasing sequence in R ∩ Γ(V ).

Recall that a permutation π ∈ Sn avoids another permutation τ ∈ Sk (usually called a pattern) if there
is no subsequence π(i1) . . . π(ik) with i1 < · · · < ik that is order-isomorphic to τ(1) . . . τ(k). The num-
ber of τ -avoiding permutations in Sn is denoted by Sn(τ). Viewing permutations as full rook placements
on the square Ferrers board, π avoids τ if the placement corresponding to τ cannot be obtained from the
placement corresponding to π by removing rows and columns. This definition has been generalized [1] to
rook placements as follows.

Definition 2 A full rook placement (R,F ) avoids τ ∈ Sk if and only if for every vertex V on the border
of F , the permutation given by R ∩ Γ(V ) avoids τ . Let RF (τ) be the set of full rook placements on F
that avoid τ . Similarly, let

Rn(τ) =
⋃

F∈Fn

RF (τ).
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Definition 3 Two patterns σ and τ are said to be shape-Wilf-equivalent, denoted σ ∼ τ , if for any Ferrers
board F we have |RF (σ)| = |RF (τ)|.

Clearly, if two patterns are shape-Wilf-equivalent, then they are also Wilf-equivalent, meaning that
they are avoided by the same number of permutations. The converse is not true, as shown by the fact
that there is one Wilf-equivalence class for patterns of length 3, but three shape-Wilf-equivalence classes:
123 ∼ 321 ∼ 213, 231 ∼ 312, and 132.

Regarding shape-Wilf-equivalence of patterns of arbitrary length, two important results are due to Back-
elin, West and Xin [1]. One states that 12 . . . k ∼ k . . . 21 for all k, and the other one is the following.

Proposition 2.1 ([1]) Let σ, τ ∈ Sk and ρ ∈ S`. If σ ∼ τ , then σρ′ ∼ τρ′, where ρ′ is obtained from ρ
by adding k to each of its entries.

Denote by D2
n the set of pairs (D0, D1) of Dyck paths D0, D1 ∈ Dn such that D0 never goes above

D1. We say that D0 and D1 are noncrossing, and we call D0 the bottom path and D1 the top path. For
any F ∈ Fn, we denote by D2

F the set of pairs (D0, DF ) ∈ D2
n, that is, those where the top path is the

border of F .

2.2 Matchings
Denote byMn the set of perfect matchings on [2n]. If (i, j) is a matched pair with i < j, we call i an
opener and j a closer. The following natural bijection between Mn and Rn, which we denote κ, has
been used in [9, 13]. Given a matching M ∈ Mn, construct a path from (0, n) to (n, 0) by reading the
vertices ofM in increasing order, and adding an east step for each opener, and a south step for each closer.
This path is clearly a Dyck path, so it is the border of a Ferrers board F ∈ Fn, which we call the shape
of M . Each column of F is naturally associated to an opener of M (the vertex that produced the east
step at the top of the column), and similarly each row is naturally associated to a closer. Now define a
full rook placement on F by placing a rook in the column associated to i and the row associated to j for
each matched pair (i, j). Two examples of the bijection κ are given in Fig. 2. For fixed F ∈ Fn, denote
by MF = κ−1(RF ) the set of matchings of shape F . Note that Mn =

⋃
F∈Fn

MF . In light of this
bijection, the definition of pattern avoidance in Ferrers boards translates naturally to matchings.

Definition 4 We say that a matching M ∈ Mn avoids the pattern τ ∈ Sk if the corresponding rook
placement κ(M) does. Equivalently, M avoids τ if there are no 2k vertices 1 ≤ i1 < . . . < i2k ≤ n such
that M contains all the pairs (ia, i2k+1−τ(a)) for 1 ≤ a ≤ k. LetMF (τ) = κ−1(RF (τ)) be the set of
τ -avoiding matchings of shape F , and letMn(τ) =

⋃
F∈Fn

MF (τ).

