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A Divided Difference Operator for the Highest
root Hessenberg variety

Nicholas Teff†

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA, USA

Abstract. We construct a divided difference operator using GKM theory. This generalizes the classical divided
difference operator for the cohomology of the complete flag variety. This construction proves a special case of a
recent conjecture of Shareshian and Wachs. Our methods are entirely combinatorial and algebraic, and rely heavily
on the combinatorics of root systems and Bruhat order.

Résumé. Nous construisons un opérateur de différence divisée par la théorie GKM. Cette construction généralise
l’opérateur de différence divisée pour la cohomologie de la variété de drapeaux. Cette construction s’avère un cas par-
ticulier d’une conjecture récente de Shareshian et Wachs. Nos méthodes sont entièrement combinatoire et algébrique,
dèpendent en grande partie de combinatoire des systèmes de racines et de l’ordre de Bruhat.
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1 Intoduction
This article is an extended abstract of the article [Tef] of the same title. Most of the details of the proofs
are omitted.

A classical problem of Schubert calculus is to define explicit classes S [w] to represent Schubert varieties
in cohomology rings of a partial flag variety. For geometric reasons these classes form an additive basis for
the cohomology. In equivariant cohomology this problem reduces to finding the polynomials S [w]([v])
which are nonzero only if [v] ≥ [w] in Bruhat order. For more general spaces the uniqueness or even
existence of generalized Schubert classes named flow-up classes is not guaranteed. When they exist it is
natural to ask for some combinatorial formula defining the polynomials. This is the type of question we
adress here.

A motivating example for our work is the complete flag variety G/B. By a combinatorial construc-
tion called GKM theory (named after Goresky, Kottwitz and MacPherson) the equivariant cohomology
is computed directly from the Bruhat graph ΓW of the Weyl group W (for definitions see Section 2)
[GKM98, Tym08]. The Schubert classes classes are constructed by divided difference operators

∂i : Sw(u) 7−→ S
w(u)− siSw(siu)

αi
.
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These operators were first introduced by Berstein, Gelfand, and Gelfand; and Demazure for ordinary
cohomology, and Konstant and Kumar generalized them to equivariant cohomology [BGG73, Dem73,
KK86]. More recently, employing GKM theory Tymoczko uses a left action of W and defines new
divided difference operators [Tym08]. Flow-up classes for G/B are unique, so this construction agrees
with the earlier work.

A benefit of divided difference operators is that they are recursive maps. This means if Sw is known
and siw < w, then Ssiw := ∂iSw. Billey uses this recursion of the Konstant and Kumar operators to
define a closed combinatorial formula for the polynomial Sw(v) [Bil99]. Billey’s formula is a positive
formula involving the reduced expressions of w obtained as a subexpression of a fixed reduced expression
for v [Bil99, Theorem 3].

In this paper GKM rings (a combinatorial analog of equivariant cohomology) are defined for certain
subgraphs of the Bruhat graph. As with the Bruhat graph these rings construct the equivariant cohomology
of algebraic varieties called the regular semisimple Hessenberg varieties. Two important examples of
regular semisimple Hessenberg varieties are the complete flag varietyG/B and the toric variety associated
to the Coxeter complex [DMPS92].

Hessenberg varieties were first arose in numerical analysis in the context of calculating the Hessenberg
form of a matrix, and have received recent attention in the work of Tymoczko generalizing Springer
theory to nilpotent Hessenberg varieties [Spr76, Tym07]. The cohomology ring of regular semisimple
Hessenberg varieties carry a representation of W , of which little is known. In fact, it remains an open
question when W ∼= Sn the symmetric group. In this case your author has provided an irreducible
decomposition of this representation for a large family called parabolic Hessenberg varieties [Tef11].

In another direction, the representation for Sn has appeared in a recent conjecture of Shareshian and
Wachs in their work on chromatic quasisymmetric functions [SW11, Conjecture 5.3]. They conjecture that
the under the Frobenius isomorphism between the representation ring of Sn and the ring of symmetric
functions that the image of the ordinary cohomology ring is the chromatic symmetric function they study.

