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Abstract. Each positive rational number x > 0 can be written uniquely as x = a/(b − a) for coprime positive
integers 0 < a < b. We will identify x with the pair (a, b). In this extended abstract we use rational Dyck paths to
define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It
is a pure simplicial complex of dimension a− 2, and its maximal faces are counted by the rational Catalan number

Cat(x) = Cat(a, b) :=
(a+ b− 1)!

a! b!
.

The cases (a, b) = (n, n + 1) and (a, b) = (n, kn + 1) recover the classical associahedron and its Fuss-Catalan
generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that Ass(a, b) is shellable and give
nice product formulas for its h-vector (the rational Narayana numbers) and f -vector (the rational Kirkman numbers).
We define Ass(a, b) .

Résumé. Tout nombre rationnel positif x > 0 peut être exprimé de façon unique par x = a/(b− a) avec 0 < a < b
deux entiers positifs premiers entre eux. Nous identifierons x avec la paire (a, b). Dans cet article, nous utilisons les
chemins de Dyck rationnels pour définir pour tout rationnel positif x > 0 un complexe simplicial Ass(x) = Ass(a, b)
que nous appelons l’associahedron rationnel. Il s’agit d’un complexe simplicial pur de dimension a− 2, et ses faces
maximales sont comptées par le nombre rationnel de Catalan

Cat(x) = Cat(a, b) :=
(a+ b− 1)!

a! b!
.

Les cas (a, b) = (n, n+1) et (a, b) = (n, kn+1) permettent de retrouver l’associhedron classique et sa généralisation
Fuss-Catalan, étudiée par Athanasiadis-Tzanaki et Fomin-Reading. Nous démontrons que Ass(a, b) est shellable et
nous donnons des formules de produits simples pour son h-vecteur (les nombres rationnels de Narayana) et son
f -vecteur (les nombres rationnels de Kirkman).
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1 Motivation
This extended abstract is one of a pair of papers (see also [ALW]) that initiate the research program of ra-
tional Catalan combinatorics. The motivation for this program is both combinatorial and representation-
theoretic.

The classical Catalan numbers(i)

Cat(n, n+ 1) =
1

n+ 1

(
2n

n

)
are among the most important sequences in combinatorics. As of this writing, they are known to count
at least 201 distinct families of combinatorial objects [Stan]. For our current purpose, the following three
are the most important:

1. Dyck paths from (0, 0) to (n, n),

2. Triangulations of a convex (n+ 2)-gon, and

3. Noncrossing partitions of a cycle (1, 2, . . . , n).

There are two observations that have spurred recent progress in this field. The first is that Catalan
objects are revealed to be type A phenomena (corresponding to the symmetric group) when properly
interpreted in the context of reflection groups. The second is that many definitions of Catalan objects can
be further generalized to accommodate an additional parameter, so that the resulting objects are counted
by Fuss-Catalan numbers (see [Arm, Chapter 5]).

Both of these generalizations can be motivated from Garsia’s and Haiman’s [GH] observation that
the Catalan numbers play a deep role in representation theory. The symmetric group Sn acts on the
polynomial ring DSn := Q[x1, . . . , xn, y1, . . . , yn] by permuting variables diagonally. That is, for w ∈
Sn we define w.xi = xw(i) and w.yi = yw(i). Weyl [W] proved that the subring of diagonal invariants
is generated by the polarized power sums pr,s =

∑
i x

r
i y

s
i for r + s ≥ 0 with 1 ≤ r + s ≤ n. The

quotient ring of diagonal coinvariants DRn := DSn/(pr,s) inherits the structure of an Sn-module which
is bigraded by x-degree and y-degree. Garsia and Haiman conjectured that dimDRn = (n + 1)n−1 (a
number famous from Cayley’s formula [Cay]) and that the dimension of the sign-isotypic component is
the Catalan number Cat(n, n+1). These conjectures turned out to be difficult to resolve, and were proved
about ten years later by Haiman using the geometry of Hilbert schemes.