This definition extends the notions of k-noncrossing and k-nonnesting matchings studied in [7, 16].
Recall that a matching is k-noncrossing if it contains no k mutually crossing arcs. In our terminology,
this is equivalent to avoiding the pattern k . . . 21. Similarly, a matchings is k-nonnesting if it contains no
k mutually crossing arcs, which is equivalent to avoiding 12 . . . k.

For patterns τ ∈ S3, which are the focus of this paper, we can describeMn(τ) as the set of matchings
M ∈ Mn containing no three arcs whose endpoints occur in the same order as in the corresponding
configuration in Fig. 1.

Since κ is a bijection, it is clear that |MF (τ)| = |RF (τ)| for any τ . Thus, shape-Wilf-equivalence
can be interpreted in terms of pattern-avoiding matchings: σ ∼ τ if and only if |MF (σ)| = |MF (τ)|
for every Ferrers board F . In particular, if σ ∼ τ , then |Mn(σ)| = |Mn(τ)| for all n. The converse
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321 123 132 231 312 213

Fig. 1: Forbidden configurations corresponding to τ ∈ S3.

statement is false in general. For example, it is trivial by symmetry that |Mn(2341)| = |Mn(4123)| for
all n, but the patterns 2341 and 4123 are not shape-Wilf-equivalent, since |MF (2341)| 6= |MF (4123)|
for the Ferrers boards in F6 consisting of a 6× 6 square with two missing boxes.

2.3 Set partitions
Denote by Pn the set of partitions of [n]. For each block {i1, i2, . . . , ia} with i1 < i2 < · · · < ia and
a ≥ 2, we call i1 an opener, ia a closer, and we say that i2, . . . , ia−1 are transitory vertices. If a = 1,
the vertex i1 is called a singleton. We will use the term partition to refer to a set partition when it creates
no confusion. Note that matchings are partitions where all blocks have size 2. The definition of pattern
avoidance for matchings extends to partitions as follows.

Definition 5 We say that a partition P ∈ Pn avoids the pattern τ ∈ Sk if there are no 2k vertices
1 ≤ i1 < . . . < i2k ≤ n such that P contains all the arcs (ia, i2k+1−τ(a)) for 1 ≤ a ≤ k. Denote by
Pn(τ) the set of τ -avoiding partitions of [n].

Note that in the above definition, singleton blocks of P do not contribute to occurrences of any pattern τ .

3 The patterns 123 ∼ 321 ∼ 213

The equivalence 123 ∼ 321 was first proved in [1], and later simplified by Chen et al [7] and by Krat-
tenthaler [16]. The equivalence 321 ∼ 213 was proved by Backelin, West and Xin [1], and later by
Jelı́nek [13]. In this section we provide a short bijective proof of the fact that 321 ∼ 213, greatly sim-
plifying the proofs in [1, 13]. For the rest of this section, we fix a Ferrers board F ∈ Fn, and we let Vi
denote the ith vertex on the border of F .

Theorem 3.1 There are explicit bijections ∆321 : MF (321) → D2
F and ∆213 : MF (213) → D2

F .
Therefore, 321 ∼ 213.

This theorem will follow from Theorems 3.2 and 3.3 below. In a different form, the bijection ∆321

was constructed by Chen et al. [7] using vacillating tableaux. Here we provide a short description of this
bijection in our language. Recall that matchings can be viewed as full rook placements via the bijection
κ :MF → RF described in Section 2.2.

It will be convenient to identify a Dyck path D ∈ Dn with the sequence d0d1 . . . d2n that records
the distances from its vertices to the main diagonal y = n − x. More precisely, if Vi = (a, b), then
di = a+b−n. We call d0d1 . . . d2n the height sequence ofD. Fix h0h1 . . . h2n to be the height sequence
of DF .