Our main result (Theorem 3.3) generalizes the divided difference operator for G/B to what we call the
highest root Hessenberg variety. This result is a model first step toward defining bases which would allow
us to investigate the representation on the cohomology (ordinary and equivariant). With this basis in hand
we end this paper by announcing that for the highest root Hessenberg variety the Shareshian and Wachs
conjecture is true (Theorem 3.12).

Our problem originates in algebraic geometry, but our methods are combinatorial and algebraic, a
primary advantage of GKM theory. We will see the construction of divided difference operators and
the flow-up classes relies heavily on Bruhat order and root systems. In this abstract to emphasize the
combinatorial nature of this construction we have left out the formal definitions of Hessenberg varieties
and GKM theory. The curious reader is directed to [DMPS92, Tef11, Tym07] for Hessenberg varieties
and to [GKM98, GT09, GZ03, Tym08] for GKM theory.

2 Hessenberg graphs
We begin with the definition of a Weyl group W [Hum90]. Let V be a k-dimensional real vector space
with a symmetric positive definite bilinear form ( , ). A reflection in V is a linear map which negates a
non-zero vector α ∈ V and fixes point-wise the hyperplane orthogonal to α. A formula for the reflection
through α is sα(v) = v − 2(α, v)(α, α)

−1
α.
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A (crystalographic) root system in V is a finite set of vectors Φ (called roots) which satisfy the follow-
ing axioms

(1.) Rα ∩ Φ = ±α for all α ∈ Φ;

(2.) sαΦ = Φ for all α ∈ Φ;

(3.) 2(α,β)
(α,α) ∈ Z for all α, β ∈ Φ.

The integer cαβ := 2(α,β)
(α,α) is called a Cartan integer. A base ∆ ⊂ Φ is a basis of V such that for each

α ∈ Φ the coefficients of the expansion α =
∑

∆ ciαi are either all non-negative or all non-positive.
With a fixed base ∆ the positve roots Φ+ are those with all non-negative coefficients and respectively

call Φ− = −Φ+ the negative roots. There is a partial order (≺) on Φ where α ≺ β means β − α is a sum
of positive roots. We say I ⊂ Φ is an ideal if whenever β ∈ I and β ∈ Φ with β ≺ α, then α ∈ I.

The Weyl group W is the group generated by the simple reflections si := sαi for αi ∈ ∆. For w ∈ W
the length `(w) is the length of a reduced expressionw = si1si2 · · · sij . Finally, the Bruhat graph ΓW has
vertices W and edges u −→ w if w = sαu for α ∈ Φ+ and w−1α ∈ Φ− (or equivalently `(w) > `(u)),
and the Bruhat order < is the transitive closure of the edge relations.

Example 2.1 (The type An root system.) Consider Rn+1 with dot product defined on the standard co-
ordinate basis ti for i = 1, · · · , n+ 1. Let V be the span of the roots Φ = {ti − tj : i 6= j}. The simple
roots are the ti− ti+1 and the positive roots are the ti− tj for i < j. The reflection in ti− tj, denoted
s(ij), interchanges ti and tj and fixes the other tk. Hence, mapping this reflection to the transposition
(ij) defines an isomporism of the Weyl group with Sn+1.

BRIEF ARTICLE

THE AUTHOR

h = {t1 − t2} h = ∆ h = Φ+

= t1 − t2

= t2 − t3

= t1 − t3

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

1

Fig. 1: Hessenberg graphs in type A2

Definition 2.2 Let (V,Φ,∆,W ) be as defined above. A Hessenberg set h is the complement of an ideal
of Ih ⊂ Φ+. The Hessenberg graph Γh has vertices W and edges u −→ w if w = sαu for α ∈ Φ+ and
w−1α ∈ −h. The GKM ring of h is the subring of Maps(W, R[αi, · · · , αk]) defined from Γh by
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H∗T (h) =

{
P : W −→ R[α1, · · · , αk] :

for each edge w −→ sαw
P(w)− P(sαw) ∈ 〈α〉

}
.