An excellent introduction to this subject is Haiman’s paper [Hai1], in which he laid the foundation for
generalizing the theory of diagonal coinvariants to other reflection groups. Let W be a Weyl group, so
that W acts irreducibly on R` by reflections and stabilizes a full-rank lattice Z` ≈ Q ⊆ R`, called the
root lattice. The group also comes equipped with special integers d1 ≤ · · · ≤ d` called degrees, of which
the largest h := d` is called the Coxeter number. Haiman showed that number of orbits of W acting on
the finite torus Q/(h+ 1)Q is equal to

Cat(W ) :=
∏
i

h+ di
di

,

which we now refer to as the Catalan number of W .
From this modern perspective, our three examples above become:

(i) This notation will we justified shortly.
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1. W -orbits of the finite torus Q/(h+ 1)Q [Shi1, Hai1, Ath1, CP],

2. Clusters in Fomin and Zelevinsky’s finite type cluster algebras [FZ], and

3. Elements beneath a Coxeter element c in the absolute order on W [Rei, Arm].

More generally, given any positive integer p coprime to the Coxeter number h, Haiman showed that
the number of orbits of W acting on the finite torus Q/pQ is equal to

Cat(W,p) :=
∏
i

p+ di − 1

di
, (1)

which we now refer to as a rational Catalan number.
The cases p = mh + 1 have been extensively studied as the Fuss-Catalan analogues, which further

generalize our initial three examples to:

1. Dominant regions in the m-Shi arrangement [Ath2, FV],

2. Clusters in the generalized cluster complex [FR], and

3. m-multichains in the noncrossing partition lattice. [Edel, Arm].

The broad purpose of rational Catalan combinatorics is to complete the generalization from
p = +1 mod h to all parameters p. That is, we wish to define and study Catalan objects such as parking
functions, Dyck paths, triangulations, and noncrossing partitions for each pair (W,p), where W is a finite
reflection group and p is a positive integer coprime to the Coxeter number h. We may think of this as a two-
dimensional problem with a “type axis”W and a “parameter axis” p. The level set p = h+1 is understood
fairly well, and the Fuss-Catalan cases p = +1 mod h are discussed in Chapter 5 of Armstrong [Arm].
However, it is surprising that the type A level set (i.e. W = Sn) is an open problem. This could have
been pursued fifty years ago, but no one has done so in a systematic way.

Thus, we propose to begin the study of rational Catalan combinatorics with the study of classical
rational Catalan combinatorics corresponding to a pair (Sa, b) with b coprime to a. In this case, we have
the classical rational Catalan number

Cat(Sa, b) =
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
. (2)

Note the surprising symmetry between a and b; i.e. that Cat(Sa, b) = Cat(Sb, a). This will show up as
a conjectural Alexander duality in our study of rational associahedra.

First we will set down notation for the rational Catalan numbers Cat(Sa, b) in Section 2. Then in
Section 3 we will define the rational Dyck paths which are the heart of the theory. In Section 4 we will
use the Dyck paths to define and study rational associahedra. (In the full version of this paper we will
also study the closely related rational noncrossing partitions.) In a separate paper [ALW] the Dyck paths
will be used to define and study rational parking functions and q, t-statistics on these. The project of
generalizing these constructions to reflection groups beyond Sn is left for the future.
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2 Rational Catalan Numbers
Given a rational number x ∈ Q outside the range [−1, 0], there is a unique way to write x = a/(b − a)
where a 6= b are coprime positive integers. We consider this a canonical form, and we will identify x ∈ Q
with the ordered pair (a, b) ∈ N2 when convenient.

Inspired by the formulas (1) and (2) above, we define the rational Catalan number:

Cat(x) = Cat(a, b) :=
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
.

The most important feature of the rational Catalan numbers is that they are backwards-compatible:

Cat(n) = Cat(n/1) = Cat(n, n+ 1) =
1

2n+ 1

(
2n+ 1

n, n+ 1

)
=

1

n+ 1

(
2n

n

)
.

But note also that Cat(a, b) is symmetric in a and b. This, together with the fact that a/(b − a) = x if
and only if b/(a− b) = −x− 1, gives us

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(−x− 1).

