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A Murnaghan-Nakayama Rule for
Generalized Demazure Atoms
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Abstract. We prove an analogue of the Murnaghan-Nakayama rule to express the product of a power symmetric
function and a generalized Demazure atom in terms of generalized Demazure atoms.

Résumé. Nous prouvons un analogue de la régle Murnaghan-Nakayama a exprimer le produit d’une fonction de
puissance symétrique et un Demazure généralisée atomes en termes de généralisées atomes de Demazure.
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1 Introduction

Haglund, Mason, and Remmel [HMR12] introduced a family of polynomials Ef{ (z1,...,z,) indexed by
weak compositions v of n and permutations o in the symmetric group S, that they called generalized
Demazure atoms. The £ (21, ..., 2,) interpolate between the Schur functions and the Demazure atoms
studied by Mason [Mas08]]. The main goal of this paper is to develop a generalization of the Murnaghan-
Nakayama rule to express the product of a power symmetric function p,.(z1,...,x,) and a generalized

Demazure atom £ (1, ...,Z,) as a sum of generalized Demazure atoms Ef (21, .. .,2,). Thatis, we

(r )

shall give a combinatorial definition of the coefficients ¢ ; ; where

p,«(xl,...,xn)Eg(xl,...,xn)— (T) 5E5 (T1,...,Zn)- (1)
5

Let N denote the set of natural numbers, {0, 1,2, ...}, and let P denote the set of positive integers,
{1,2,...}. We say that A\ = (A1, A2,...,\,) is a partition of m into n parts if each \; € N with
A > Ay > > )\, and Z?Zl A; = m. We say that v = (71,72, - . -, Vn) is @ weak composition of m
into n parts if eachv; € Nand Y. | 75 = m. A composition of m is a weak composition which has no
zeros. The diagram of v, dg(7y), is the set of m cells arranged in n columns so that there are ; cells in
the i column and all the columns are flush with the bottom of the dlagram For example, the diagram of
v =(2,0,1,0,3) is pictured in Flgurel The augmented diagram of ~, dg( ), consists of dg(y) plus a
row of n cells attached below. This lowest row is called the basement. Let A(7y) be the rearrangement of
the parts of  into weakly decreasing order. Thus, A(y) produces the partition associated with each weak
composition. For example, A(2,0,1,0,3) = (3,2,1,0,0).
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Fig. 1: The diagram of v = (2,0, 1,0, 3)

Macdonald’s well-known symmetric polynomials [Mac79], denoted Py(z1,x2,...,Zn;q,t) for A a
partition with n parts, have certain defining characteristics, including an orthogonality condition. Mac-
donald [Mac95]] showed that many of these same characteristics were shared by a family of nonsymmetric
polynomials indexed by weak compositions with n parts, denoted E.,(z1, z2, ..., Zy; ¢, t). These poly-
nomials were given a combinatorial interpretation by Haglund, Haiman, and Loehr [HHLOS] as the gen-
erating functions for fillings of the diagram of  with positive integer entries satisfying some conditions.

Mason [Mas08]], [Mas09] studied a shght variation of the E, (z1, %2, ..., %y; ¢,t) polynomials, called

E,y(:rl, X9y ...,Tn;q,t). The polynomial E is obtained from E, by reversing the order of the z;’s and
sending g and t to their reciprocals. Mason cons1dered the spemahzation arising from setting g = ¢ = 0 in
E (@1, 22,...,%n;q,t), hereafter referred to as E (21,22, ...,2,). These polynomials arise in [LS90]
as “standard bases” and are also called Demazure atoms. Using the work of [HHLOS|], Mason showed that
E.,(x1,%2,...,x,) can be interpreted as the sum of the weights of certain fillings of dAg(w), which she
called semi-standard augmented fillings. An important outcome of Mason’s work is a generalization of the
Robinson-Schensted-Knuth (RSK) insertion algorithm for semi-standard augmented fillings that she used
to give combinatorial proofs of many results involving Demazure atoms. For example, this generalization
of RSK was used to exhibit a bijection that showed that, for any partition /3, the Schur function sg could

be expressed as

sp(x1,- o an) = Y Ey(w1,.. ., an), )

Mason’s work has led to several lines of further research. Using Mason’s extension of RSK, Haglund,
Luoto, Mason, and van Willigenburg [HLMvW 11a] developed the theory for the quasisymmetric Schur
functions, a new basis for the ring of quasisymmetric functions. In [HLMvW11b], they developed ana-
logues of the Littlewood-Richardson rule to express the product of a Schur function and a Demazure atom
(quasisymmetric Schur function) in terms of Demazure atoms (quasisymmetric Schur functions).