For (R,F ) ∈ RF , define the sequence j0 . . . j2n by letting ji = 2`i − hi, where `i is the length of the
longest increasing sequence in R ∩ Γ(Vi). A straightforward argument (see [2]) shows that j0 . . . j2n is
a height sequence for some Dyck path, which we denote by DR,F . Additionally, we show that ji ≤ hi
for all i, and so (DR,F , DF ) ∈ D2

F . Define the map δ321 : RF (321) → D2
F by letting δ321(R,F ) =
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(DR,F , DF ). Then define ∆321 = δ321 ◦ κ. The proof of following theorem is omitted in this extended
abstract, but it may be found in [2].

Theorem 3.2 The map δ321 : RF (321)→ D2
F is a bijection, and thus so is ∆321 :MF (321)→ D2

F .

Now we turn to the second part of the proof of Theorem 3.1. Even though a different bijection between
MF (213) and D2

F has already been given by Jelı́nek in [13], here we present a much simpler bijection
∆213 through a short pictorial argument.

As in the case of 321-avoiding matchings, it is convenient to let ∆213 = δ213 ◦ κ, where the map δ213 :
RF (213) → D2

F is defined as δ213(R,F ) = (D,DF ), with D given by the following construction. As
the pattern 213 ends with its largest entry, the fact that (R,F ) is 213-avoiding implies that πR ∈ Sn(213).
Let FR be the minimal Ferrers board that contains R. In a different language, the bijection between
Sn(213) and Dn that sends πR to DFR

appears in [15]. We define the bottom path in δ213(R,F ) to be
D = DFR

. Note that FR ⊆ F by definition, so DFR
and DF are noncrossing Dyck paths. The following

theorem is now clear.

Theorem 3.3 The map δ213 : RF (213)→ D2
F is a bijection, and thus so is ∆213 :MF (213)→ D2

F .

Examples of the maps δ321 and δ213, together with the complete bijection from betweenMF (321) and
MF (213), is given in Fig. 2.

κ

MF (321)

×

×

×
×
×
×

δ321

RF (321) D2
F

κ

MF (213)

×
×

×

×
×
×

δ213

RF (213)

Fig. 2: An example of the bijection between MF (321) and MF (213). The bold path on the Ferrers board on the
right represents the border of FR.

In the particular case that F ∈ Fn is the square board, the composition ∆−1213 ◦∆321 gives a bijection
between Sn(321) and Sn(213) which coincides, up to symmetry, with a bijection of Elizalde and Pak [10].

We end this section by mentioning that ∆321 and ∆213 can be generalized to bijections between
pattern-avoiding matchings with fixed points and pairs of noncrossing Dyck paths satisfying a certain
condition. These generalizations, which we describe in the full paper [2], extend the results of Gouyou-
Beauchamps [12] involving Young tableaux with at most 4 or 5 rows and 54321-avoiding involutions,
which in our language become 123-avoiding matchings with fixed points.

4 The patterns 231 ∼ 312

The first proof of the equivalence 231 ∼ 312 was given by Stankova and West [19]. Later, Bloom and
Saracino [3] gave a more direct proof. The main ingredient in Bloom and Saracino’s construction is
a bijection between 231-avoiding full rook placements of a given Ferrers board F ∈ Fn and certain
labelings of the vertices on the border of F . Recall that the vertices V0V1 . . . V2n are ordered from (0, n)
to (n, 0).
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We define a labeled Dyck path of semilength n to be a pair (D,α) where D ∈ Dn, and α =
α0α1 . . . α2n is an integer sequence with the following monotonicity property: if Vi+1 is to the right
of Vi, then αi ≤ αi+1 ≤ αi + 1, else αi ≥ αi+1 ≥ αi − 1. We think of αi as the label of vertex Vi.