That is, the function Cat : Q\ [−1, 0]→ N is symmetric about x = −1/2. Now observe that− 1
x−1−1 =

x
1−x , and hence Cat(1/(x− 1)) = Cat(x/(1− x)). We call this value the derived Catalan number:

Cat′(x) := Cat(1/(x− 1)) = Cat(x/(1− x)).

Furthermore, note that 1
(1/x)−1 = x

1−x , hence

Cat′(x) = Cat′(1/x). (3)

We call this equation rational duality and it will play an important role in our study of rational associahe-
dra. Equation (3) can also be used to extend the domain of Cat′ from Q \ [−1, 0] to Q \ {0}, but we don’t
know if this holds combinatorial significance. In terms of a and b we can write

Cat′(x) = Cat′(a, b) =

{(
b
a

)
/b if a < b,(

a
b

)
/a if b < a.

The “derivation” of Catalan numbers can be viewed as a “categorification” of the Euclidean algorithm.
For example, consider x = 5/3 (that is, a = 5 and b = 8). The continued fraction expansion of x is

5

3
= 1 +

1

1 +
1

1 +
1

1
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Fig. 1: This is a (5, 8)-Dyck path.

with “convergents” (that is, successive truncations) 1
1 ,

2
1 ,

3
2 ,

5
3 . Thus we have

Cat(5/3) = 99,

Cat′(5/3) = Cat(3/2) = 7,

Cat′′(5/3) = Cat′(3/2) = Cat(2) = 2,

Cat′′′(5/3) = Cat′′(3/2) = Cat′(2) = Cat(1) = 1.

The process stabilizes because Cat′(1) = 1.

3 Rational Dyck Paths
At the heart of our constructions lies a family of lattice paths called rational Dyck paths. A rational Dyck
path is a path from (0, 0) to (b, a) in the integer lattice Z2 using steps of the form (1, 0) and (0, 1) and
staying above the diagonal y = a

bx. (Because a and b are coprime, it will never touch the diagonal.)
More specifically, we call this an x-Dyck path or an (a, b)-Dyck path. For example, Figure 1 displays a
(5, 8)-Dyck path. When a and b are clear from context, we will sometimes refer to (a, b)-Dyck paths as
simply Dyck paths.

Note that the final step of an (n, n+1)-Dyck path must travel from (n, n) to (n, n+1). Upon removing
this step we obtain a path from (0, 0) to (n, n) that stays weakly above the line of slope 1; that is, we obtain
a classical Dyck path. The following result generalizes the fact that there are Cat(n, n + 1) classical
Dyck paths, can be proven using the Cycle Lemma of Dvorestky and Motzkin [DM], and is perhaps best
attributed to ‘folklore’.

Theorem 1 For a 6= b coprime positive integers, the number of (a, b)-Dyck paths is the Catalan number
Cat(a, b) = 1

a+b

(
a+b
a,b

)
.

The following refinement from [ALW] can also be proven using the Cycle Lemma.

Theorem 2 The number of (a, b)-Dyck paths with i nontrivial vertical runs is the Narayana number

Nar(a, b; i) :=
1

a

(
a

i

)(
b− 1

i− 1

)
,
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and the number of (a, b)-Dyck paths with rj vertical runs of length j is the Kreweras number

Krew(a, b; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b− 1)!

r0!r1! · · · ra!
.

Equivalently, the first formula counts the (a, b)-Dyck paths with i− 1 valleys. We include trivial vertical
runs of length 0 in the second formula for aesthetic reasons. For example, the path in Figure 1 has 3
nontrivial vertical runs (i.e. 2 valleys) and r = (5, 1, 2, 0, 0, 0). The rational Narayana numbers will
appear below as the h-vector of the rational associahedron.

4 Rational Associahedra
4.1 Simplicial Complexes
We recall a collection of definitions related to simplicial complexes. A simplicial complex ∆ on a finite
ground set E is a collection of subsets of E such that if S ∈ ∆ and T ⊆ S, then T ∈ ∆. The elements
of ∆ are called faces, the maximal elements of ∆ are called facets, and ∆ is called pure if all of its facets
have the same cardinality. The dimension of a face S ∈ ∆ is dim(S) := |S| − 1 and the dimension of ∆
is the maximum dimension of a face in ∆. Observe that the ‘empty face’ ∅ has dimension −1.