The relations P(w) − P(sαw) ∈ 〈α〉 are the GKM conditions. The GKM ring is a graded ring; we
say P ∈ Hk

T (h) if each non-zero polynomial P(w) is homogeneous of degree k. Elements of H∗T (h) are
represented by labeling the vertices of Γh by polynomials (cf Figure 2).

The GKM rings carry an action ofW obtained by first extending the action ofW on Φ to the polynomial
ring R[∆] := R[α1, · · · , αk] from which we obtain an action on Maps(W, R[∆]) by the rule

(w · P)(u) = wP(w−1u) (1)

where on the right w is the acting on the polynomial P(w−1u) ∈ R[∆].

Proposition 2.3 The GKM ring H∗T (h) is W -stable with respect to the action defined in Equation 1.

Proof: Let P ∈ H∗T (h) and w ∈ W . We must check the GKM conditions, i.e. for every edge u −→ sαu
is (w ·P)(u)− (w ·P)(sαu) ∈ 〈α〉. The undirected edge u←→ sαu is in Γh if and only if the undirected
edge w−1u ←→ sw−1αw

−1u (= w−1sαu) is too. The GKM conditions ignore the edge orientation,
so P(w−1u) − P(w−1sαu) ∈

〈
w−1α

〉
is equivalent to wP(w−1u) − wP(w−1sαu) ∈ 〈α〉. The last

expression is (w · P)(u)− (w · P)(v) proving the claim. 2

This action is easily describe on the graph when w = sα a reflection; the action of sα interchanges
polynomials across edges corresponding to sα (some may have been deleted) and permutes the roots.

BRIEF ARTICLE

THE AUTHOR
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[e] t2 − t1

1

Fig. 2: A class and its image under s1·

In order to study this representation we need to construct a basis ofH∗T (h). For the GKM ringH∗T (Φ+),
this basis consists of Schubert classes Sw [Tym08]. These are homogenous classes of degree `(w) and the
polynomial Sw(v) is nonzero only if v > w in Bruhat order, i.e. there is exists a path w −→ · · · −→ v in
the Bruhat graph.

These notions are generalized as follows. Fix h a Hessenberg set. The flow-up of x ∈ W are all the
vertices y such that there is a path x −→ · · · −→ y in Γh. If y is in the flow up we denote this by x <h y,
and `h(x) = k if there are k edges ending at x.
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Definition 2.4 Px ∈ H`h(x)
T (h) is a flow-up class at x ∈W if

(1) Px(x) =
∏

sαx−→x

α, where the product is over the edges ending at x; and

(2) if Px(y) 6= 0, then y ≥h x.

These classes have been studied previously by Guillemin and Zara for a general construction of GKM
rings [GZ03]. If for every w ∈ W flow-up classes exist (which is not always true) the family forms a
basis of H∗T (h) as a free-R[α1, · · · , αk] module [GZ03]. Fortunately, for H∗T (h) flow-up classes always
exist.

Theorem 2.5 Let h be a Hessenberg set, then the GKM ring H∗T (h) has a basis of flow-up classes.

Proof: This follows because the GKM rings H∗T (h) are the equivariant cohomology of the regular
semisimple Hessenberg variety [Tef11], and [DMPS92, Theorem 8] proves for each i that rankR[∆]H

i
T (h)

satisfy [GZ03, Theorem 2.1]. 2

A drawback of this Theorem (besides its intentionally opaque nature) is that it only guarantees the
existence of a flow-up basis. We are still left with the problem of constructing the basis elements. The
construction of flow-up classes for GKM rings is important for several reasons. First, an open problem of
Schubert calculus is to determine the coefficients cwuv defined in the expansion of the product of Schubert
classes SuSv =

∑
cwuvSw, so constructing generalized Schubert classes presents a new context to study

this problem. Second, flow-up classes form a basis of the representation of W and without knowing a
basis it will be essentially impossible to study the representation.
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1

Fig. 3: Non-unique flow-classes

There do exist algorithms for the polynomials Px(y) in general GKM rings [GZ03, GT09]. We adopt
an alternative approach which emulates the construction of Schubert classes. We use the representation of
W on H∗T (h) (defined in Equation (1)) to recursively build a new flow-up class. This allows us to define
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a divided difference operator which as in the classical case recursive defines the flow-up class, i.e. if Pw
is know and siw < w, then ∂γi Pw = Psiw. A fundamental difficulty for us is that for a fixed w ∈ W a
flow-up class at w is not unique (cf Figure 3), a property enjoyed by Schubert classes.