We say that two vertices Vi = (xi, yi) and Vj = (xj , yj) of D are aligned if xi − xj = yi − yj and
the line segment connecting the points Vi and Vj lies strictly below D (except for the endpoints of the
segment, which are on D). We say that a labeled Dyck path (D,α) has the diagonal property if for any
two aligned vertices Vi and Vj with i < j, we have αi ≥ αj . We say (D,α) satisfies the 0-condition if for
each i, one has αi = 0 if and only if Vi lies on the diagonal y = n−x. For F ∈ Fn, we denote by LF the
set of labelings (DF , α) of the boundary of F that satisfy both the diagonal property and the 0-condition.
We also let Ln =

⋃
F∈Fn

LF .
Bloom and Saracino’s bijection in [3] between placements and labeled Dyck paths is the map Π :
RF (312)→ LF that sends (R,F ) ∈ RF (312) to the pair (DF , α) where, for 0 ≤ i ≤ 2n, the label αi is
the length of the longest increasing sequence in R ∩ Γ(Vi). In a slight abuse of notation, we also denote
by Π the bijection induced by Π fromRn(312) =

⋃
F∈Fn

RF (312) to Ln =
⋃
F∈Fn

LF .

4.1 312-avoiding matchings
In this section we enumerate 312-avoiding matchings, or equivalently, 231-avoiding ones.

Theorem 4.1 The generating function for 312-avoiding matchings is∑
n≥0

|Mn(312)|zn =
54z

1 + 36z − (1− 12z)3/2
. (1)

The asymptotic behavior of its coefficients is given by

|Mn(312)| ∼ 33

25
√
πn5

12n. (2)

Proof: We first translate the problem into an enumeration of labeled Dyck paths. The composition Π ◦ κ
is a bijection betweenMn(312) and Ln, so we have L(z) :=

∑
n≥0 |Mn(312)|zn =

∑
n≥0 |Ln|zn.

We will find an expression for L(z) using the recursive structure of Dyck paths: every D ∈ Dn with
n ≥ 1 uniquely decomposes as eD1sD2 where e is an east step, s is a south step, andD1 andD2 are Dyck
paths. Even though this decomposition can be extended to deal with labeled Dyck paths by transferring
the label on each vertex of D to the corresponding vertex of eD1s or D2, the fact that the labels on eD1s
satisfy the 0-condition does not guarantee that the labels onD1 do, even if their values are decreased by 1.

To deal with this problem, we relax the 0-condition and consider the larger set Kn consisting of all
labeled Dyck paths (D,α) of semilength n that have the diagonal property and satisfy α2n = 0. Let
K =

⋃
n≥0Kn, and denote by K(u, z) =

∑
n≥0

∑
(D,α)∈Kn

uα0zn the generating function for such
paths according to the value of the first label.

To obtain an equation for K(u, z), first consider the following operation: given (A,α) ∈ Ki, (B, β) ∈
Kj , let (A,α) ⊕ (B, β) ∈ Ki+j be the concatenation of Dyck paths AB with labels (α0 + β0)(α1 +
β0) . . . (α2i + β0)β1 . . . β2j . In other words, the labels along A are increased by β0, and the labels along
B do not change. Every nonempty (D, γ) ∈ K can be decomposed uniquely as (D, γ) = (eD1s, α) ⊕
(D2, β) where (eD1s, α), (D2, β) ∈ K. Whereas (D2, β) is an arbitrary element of K, the labeling α of
the elevated Dyck path eD1s can be of four different types, according to whether α0 = α1 and whether
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α2i−1 = α2i, where i is the semilength of eD1s. Analyzing these four possibilities, the decomposition
translates into the functional equation

K(u, z) = 1 + zK(u, z)

(
2K(u, z) + uK(u, z) +

K(u, z)−K(0, z)

u

)
.

We solve this equation using the quadratic method, due to Tutte, as described in [11, p. 515]. Doing so
yields an expression for K(0, z) (see [2] for details).