If ∆ is a d-dimensional simplicial complex, the f -vector of ∆ is the integer sequence
f(∆) = (f−1, f0, . . . , fd), where f−1 = 1 and fi is the number of i-dimensional faces in ∆ for 0 ≤
i ≤ d. The reduced Euler characteristic χ(∆) is given by χ(∆) :=

∑d
i=−1(−1)ifi. The h-vector

of ∆ is the sequence h(∆) = (h−1, h0, . . . , hd) defined by the following polynomial equation in t:∑d
i=−1 fi(t − 1)d−i =

∑d
k=−1 hkt

k. The sequences f(∆) and h(∆) determine one another completely
for any simplicial complex ∆.

Shellability is a key property possessed by some pure simplicial complexes which determines the ho-
motopy type and h-vector of the complex. Let ∆ be a pure d-dimensional simplicial complex. A total
order F1 ≺ · · · ≺ Fr on the facets F1, . . . , Fr of ∆ is called a shelling order if for 2 ≤ k ≤ r, the
subcomplex of the simplex Fk defined by Ck := (

⋃k−1
i=1 Fi)∩Fk is a pure (d− 1)-dimensional simplicial

complex. The complex ∆ is called shellable if there exists a shelling order on its facets; it can be shown
that any pure d-dimensional shellable simplicial complex is homotopy equivalent to a wedge of spheres,
all of dimension d.

The number of the spheres in the homotopy type of a shellable complex can be read off from the
shelling order. More precisely, let ∆ be a pure d-dimensional simplicial complex which is shellable and
let F1 ≺ · · · ≺ Fr be a shelling order on its facets. For 1 ≤ k ≤ r, there exists a unique minimal face Mk

of the simplex Fk which is not contained in the union
⋃k−1

i=1 Fi of the facets which appear earlier in the
shelling order. The multiset of dimensions {dim(M1),dim(M2), . . . ,dim(Mk)} of these minimal added
faces is independent of the shelling order. In fact, we have that ith entry hi of the h-vector h(∆) equals
the number of minimal faces Mk with dim(Mk) = i. Moreover, the complex ∆ is homotopy equivalent
to a wedge of hd copies of the d-dimensional sphere. For future use, we recall the well-known fact that
adding a unique minimal face at each stage characterizes shelling orders.

Lemma 3 Let ∆ be a pure simplicial complex and let F1 ≺ · · · ≺ Fr be a total order on the facets of ∆.
The order ≺ is a shelling order if and only if for 1 ≤ k ≤ r there exists a unique minimal face Mk of the
simplex Fk which is not contained in

⋃k−1
i=1 Fi.
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4.2 Construction, Basic Facts, and Conjectures
For n ≥ 3, let Pn denote the regular n-gon. Recall that the (dual of the) classical associahedron Ass(n, n+
1)consists of all (noncrossing) collections of diagonals of Pn+2—the dissections of Pn+2—ordered by
inclusion. The diagonals of Pn+2 are therefore the vertices of Ass(n, n+1) and the facets of Ass(n, n+1)
are labeled by the maximal dissections—the triangulations of Pn+2. Associahedra were introduced by
Stasheff [St] in the context of nonassociative products arising in algebraic topology. Since its introduction,
the associahedron has become one of the most well-studied complexes in geometric combinatorics, with
connections to the permutohedron and exchange graphs of cluster algebras.

The classical associahedron has a Fuss analog defined as follows. Let m ≥ 1 be a Fuss parameter.
The Fuss associahedron Ass(n,mn + 1) has as its facets the collection of all dissections of Pmn+2 into
(m + 2)-gons. Fuss associahedra arise in the study of the generalized cluster complexes of Fomin and
Reading.

We define our further generalization Ass(a, b) of the classical associahedron as follows. The vertices of
Ass(a, b) will correspond to certain diagonals in Pb+1 and the faces will correspond to certain dissections
of Pb+1. Label the vertices of Pb+1 clockwise with 1, 2, . . . , b+ 1.