Haglund, Mason, and Remmel [HMR12] further generalized Mason’s work by viewing semi-standard
augmented fillings as fillings of augmented diagrams with entries in the basement equal to the identity
permutation, €,. They also viewed reverse row-strict tableaux as fillings of augmented diagrams with
entries in the basement equal to the reverse of the identity permutation, €,,. Their work further generalizes
Mason’s extension of RSK to apply to fillings of diagrams with arbitrary permutations in the basement
cells, called permuted basement fillings, or PBFs. The permuted basement fillings with basement o gen-
erate the polynomials called generalized Demazure atoms and denoted E" (z1,22,...,2,). The EZ’s
can be viewed as intermediates between the Schur functions and the Demazure atoms. In fact, Haglund,
Mason, and Remmel [HMR12] showed that for any permutation o,

sg(T1,...,%n) = Zﬁg(xl,,xn) 3)

They also showed that E,‘;(a:l, Zay...,&y) = 0 unless y; > v; whenever ¢ < j and 0; > o;. Note that
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when o = €,, we can recover (2) from (3). Also, when o = €,, there is only one nonzero term in (3), so
s3 = Eﬁ” We shall see that in the special case where o = €, our generalized Murnaghan-Nakayama
rule reduces to the classical Murnaghan-Nakayama rule.

One of the motivations for studying the EJ (z1,...,2y) is an unpublished result of Haiman and

Haglund which can be described briefly as follows. Let Eﬁ'r (21,...,Tp;q,t) denote the polynomial ob-
tained by modifying Eﬂ, (z1,...,2n;q,t) in the following way. Under the interpretation of [HHLOS]|

which associates E.,(z1,...,%n;q,t) with fillings of Eg(’y), replace the basement permutation ¢,, with
0 = 0109 - - - 0, and change nothing else. Then if i 4 1 occurs to the left of ¢ in the basement o105 - - - 0y,
we have

EEg($1,7$n,q,t):tAE$ (mhaxna(Lt) (4)

Here A equals one if the height of the column of @(7) above 7 + 1 in the basement is greater than or
equal to the height of the column above 7 in the basement, and equals zero otherwise. Also, ¢’ is the
permutation obtained by interchanging ¢ and ¢ + 1 in ¢. The T are generators for the affine Hecke algebra
which act on monomials in the {x1, z2, ..., z,} by

A psi(A)
Ta* = ta™ M 4 (- 1) 2
T ¥ 4 (- 1) T
with % = z;/x;41. See [HHLOS8] for a more detailed description of the T; and their relevance to
nonsymmetric Macdonald polynomials. The EY(z1,...,x,) can be obtained by setting ¢ = ¢ = 0 in
E" (z1,...,2n;q,t), and hence are a natural generalization of the E ~(z1,...,2,) toinvestigate. If we set

qg=1t= () in the Hecke operator 75, it reduces to a divided difference operator similar to those appearing
in the definition of Schubert polynomials. By E (xl, ..., Zy) can be expressed, up to a power of ¢,

as a series of the divided difference operators applied to E;" (X1, Tp).
Haglund, Mason, and Remmel [HMR12]] proved analogues of the Pieri rules for generalized Demazure
atoms. Let h,.(x1,...,x,) denote the r'™ homogeneous symmetric function and e, (x1, ..., z,) denote

the r™ elementary symmetric function. Then Haglund, Mason, and Remmel gave combinatorial interpre-
tations to the coefficients a(ﬁ, s and b(wrt)x s Where

he(xq,... ,xn)EfY’(xl, ceyTp) = Za({;[sﬁg(xl, cey ). 5)
5

and R
er(T1,. ) B (21,0 T Zb,YUSE(; (T1,...,Tp). (6)

We will indicate how we can derive our combinatorial interpretation of the coefficients cE{ ") from these

two rules. The same technique can be used to derive an analogue of the Murnaghan- Nakayama rule to
express the product of a power symmetric function p, and a quasisymmetric Schur function in terms of
quasisymmetric Schur functions, but we will not pursue this topic in this paper.