Finally, to findL(z), observe that for any (D,α) ∈ Ln, the pathD can be decomposed uniquely asD =
eA1seA2s . . . , where each Aj is a Dyck path, and if we let α(j) be its sequence of labels decreased by
one, then (Aj , α

(j)) is an arbitrary element of K with α(j)
0 = 0. It follows that L(z) = 1/(1− zK(0, z)),

which gives Eq. (1).
To find the asymptotic behavior of the coefficients, note that the singularity of L(z) nearest to the origin

is a branch point at z = 1/12. By [11, Corollary VI.1], its coefficients satisfy Eq. (2). 2

It is interesting to observe that the generating function in Theorem 4.1 is algebraic, in contrast with the
fact that the generating function for 123-avoiding matchings is D-finite but not algebraic [12, 7]. Compare
also the growth rate in Eq. (2) with |Mn(123)| = Cn+2Cn − C2

n+1 ∼ 24
πn5 16n.

4.2 312-avoiding partitions
A refinement of the methods from Section 4.1 can be used to enumerate 312-avoiding partitions, or
equivalently, 231-avoiding ones. For any pattern τ , the set of τ -avoiding set partitions can be gener-
ated from the set of all τ -avoiding matchings as follows. Given a matching M , one can first choose,
for each closer immediately followed by an opener, either to merge them into one transitory vertex or
to leave them as they are; then one can insert singleton vertices in any position. If we let val(M) de-
note the number of closers immediately followed by openers in M (we call these valleys of M ), and
A(v, z) =

∑
n≥0

∑
M∈Mn(τ)

uval(M)zn is the generating function for τ -avoiding matchings with re-
spect to the number of valleys, then∑

n≥0

|Pn(τ)|zn =
1

1− z
A

(
1

z
,

z2

(1− z)2

)
. (3)

If two patterns satisfy σ ∼ τ , then |MF (σ)| = |MF (τ)| for every F , and so the above generating
function A(v, z) is the same for σ-avoiding as for τ -avoiding matchings. It follows that |Pn(σ)| =
|Pn(τ)| for all n. In particular, since 312 ∼ 231, we have |Pn(312)| = |Pn(231)|.

Theorem 4.2 The generating function B(z) =
∑
n≥0 |Pn(312)|zn for 312-avoiding partitions is a root

of the cubic polynomial

(z − 1)(5z2 − 2z + 1)2B3 + (−9z5 + 54z4 − 85z3 + 59z2 − 14z + 3)B2

+ (−9z4 + 60z3 − 64z2 + 13z − 3)B + (−9z3 + 23z2 − 4z + 1). (4)

The asymptotic behavior of its coefficients is given by

|Pn(312)| ∼ δn−5/2 ρn, (5)
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where

ρ =
3(9 + 6

√
3)1/3

2 + 2(9 + 6
√

3)1/3 − (9 + 6
√

3)2/3
≈ 6.97685

and δ ≈ 0.061518.

Proof sketch: To apply Eq. (3), we need to count 312-avoiding matchings while keeping track of the
number of closers immediately followed by an opener. Via the bijection Π ◦ κ : Mn(312) → Ln, this
is equivalent to counting labeled paths in Ln with respect to the number of valleys. Proceeding as in the
proof of Theorem 4.1, the generating function K(u, v, z) for paths in K that refines K(u, z) by marking
the number of valleys with the variable v satisfies

K(u, v, z) = 1 + z(vK(u, v, z)− v + 1)

(
2K(u, v, z) + uK(u, v, z) +

K(u, v, z)−K(0, v, z)

u

)
.

Applying the quadratic method, we obtain an expression for K(0, v, z). Then, letting L(v, z) be the
generating function for paths in Ln where v marks the number of valleys, we have

L(v, z) =
1/v

1− vzK(0, v, z)
− 1

v
+ 1.

Using now Eq. (3) to relate B(z) and L(v, z), it follows that B(z) is a root of the polynomial (4).
To describe the asymptotic growth of its coefficients, we use the method described in [11, Section

VII.7.1] to compute the singularities of algebraic functions (see [2] for details). 2

Again, the generating function in Theorem 4.2 is algebraic, in contrast with the fact that the generating
function for 123-avoiding (namely, 3-noncrossing) partitions is D-finite but not algebraic [5]. Compare
also Eq. (5) with the growth of the number of 3-noncrossing partitions [5], given by

|Pn(123)| ∼ 39 5
√

3

25 π

9n

n7
.