Given any Dyck path D and any lattice point P = (i, j) which is the bottom of a north step in D, we
associate a diagonal e(P ) in Pb+2 as follows. Consider the line ` with equation (y − j) = a

b (x− i). This
line intersects the path D in the lattice point P and in at least one other point to the right of P . Let Q be
the leftmost such point to the right of P and let (r, s) be the coordinates of Q. By coprimality and the fact
that b > a, we have that i+ 1 < s < b and s is not an integer. Let e(P ) be the diagonal (i, dse) in Pb+1,
where dse is the smallest integer ≥ s. Define a subset F (D) of diagonals of Pb+1 by

F (D) := {e(P ) : P is the bottom of a north step in D}. (4)

The right of Figure 2 shows the collection F (D) of diagonals corresponding to the given Dyck path D on
P9. It is topologically clear that the collection F (D) of diagonals in Pb+1 is noncrossing for any Dyck
path D. The sets F (D) form the facets of our simplicial complex.

Definition 4 For a < b, the simplicial complex Ass(a, b) has as its ground set the collection of diagonals
of Pb+1 and facets {F (D) : D is an (a, b)-Dyck path }.

The following basic facts about Ass(a, b) can be proven directly from its definition.

Proposition 5 1. The simplicial complex Ass(a, b) is pure and has dimension a− 2.

2. The number of facets in Ass(a, b) is Cat(a, b).

3. Define a subset S(a, b) of [b−1] by S(a, b) = {b iba c : 1 ≤ i < a}, where bsc is the greatest integer
≤ s. A diagonal of Pb+1 which separates i vertices from b − i − 1 vertices appears as a vertex in
the complex Ass(a, b) if and only if i ∈ S(a, b).

We will call a diagonal e of Pb+1 which satisfies the hypothesis in Part 3 of Proposition 5 (a, b)-
admissible. The vertex set of Ass(a, b) consists precisely of the (a, b)-admissible diagonals in Pb+1.

Proof: Part 1 follows from the fact that an (a, b)-Dyck path contains a north steps. For Part 2, observe
that if D and D′ are distinct Dyck paths, the multisets of x-coordinates of the bottoms of the north steps
of D and D′ are distinct. In particular, this means that F (D) and F (D′) are distinct sets of diagonals in
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Fig. 2: A (5,8)-Dyck path and the corresponding dissection of P9.

Pb+1. Part 2 follows from the fact that there are Cat(a, b) Dyck paths. Part 3 is a geometric observation
about lines of slope a

b . 2

In the classical case b = a + 1 and the Fuss case b = ka + 1, the faces of the associahedron Ass(a, b)
are given by collections of (a, b)-admissible diagonals in Pb+1 which are mutually noncrossing. Given
this characterization, it is clear that the associahedron carries an action of the cyclic group Zb+1 given by
rotation in these cases. Neither of these statements remains true at the rational level of generality. Indeed,
when (a, b) = (3, 5), the diagonals (1, 5) and (3, 5) of P6 are 3, 5-admissible and mutually noncrossing.
However, the set {(1, 5), (3, 5)} is not a face of Ass(3, 5). It can also be checked that Ass(3, 5) is not
closed under rotation of P6.

In spite of the last paragraph, we conjecture that Ass(a, b) carries a rotation action ‘up to homotopy’.
More precisely, let Ass′(a, b) denote the simplicial complex whose faces are collections of mutually non-
crossing (a, b)-admissible diagonals in Pb+1. It is clear that Ass′(a, b) carries a rotation action and that
Ass(a, b) is a subcomplex of Ass′(a, b).

Before stating our conjecture, we recall what it means for a complex to collapse onto a subcomplex; this
is a combinatorial deformation retraction. Let ∆ be a simplicial complex, F ∈ ∆ be a facet, and suppose
F ′ ⊂ F satisfies |F ′| = |F | − 1. If F ′ is not contained in any facet of ∆ besides F , we can perform an
elementary collapse by replacing ∆ with ∆ − {F, F ′}. A simplicial complex is said to collapse onto a
subcomplex if the subcomplex can be obtained by a sequence of elementary collapses.