The outline of this paper is as follows. In the next section, we will define permuted basement fillings
and the generalized RSK insertion algorithm as well as introduce some results from [HMR12]. In section
3, we will state and prove our refinement of the Murnaghan-Nakayama rule.
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2 PBFs and the Insertion Procedure

In this section, we shall formally define permuted basement fillings (PBFs) and the generalization of the
RSK insertion algorithm due to Haglund, Mason, and Remmel [HMR12]. Let v = (71,72, .. .,7n) be a
weak composition of m into n parts. We will denote the cell in column ¢ and row j of c?g(fy) by (i,7).
The basement is row zero, and row indices increase from bottom to top. The leftmost column is column
1, and column indices increase moving from left to right. This way, it is easy to think of o?g(’y) as dg(y)
augmented by row zero.

A filling F' of an augmented diagram is a function F' : Jg(v) — P, which can be pictured as an
assignment of positive integers to the cells of Jg(v). We will use F'(i,7) to denote the integer assigned
to cell (¢,7) by the function F'. We will be interested only in fillings where the basement entries are
a permutation ¢ = 0103...0, of {1,2,...,n} and the column entries weakly decrease reading from
bottom to top.

A set of cells (¢, k), (4,k), (i,k — 1) in c?g(fy) isatype A triple ifi < j, k > 0, and ; > ;. A type A
triple is an inversion triple in F if F(j, k) < F(i,k) < F(i,k — 1) or F(i, k) < F(i,k — 1) < F(j, k).
A set of cells (,k + 1), (4, k), (j, k) in Jg(w) is a type B tripleif ¢ < j, k > 0, and ; < ;. A type B
triple is an inversion triple in F if F(i, k) < F(j,k+ 1) < F(j,k) or F(4,k + 1) < F(j,k) < F(i, k).

A filling F is said to satisfy the B-increasing condition if, whenever ¢ < [ and ; < 7, it is true that
F(i,j—1) < F(l,j) forall j > 1.

A PBF F7 of shape « and basement o is a filling of Eg(w) with positive integer entries such that

1. the basement is filled with o1, 09, ..., 0y, from left to right,
2. column entries weakly decrease reading from bottom to top,
3. every triple of type A or B is an inversion triple in 7, and
4. the B-increasing condition is satisfied.

It was observed in [HMR12] that the B-increasing condition plus the fact that column entries are weakly
decreasing automatically implies that all type B triples are inversion triples.
The weight of a PBF F'? with shape v and basement o is defined to be

wt(F) =[] 2reas) (7)
(i,5)€dg(v)

Note that the basement cells do not contribute to the weight of the PBF. The nonsymmetric polynomials
Eg(x1,22,. .., r,) are then defined by

Ej'/(xl,xg,...,xn) :Zwt(F") (8)
FO'

where the sum is over PBFs F'? of shape ~ and basement o.

We say that a shape vy is o-compatible if v; > ~v; whenever ¢ < j and o; > o;. In [HMR12], it is shown
that EEY' (x1,22,...,2,) = 0 unless v is o-compatible. Thus, there are no PBFs of shape  and basement
o if 7y is not o-compatible.
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When o is the identity permutation, €,,, a PBF is a semi-standard augmented filling as defined by Mason
[Mas08]], [Mas09]. When ¢ is the reverse of the identity permutation, €,,, a PBF is strictly decreasing from
left to right and weakly decreasing from bottom to top. The only €, -compatible shapes are partition shapes
A, so that PBFs can be described as “reverse row-strict tableaux.” It is not hard to see that these reverse
rgw-strict tableaux are in one-to-one correspondence with column-strict tableaux, so that for A a partition,
EE\" = S).

The reading order of the cells of c/l\g(fy) is obtained by moving across the rows from left to right,
beginning with the highest row. Formally, (a, b) comes before (¢, d) in reading order if b > d or b = d and
a < c. As mentioned above, Mason defined an insertion procedure k — F' analogous to the RSK insertion
procedure that inserts a positive integer k into a semi-standard augmented filling to produce another semi-
standard augmented filling. Haglund, Mason, and Remmel [HMR12]] generalized this procedure to PBFs
with arbitrary basements. To define this insertion k& — F°, let F'° be the filling that extends the basement
permutation by first adding a j in each cell (j,0) with n < j < k and then adding an extra cell filled
with a 0 on top of each column. Let (x1,%1), (72,%2),... be the cells of F'7 listed in reading order.
To insert k into F°, go through the cells of F¢ in reading order looking for the first (z;, ;) such that
Fo(zs,y:) < k < Fo(xz,y; — 1). Replace F7(x;,y;) with k and insert the cell’s previous value into
the remaining cells in reading order, beginning with (2;11,¥;+1). Continue in this way until some 0
is replaced by a positive integer. Finally, remove any zeros from the tops of the columns. Notice that
k — F7 creates a new cell at the top of some column in F*7.