4.3 An application to 1342-avoiding permutations
The method involving labeled Dyck paths that we have developed to enumerate 312-avoiding matchings
can be used to recover the following generating function due to Bóna [4] for the number of 1342-avoiding
permutations (which, by symmetry, equals the number of 3124-avoiding ones).

Theorem 4.3 ([4]) ∑
n≥0

|Sn(1342)|zn =
32z

1 + 20z − 8z2 − (1− 8z)3/2
.

Bóna [4] obtained this formula by constructing a bijection between so-called indecomposable 1342-
avoiding permutations and certain labeled trees, called β(0, 1)-trees. He then used the fact that the gen-
erating function for β(0, 1)-trees had already been found by Tutte [20]. Our approach provides a more
direct method to enumerate 1342-avoiding permutations without using β(0, 1)-trees.

Denote by R×n (312) the set of placements (R,F ) ∈ Rn(312) with the property that F is the smallest
Ferrers board that contains R. There is a straightforward bijection χ : Sn(3124) → R×n (312) defined
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by χ(π) = (Rπ, Fπ), where Rπ is the placement consisting of the squares (i, π(i)) for 1 ≤ i ≤ n, and
Fπ is the smallest board containing Rπ . To enumerate R×n (312), we use the fact (proved in [2]) that the
image of the map Π : Rn(312) → Ln, when restricted to R×n (312), is the set of labeled Dyck paths
(D,α) ∈ Ln such that for every peak Vi, the labels around it satisfy αi−1 = αi + 1 = αi+1. We denote
this set by L×n .

Using the same framework as in the proof of Theorem 4.1, we can obtain the generating function for
these paths. LetK×n be the set of labeled Dyck paths (D,α) that have the diagonal property, satisfy α2n =
0, and such that αi−1 = αi + 1 = αi+1 if Vi is a peak. Letting K×(u, z) =

∑
n≥0

∑
(D,α)∈K×

n
uα0zn be

the generating function for such paths according to the value of the first label, we obtain

K×(u, z) = 1 + zK×(u, z)

(
K×(u, z) + (u+ 1)(K×(u, z)− 1) +

K×(u, z)−K×(0, z)

u

)
.

The quadratic method yields a formula for K×(0, z), from where∑
n≥0

|Sn(3124)|zn =
∑
n≥0

|L×n |zn =
1

1− zK×(0, z)
=

32z

1 + 20z − 8z2 − (1− 8z)3/2
.

5 Pairs of patterns
Tab. 1 summarizes the results from the full paper [2] on matchings and set partitions that avoid a pair of
patterns of length 3. The notions of pattern-avoidance and shape-Wilf-equivalence defined in Section 2
have a straightforward generalization to pairs of patterns. We establish that the 15 pairs of patterns in
S3 are partitioned into 7 shape-Wilf-equivalence classes. Further, we provide enumeration results for
matchings and set partitions avoiding a pair of patterns in many cases.

132 213 231 312 321
123 VI I II III IV
132 I I I VII
213 I I V
231 I I
312 I

Class Matchings Set partitions

I
4

3 +
√

1− 8z

2− 3z + z2 − z
√

1− 6z + z2

2(1− 3z + 3z2)

II, III Solutions of a cubic Solutions of a cubic

IV
1− 5z + 2z2

1− 6z + 5z2
1− 10z + 32z2 − 37z3 + 12z4

(1− z)(1− 10z + 31z2 − 30z3 + z4)

V Functional equation Unknown

VI, VII Unknown Unknown

Tab. 1: The 7 shape-Wilf-equivalence classes of pairs of patterns, and a summary of our enumeration results.
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