Conjecture 6 The complexes Ass(a, b) and Ass′(a, b) are homotopy equivalent. In fact, the complex
Ass′(a, b) collapses onto the subcomplex Ass(a, b).

Figure 3 displays Ass(2, 5) (shown in blue) and Ass(3, 5) (shown in red) as subcomplexes of the sphere
Ass(4, 5). The complex Ass′(2, 5) coincides with Ass(2, 5) and the complex Ass′(3, 5) is obtained from
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Fig. 3: Ass(2, 5) and Ass(3, 5) are Alexander dual within Ass(4, 5).

the complex Ass(3, 5) by adding the middle and exterior triangles to the red complex. Observe that
Ass(3, 5) can be obtained by performing two elementary collapses on Ass′(3, 5).

Conjecture 6 would also have implications regarding Alexander duality. Recall that two topological
subspaces X and Y of a fixed sphere S are said to be Alexander dual to one another if Y is homotopy
equivalent to the complement of X in S. With b > 1 fixed, we have that a and b are coprime for
1 ≤ a < b if and only if b − a and b are coprime. Both of the complexes Ass(a, b) and Ass(a − b, b) sit
within the classical associahedron Ass(b − 1, b). The proof of Conjecture 6 would imply that Ass(a, b)
and Ass(a− b, b) are Alexander dual.

Proposition 7 Let a < b be coprime for b > 1. The subcomplexes Ass(a, b) and Ass(b − a, b) are
Alexander dual within the sphere Ass(b − 1, b). If Conjecture 6 is true, then the subcomplexes Ass(a, b)
and Ass(b− a, b) are also Alexander dual within Ass(b− 1, b).

Proof: It is routine to check that any diagonal of Pb+1 is either (a, b)-admissible or ((b−a), b)-admissible,
but not both. This means that the vertex sets of Ass′(a, b) and Ass′(b − a, b) partition the vertex set of
the simplicial sphere Ass′(b− 1, b). By definition, the faces of Ass′(a, b) and Ass′(b− a, b) are precisely
the faces of Ass(b − 1, b) whose vertex sets are contained in Ass′(a, b) and Ass′(b − a, b), respectively.
It follows that the complement of Ass′(a, b) inside Ass(b− 1, b) deformation retracts onto Ass′(b− a, b).
This proves the first statement. The second statement is clear. 2

4.3 Shellability and f- and h-vectors
We will prove that the simplicial complex Ass(a, b) is shellable by giving an explicit shelling order on its
facets. This shelling order will be induced by lexicographic order on the partitions whose Ferrers diagrams
lie to the northwest of (a, b)-Dyck paths.
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Theorem 8 The simplicial complex Ass(a, b) is shellable, hence homotopy equivalent to a wedge of
spheres. Moreover, there is a total order D1 ≺ D2 ≺ · · · ≺ DCat(a,b) on the set of (a, b)-Dyck paths
which induces a shelling order on the facets of Ass(a, b) such that the dimension of the minimal face
added upon addition of the facet F (Di) equals the number of nonempty vertical runs in Di, less one.

Proof: (Sketch.) We will find it convenient to identify the facets of Ass(a, b) with both Dyck paths and
partitions. We define a family of concepts which will be used for this proof only.

A partition λ is a weakly decreasing sequence (λ1 ≥ · · · ≥ λk > 0) of positive integers. The Ferrers
diagram associated with λ consists of λi left justified boxes in row i (we are using English notation). We
will use the lexicographic total order ≺ on partitions defined by λ ≺ µ if there exists an i ≥ 1 such that
λj = µj for 1 ≤ j < i and λi < µi. (We append an infinite string of zeros to the ends of λ and µ, if
necessary, for these relations to make sense.)

Given any (a, b)-Dyck path D, let λ(D) be the partition whose Ferrers diagram consists of the lattice
boxes to the northwest of D in the rectangle with corners (0, 0) and (b, a). For example, if (a, b) = (5, 8)
andD is the path in Figure 2, then λ(D) = (5, 2, 2). It is clear that distinct Dyck paths give rise to distinct
partitions, so the facets of Ass(a, b) are labeled by either (a, b)-Dyck paths or by partitions λwhich satisfy
λi ≤ max(b (a−i)ba c, 0) for all i.