A fundamental result of [HMR12], used to prove many properties about PBFs, is the fact that this
insertion procedure k — F'? is well-defined and produces a PBF. Also, in the case that o = €,, this
insertion algorithm reduces to a reverse row-strict version of the usual RSK algorithm.

Another important question addressed in [HMR12]] is whether this insertion procedure can be reversed.
To answer this question, the authors define the term removable cell. Let v and é be weak compositions
with n parts such that dg(y) C dg(d). We use dg(d/7) to denote the cells of dg(d) which are not in
dg(7y). Suppose dg(d/~) consists of a single cell ¢ = (x,y). Then ¢ is a removable cell from § if there
is no cell to the right of ¢ that is at the top of a column in dg(d). That is, there is no j with z < j < n
and ¢§; = y. It is shown that if ' is a PBF of shape ~ and basement o, and G° = k — F“ is a PBF
of shape d, then the cell ¢ in dg(d/7) is a removable cell. This terminology is used because it means that
the insertion procedure can be reversed starting with c. That is, begin with the entry, say a, in cell ¢ and
read through the cells of G in reverse reading order starting with ¢ until an entry, say b, is found which is
greater than a and positioned below an number less than or equal to a. Now replace b with a and continue
reversing the insertion procedure with b. The entry that emerges from the first cell in reading order is the
k which was originally inserted into F' to produce G°. So long as cell ¢ is removable, the insertion can
be reversed in this way. R R

A lemma used in [HMRI12] to prove the Pieri rules for the products h, EX and e, E5 will also be useful
for our version of the Murnaghan-Nakayama rule. It is reproduced below:

Lemma 1 Suppose that F° is a PBE, G° = a — F?, and H° = b — G°. Suppose F? is of shape «,
G is of shape B, and H° is of shape ~y. Suppose A is the cell in dg(f/a) and B is the cell in dg(~y/f).
Then

a. ifb < a, then B is strictly above A, and

b. if b > a, then B is after A in reading order.
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Fig. 2: A satisfactory labeling of dg((3,3,0,2,1,2)/(2,1,0,1,0,2))

3 Murnaghan-Nakayama Rule

The power symmetric function p,(z1, 2, ...,x,) is defined as >, z7. Our goal is to express the

product p. (21,22, . .., ) EJ (21,22, . .., Ty) as a sum of Eg’s. In particular, we would like to find the

(r)

coefficients Co o6

in the expansion
p’r(xl7x27 B Z‘n)Eg(l‘l,.TQ, s ,.’Iln) = ZCE;:)U’(SE?(I‘L T2,. .. 7xn)- 9
)

Let v be a weak composition of m with n parts, and let ¢ € S,,. Let § = (d1,...,9,) be a weak
composition of m + 7 such that dg(~y) C dg(0). Define a satisfactory labeling of dg(d /) to be a labeling
of the cells in dg(d /) with v’s and h’s that is consistent with the following four rules:

(a) Assign an h to all but the rightmost cell in each row of dg(d /7).
(b) Assign a v to any cell above another cell of dg(d/7).

(c) Assign an h to any cell above a cell of dg(v) and having a cell of dg(d/~) one row below and
anywhere to the left.

(d) Assign an h to the cells of the lowest row of dg(d/7).

For an example of a satisfactory labeling, see Figure 2]
The following lemma gives a characterization for when dg(d/+) has a satisfactory labeling.

Lemma 2 Let v and § be weak compositions such that dg(~y) C dg(8). Then dg(d/+) has a satisfactory
labeling if and only if there is no cell (x,y) in dg(§/v) such that (x + j,y) and (x,y — 1) are both cells
indg(d/v) for some j > 0. In other words, dg(8/7) has a satisfactory labeling if and only if it avoids the
configurationH B

A satisfactory labeling of dg(d/) is called a satisfactory k-hook labeling if it produces k + 1 h’s

and r — (k + 1) v’s and meets the following two additional conditions. Let ¢; = (z1,%1),...,Ckt+1 =
(Tk+1,Yr+1) be the cells labeled h listed in reading order. Let cxyo = (Tgt2, Yrt2),- .- Cr = (Tpy Ypr)
be the cells labeled v listed in reverse reading order. Let dg(5(*)) be the diagram of ~y plus the cells
c1,Co, ..., ;. A satisfactory k-hook labeling must also satisfy, fori =1,2,...,r,

1. 6 is a o-compatible weak composition shape and

2. ¢; is a removable cell from §(9.



A Murnaghan-Nakayama Rule for Generalized Demazure Atoms 975

Bl

v o
B Lhl o]
] 1 [
311]2 311]2

Fig. 3: Unique satisfactory labelings of dg((5,0,1)/(2,0,1)) and dg((3,0,3)/(2,0,1))

Note that rule (d) in the definition of a satisfactory labeling requires that there is at least one h, so a
satisfactory k-hook labeling has k > 0.

We say that the shape /7 is a y-transposed k-hook relative to basement o if rules (a)-(d) can be used
to assign v and h labels to all of the cells of dg(d/) in a unique way and that labeling is a satisfactory
k-hook labeling. With these definitions, we can state the main theorem.

Theorem 1 Ify = (v1,...,7vn) is a weak composition of m and o € Sy, then
pr(z1, 22, ... 7xn)Ej'/(x1, To, ..., Ty) = Z(—l)kﬁg(gcl,xg7 cey ) (10)
5

where the sum is over all weak compositions § = (01, ...,0,) of m+r such that dg(vy) C dg(d) and § /v
is a y-transposed k-hook relative to basement o.

Theorem |1|says that the nonzero coefficients c(rg 5 1n @) are £1, depending on the number of A’s in

the unique satisfactory k-hook labeling of dg(d/ 7).

For example, consider the product p3(z1, 72, xg)Eél)%J) (w1, 2, 23). The shapes § that appear on the
right hand side of must be 312-compatible compositions of 6 into 3 parts containing (2,0, 1). Since
the first and second basement entries are out of order, we require d; > . Similarly, we require §; > J3.
Take dg(2,0, 1) and consider all the ways to add three cells around the outside of the diagram. Adding
three cells to the first column creates the 312-compatible shape (5, 0, 1). Moreover, this shape has a unique
satisfactory labeling as shown in Figure 3} and it is easy to check that this is a satisfactory 0-hook labeling.
Thus, E(5G (21, %2, 25) appears on the right hand side of 1) with coefficient (—1) = 1. If instead
we add two cells to the first column and one cell to another column, the lower of the two cells in the first
column will not be assigned a v or h label by rules (a)-(d). Thus, there will be more than one satisfactory
labeling of the diagram of such a shape, and it will not contribute to the sum. If one cell is added to the
first column and two cells are added elsewhere, note that rules (b) through (d) will not apply to the highest
cell in the first column. Therefore, in order to get a unique satisfactory labeling, one where each cell’s
label is forced by rules (a) through (d), we must make sure that the highest cell in the first column is not
the rightmost cell in its row. The only shape that achieves this requirement is (3,0, 3). This shape has a
unique satisfactory labeling as shown in Figure [3] and this labeling is a satisfactory 1-hook labeling. So

Eé}% 5(21, %2, 3) appears on the right hand side of 1) with coefficient (—1)! = —1. Finally, if we
add no cells to the first column, the only way to keep the height of the first column greater than or equal

to the heights of the other columns, as required by the basement permutation 312, is to create the shape
(2,2,2). In this case, however, dg((2,2,2)/(2,0,1)) contains the configuration § E. Lemmal2]says there
is no satisfactory labeling, so this shape will not contribute to the sum. Putting this all together gives
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e (e

716/5(413]2]1

Fig. 4: A rim hook and its satisfactory labeling

P3 (.Il, o, 1‘3)E?21)%71) (33‘1, o, .233) = E?sl)%,l) (.Z‘l, o, 33‘3) — E?gl)%’?)) (331, o, .2?3), which can be verified by
direct computation.

Note that in the special case where ¢ = €, and ~ is actually a partition shape, Ejj = s, by ll Our
rule then reduces to the reverse row-strict version of the classical Murnaghan-Nakayama rule, which says

pr(x1, @2, ..., Tn)Sy (21,22, ..., Tp) = Z(—l)wp\/’”il(‘i)\(.ﬁl,]}g, ceeyTy) 11
A

Here, the sum is over all partition shapes A such that dg(\/~y) is a rim hook of size r, that is a connected
skew shape with no 2 x 2 square. Also, the width of A/~, w(\/7), is the number of columns over which
the cells of dg(\/7) stretch.