Let λ(1) ≺ · · · ≺ λ(Cat(a,b)) be the restriction of lexicographic order to set of partitions which satisfy
λi ≤ max(b (a−i)ba c, 0) for all i. In particular, we have that λ(1) is the empty partition and λ(Cat(a,b))i =

max(b (a−i)ba c, 0). The total order ≺ induces a total order D1 ≺ · · · ≺ DCat(a,b) on (a, b)-Dyck paths and
a total order F (D1) ≺ · · · ≺ F (DCat(a,b)) on the facets of Ass(a, b).

In the case (a, b) = (3, 5), our order on partitions is

(0, 0) ≺ (1, 0) ≺ (1, 1) ≺ (2, 0) ≺ (2, 1) ≺ (3, 0) ≺ (3, 1).

The corresponding order on facets of Ass(3, 5) (written as diagonal sets in P6) is

{(1, 3), (1, 5)} ≺ {(2, 4), (1, 5)} ≺ {(2, 4), (2, 6)} ≺
{(1, 3), (3, 5)} ≺ {(2, 6), (3, 5)} ≺ {(1, 3), (4, 6)} ≺ {(2, 4), (4, 6)}.

We will prove that ≺ is a shelling order on the facets of Ass(a, b) and that the minimal added faces
corresponding to ≺ have the required dimensions. In fact, we will be able to describe these minimal
added faces explicitly. Given any Dyck path D, recall that the corresponding facet F (D) in Ass(a, b) is
given by F (D) = {e(P ) : P is the bottom of a north step in D}. We define the valley face V (D) to be
the subset of F (D) given by V (D) := {e(P ) : P is a valley in D}.

Claim: 1 ≤ k ≤ Cat(a, b), the valley face V (Dk) is the unique minimal face of F (Dk) which is not
contained in

⋃k−1
i=1 F (Di).

By Lemma 3 and the discussion preceding it, this claim implies that ≺ is a shelling order with the
dimension of the minimal added face as described (observe that in any Dyck path, the number of valleys
equals the number of vertical runs), completing the proof of the theorem. The proof of this claim is
omitted in this extended abstract. 2

As a corollary to the above result, we get product formulas for the f - and h-vectors of Ass(a, b), as well
as its reduced Euler characteristic. Define the rational Kirkman numbers by

Kirk(a, b; i) :=
1

a

(
a

i

)(
b+ i− 1

i− 1

)
. (5)
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Corollary 9 Let (f−1, f0, . . . , fa−2) and (h−1, h0, . . . , ha−2) be the f - and h-vectors of Ass(a, b). For
1 ≤ i ≤ a we have that fi−1 = Kirk(a, b; i) and hi−1 = Nar(a, b; i). The reduced Euler characteristic of
Ass(a, b) is the derived Catalan number Cat′(a, b).

Proof: By Theorem 8 and Lemma 3, we have that hi−1 equals the number of (a, b)-Dyck paths which
have exactly i vertical runs. By Theorem 2, this equals the Narayana number Nar(a, b; i).

To prove the statement about the f -vector, one must check that

a−2∑
i=−1

Kirk(a, b; i+ 1)(t− 1)a−i−2 =

a−2∑
k=1

Nar(a, b; k + 1)tk.

The statement about the Euler characteristic reduces to proving that

a−2∑
i=−1

(−1)i+1Kirk(a, b; i+ 1) = Cat′(a, b).

Both of these identities are left to the reader. 2

Conjecture 6 and Proposition 7 assert that the symmetry (a < b) ↔ (b − a < b) on pairs of coprime
positive integers shows up in rational associahedra as an instance of Alexander duality. Corollary 9 shows
that the categorification Cat(x) 7→ Cat′(x) of the Euclidean algorithm presented in Section 2 sends the
number of facets of Ass(a, b) to the reduced Euler characteristic of Ass(a, b). This ‘categorifies’ the
number theoretic properties of rational Catalan numbers to the context of associahedra.
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