First, if X is a shape that appears on the right hand side of (TI)), then it also appears on the right hand
side of with the same coefficient. If dg(\/7) is a connected skew shape around the outside of dg(~)
avoiding the 2 x 2 square, then every cell of dg(\/~) either has another cell of dg(\/7) to its right or
below it, with the exception of the last cell in reading order. This means that rule (d) labels the last
cell in reading order, and rules (a) and (b) label all the other cells of dg(A/7) in a unique way, as in
Figure {4 Let ¢; = (z1,v1),-.-,¢k+1 = (Tk+1,Yk+1) be the cells labeled h listed in reading order.
Let cp42 = (Tgt2, Ykt+2),---, ¢ = (zr,y,) be the cells labeled v listed in reverse reading order. Let
dg()\(j’)) be the diagram of ~ plus the cells ¢y, cs, . .., ¢;. Clearly, each 2@ is a partition shape, making
it compatible with basement €,,. Also, each c; is on the rightmost column of its height in @) making
each ¢; a removable cell. This means the unique labeling is a satisfactory k-hook labeling, so A/~ is a
~-transposed k-hook relative to basement €,. Then this s) appears as a term in the sum with coefficient
(—1)%. This coefficient is the same as that given in the classical Murnaghan-Nakayama rule, because
the width of A/ is the number of cells labeled h. The labeling assigns an h to k + 1 cells so that
(_1)11)()\/’y)—1 — (_1)k'

Now, if A is not counted by (L1, it is also not counted by (10). If dg()/) is not a connected skew
shape, then consider the first connected component of dg(A/v) in reading order. The last cell in reading
order of this component will not have its label forced by rules (a) through (d). It is neither above nor
to the left of another cell. It is not in the lowest row of dg(\/+) because there is another component
following this one, and the situation described by rule (c) does not apply to partition shapes. Thus, there
is not a unique satisfactory of labeling of dg(\/), meaning J /- is not a y-transposed k-hook relative to
basement €,, so s, will not appear as a term in the sum. Similarly, if dg()\/) contains a 2 x 2 square,
Lemma [2] says that dg(A/7) has no satisfactory labeling. In this case, clearly A/~ is not a -transposed
k-hook relative to basement €,. Thus the shapes A for which A/ is a y-transposed k-hook relative to
basement €,, are exactly the shapes A such that dg(A/7) is a rim hook.



A Murnaghan-Nakayama Rule for Generalized Demazure Atoms 977

To prove Theorem [I] we start with a well-known result from symmetric function theory, which says
that the power symmetric functions can be expressed as an alternating sum of hook Schur functions:

r—1
pr(T1, T2, Tp) = Z(—l)kS(,,._k,lk). (12)
k=0
Using allows us to write
r—1
pT(IEl, T2y .. ,In)E,(;(Ih T2y $n) = Z(*l)kS(r_k.’lk)Ef{(zl, T2y ,l’n) (13)
k=0

thereby reducing the problem to one of multiplying a hook Schur function and a generalized Demazure
atom.

If Ay(d/) is the number of satisfactory k-hook labelings of dg(d/7), the following lemma answers
the question of how to multiply a hook Schur function and a generalized Demazure atom. While it is
possible to give a proof of this lemma using the Pieri rules of [HMR12]], we have chosen to give a direct
proof here.

Lemma 3 Ifv = (71,...,7n) is a weak composition of m and o € S,,, then

S(T—k,lk)(xthv .. axn)Eg(x17x27 o 71.71) = ZAk((s/’Y) Ag(x17x27 o 71.7’1) (14)
5

where the sum is over all weak compositions § = (01, ...,0,) of m+r such that dg(vy) C dg(d) and § /v
has a satisfactory k-hook labeling.

Proof: The left hand side of can be interpreted as the sum of the weights of all pairs (w, F'?), where
F? is a PBF of shape « with basement ¢ and w = wyws ... w, satisfies 1 < wy < -+ < wg < wgy1 <N
and n > wg41 > -+ > w, > 1. This condition on w comes from interpreting S(r—k,1k) @S the sum of the
weights of all reverse row-strict tableaux of shape (r — &, 1*) read by columns. Here, the weight of a pair
(w, F7) is defined to be wt(F) [];_, w,. The right hand side of can be interpreted as the sum of
the weights of all pairs (L, G?) where G is a PBF with basement o and shape § = (41, ..., d,) of size
m + r such that dg(y) C dg(9) and L is a satisfactory k-hook labeling of dg(d/~). Here, the weight of a
pair (L, G7) is just wt(G?).

Let © be the function which takes such a (w, F'?) pair to the pair (L, G?) where G is the PBF that
results from the insertion of w into F'? and L is the labeling induced by this insertion, defined below. Let
0 be the shape of this resulting PBF G7. Let G§ = F? and G = wy...w; = Fofori =1,...,r.
Let () be the shape of G, and let ¢; be the cell in dg(6(? /6¢=1). To obtain the induced labeling L of
dg(d/7), simply label cells ¢1, . . ., cg+1 with h, and label cells cg4o, . . ., ¢, with v. Note that by Lemma
E], c1,...,Cr+1 appear in reading order because w; < --- < wi < Wg41, and cgyo, ..., C, appear in
reverse reading order because wyyo > --- > w,. Also, L produces the correct number of h’s and v’s to
be a satisfactory k-hook labeling. We must check that the two additional conditions are met, as well as
that L is a satisfactory labeling.

We know that foreachi = 1,...,7, §) is a o-compatible weak composition of 1 + i because it arises
from insertion. Also, insertion creates only removable cells, so each ¢; is a removable cell. This means
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conditions 1 and 2 in the definition of a satisfactory k-hook labeling hold. It remains to show that the
labeling L satisfies the definition of a satisfactory labeling.

First, note that none of {cky2,...,c.} have another cell in dg(§/) to their right in the same row.
Suppose that some ¢; with k + 2 < [ < r has another cell ¢; to its right. Since ¢; is removable, it must
be the case that ¢ > [. This means that w; < w; so by Lemma ¢; should be strictly above ¢;. Since the
assumption is that ¢; and ¢; are in the same row, it must not be possible for any of {cx12,. .., ¢} to have
another cell in dg(d/~) to the right. This means every cell with another cell to the right must be among
{c1,...,cxt1}, and our labeling L assigns them all h. Thus, part (a) of the definition holds.

Next, note that none of {ci, ..., cxy1} have another cell in dg(d/~) immediately below. Suppose that
some ¢; with 1 < [ < k + 1 is directly above some other ¢;. For §(Y) to be a weak composition shape,
it must be the case that ¢« < [. This means w; < w; so that ¢; should come after ¢; in reading order by
Lemma E} This contradicts the fact that ¢; is above c;, which means all cells with another cell directly
below must be among {cg+2,. .., ¢} and our labeling assigns them all v, as required by part (b) of the
definition.

Now suppose that some ¢; with k+2 < [ < r is above a cell of dg(-y) and has some other ¢; € dg(6/7)
one row below and to the left. Then i > [ otherwise ¢; would not be removable. Then w; > w; so ¢;
should be strictly above ¢;. Since this is not the case, it must not be possible for one of {cyt2,...,¢.} to
be above a cell in dg(y) and have some other cell dg(d/) one row below and to the left. Any such cell
must therefore be among {c1, ..., ck11}, and L assigns them all h. Thus, part (c) of the definition holds.

Finally, we show that none of {cgo, ..., ¢, } can end up in the lowest row of dg(d /). For any w; with
kE+2<1l<r w < wgs so ¢ must fall strictly above ci41 in dg(d/7). Since each such ¢; must fall
strictly above another cell in the diagram, none can be in the bottom row. Therefore, all cells in the bottom
row of the diagram are among {cy, ..., cx+1}. The labeling L assigns them all h, thereby satisfying part
(d) of the definition.

We have shown that G7 is a PBF with basement ¢ and shape § = (41, ..., d,) of size m + r such that
dg(y) € dg(0) and L is a satisfactory k-hook labeling. Also, the weight of the pair (w, F'7) is clearly the
same as the weight of G?. Since the insertion procedure can be reversed, the map © is one-to-one.

It remains to show that O is surjective, or that for each G? with a given satisfactory k-hook labeling,
there is a pair (w, F'”) that maps to it under ©. Suppose G“ is a PBF with basement o and shape
0 = (61,...,0,) of size m + r such that dg(y) C dg(d) and L is a satisfactory k-hook labeling of
dg(d/v). Label the cells with v’s and h’s according to L. Then label the h’s in reading order with
ci,...,ck+1 and the v’s in reverse reading order with cg42,...,¢,. Since ¢, is a removable cell, we
can reverse the insertion procedure to produce a PBF which we will call F)7_; and a letter w, such that
G° = w, — F7_,. Since each ¢, is removable, we can continue to reverse the insertion procedure starting
with ¢,_; next, all the way down to c¢;. Each step in this reversal produces a new PBF F; and a letter
wiy1 such that G = w;y1 ... w, — FY. The shape of F/ is § with the cells ¢;41, . . . , ¢, removed. This
means F§ is a PBF of shape v and basement ¢ such that w = wj ... w, inserted into F§ produces G
and induces the labeling L.

We must show, however, that the resulting word w = w; ... w, satisfies 1 < w; < -+ < w <
w41 < mandn > wgey > --- > w, > 1. Itis clear that each w; satisfies 1 < w; < n, as w;
was an element of a PBF with basement o € S,,. Suppose for a contradiction that some w; > w; 1 for
1 < i < k. Then Lemma [I] says that ¢;; 1 should be strictly above ¢;, which contradicts the fact that
{c1,...,crs1} were labeled in reading order. So 1 < w; < -++ < w < wi+1 < n. Now suppose that
some w; < w;41 fork+1 <4 <r. Then Lemma says that ¢; 1 should appear after ¢; in reading order,
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which contradicts the fact that {cx41,...,c,} were labeled in reverse reading order. Thus, it is also true
that n > wgy1 > --- > w, > 1. Therefore, © is a bijection, which proves (14).
O

Replacing[T4]in[T3] allows us to write
r—1

pr(x1, 29, ... ,xn)Eg(xl,x27 cey X)) = Z(—l)k ZAk(é/v)Eg(ml,x27 ey X)) (15)
k=0 é

where the sum is over all weak compositions 6 = (d1,...,d,) of m -+ r such that dg(v) C dg(d) and
dg(d/~) has a satisfactory k-hook labeling. Next we state a technical lemma for which we will not supply
a proof due to lack of space. This lemma will help us define an involution which will allow us to simplify
the right hand side of (I3).

Lemma 4 Suppose ¢ is a shape such that dg(§ /) has a satisfactory j-hook labeling for some j and rules
(a) through (d) cannot be used to assign labels to all cells of dg(§/7). Then every satisfactory labeling of
dg(8/7) is a satisfactory k-hook labeling for some k.

Using these lemmas, we can prove Theorem I}

Proof of Theorem We have from li an expression for prﬁg in terms of Eg’s. Suppose 9 is a shape

such that F§ appears on the right hand side of . By Lemma J is a shape such that dg(d/~) has a
satisfactory j-hook labeling for some j. Suppose also that §/- is not a y-transposed k-hook relative to
basement o, so that there is more than one way to label its cells in accordance with rules (a) through (d).

We will associate with each satisfactory labeling L of dg(d/v) the sign (—1)¥ if L is a satisfactory
k-hook labeling. Note that Lemma {| implies that each satisfactory labeling L is a satisfactory k-hook
labeling for some value of k, so this notion of sign is well-defined. Now define an involution I on the set
of satisfactory labelings of dg(d/~). Take any satisfactory labeling L of dg(d/v). By Lemma] L is a
satisfactory k-hook labeling for some k. To define I(L), take the first cell ¢ in reading order of dg(d/7)
which was not forced to be a v or an h by rules (a) through (d). If L labeled cell ¢ with an h, change it to
a v. Otherwise, change it from a v to an h. This new labeling is I(L). I(L) is still a satisfactory labeling
because we have not changed the label of any cell to which rules (a) through (d) apply. The number of h’s
in I(L) is either one fewer or one more than the number of /s in L. By Lemma] I(L) is a satisfactory
k + 1-hook or k — 1-hook labeling. Furthermore the sign of (L) is the opposite of the sign of L. T is an
involution because I applied to I(L) will change the label of the same cell c.

Applying this involution to the labelings of dg(d/~) when ¢/~ is not a y-transposed k-hook relative
to basement o gives a way to pair Eg terms with opposite signs on the right hand side of . Since 1
has no fixed points, all such Eg’ terms will cancel. This means that if ¢ is a shape for which any cells of
dg(d/~) are left undetermined by rules (a)-(d), then Ef{ will not appear in the expansion of pnﬁg . The
terms that do appear are for those §’s for which rules (a)-(d) assign a v or h label to every cell of dg(d/7),
which are exactly y-transposed k-hooks relative to basement o. O

If A = (A1,...,As) is a partition, this theorem can be used to multiply p,\Ej'/ by first writing p =
PA,Pa, - - - P, and then repeatedly applying [T0}

In conclusion, we note that one can define a quasisymmetric Schur function Q)S,, and a row-strict qua-
sisymmetric Schur function RS, for each composition « of n; see [HLMvW11al] and [MR11]], respec-
tively. The methods of this paper can easily be modified to prove analogues of the Murnaghan-Nakayama
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rule for quasisymmetric Schur functions and row-strict quasisymmetric Schur functions. That is, we can

give combinatorial interpretations to the coefficients ug)ﬁ and U&T)B where

Pr(x1, oy 20)RQSa (21, ..., 2y) Zu QSﬁZL‘l,..., n) and

pr(x1, .oy ) RSa (21, .o 2y)

Zv RS@ T1yeeey )
This work will appear in a subsequent paper.
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