2.1 h-inversions
The inversions of w i.e. Nw :=

{
α ∈ Φ+ | w−1α ∈ Φ−

}
describe the edges ending at w in the Bruhat

graph. This motivates the following

Definition 2.6 Let h be a Hessenberg set. For w ∈ W the set Nh
w :=

{
α ∈ Φ+ | w−1α ∈ −h

}
is called

the h-inversions of w.

The roots in Nh
w describe the edges ending at w in Γh, so knowing only Nh

w for all w ∈ W alone
determines the GKM ring. Therefore, it is important to understand how h-inversions change as w ∈ W
varies.

Definition 2.7 Let w, v ∈W , we say v is a cover of w if w −→ v ∈ ΓW and

(1) `(v) = `(w) + 1 and

(2) v = sαw

The following Proposition determines how the set Nw and Nv differ when v is a cover of w (cf.
[Tym08]).

Proposition 2.8 Suppose v is a cover of w, then

Nv = {α} ∪ (sαNw ∩ Φ+) ∪ (Nw ∩ sαΦ−).

This Proposition generalizes to h-inversions.

Proposition 2.9 Suppose v is a cover of w. For β ∈ Nv and

(1) if β ∈ sαNw ∩ Φ+ it follows β ∈ Nh
v if and only if sαβ ∈ Nh

w or

(2) if β ∈ Nw ∩ sαΦ− it follows when β ∈ Nh
v then β ∈ Nh

w.

Proof: For Part (1) if sαβ ∈ Nw the equivalence follows because v−1β = w−1sαβ.
For Part (2) we show v−1β ≺ w−1β which by definition of h implies w−1β ∈ h because v−1β ∈ h.

The hypothesis β ∈ Nw ∩ sαΦ− implies sαβ = β − cαβα ∈ Φ−, so the Cartan integer cαβ > 0.
Therefore, since v = sαw we have w−1β − v−1β = cαβw

−1α. Since v is a cover of w and v = sαw it
follows w−1α ∈ Φ+ which implies v−1β ≺ w−1β. 2

Corollary 2.10 Let v be a cover of w. If α ∈ ∆ and α ∈ Nh
v , then Nh

v = {α} ∪ sαNh
w, otherwise if

α 6∈ Nh
v , then Nh

v = sαN
h
w.

Corollary 2.11 Let v be a cover of w, then |Nv| − |Φ− \ h| ≤ |Nh
v | ≤ |Nh

w|+ 1

The next Proposition determines the values of flow-up classes at the covers in the Bruhat order. It is
key to constructing a family of flow-up classes later.
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Proposition 2.12 Let P be any flow-up class at w. Suppose v is a cover of w, then P(v) can be deter-
mined as follows

(1) if v−1(α) 6∈ h then P(v) = 0 (i.e. the edge w −→ v ∈ ΓW is deleted in Γh); otherwise

(2) if α ∈ ∆ ∩Nh
v then P(v) = sαP(w);

(3) if |Nh
v | = |Nh

w|+ 1 then

P(v) =
∏

β∈Nh
v \{α}

β; or

(4) if |Nh
v | ≤ |Nh

w| then

P(v) = f
∏

β∈Nh
v \{α}

β

for some f ∈ R[∆] of degree |Nh
w| − |Nh

v \ {α}| with f ≡∏µ∈(Nh
w∩Nv)−Nh

v
µ (mod 〈α〉).

Proof: Use Proposition 2.9 and the GKM conditions to determine these values. 2

3 Highest root Hessenberg sets
Suppose Φ is an irreducible root system, i.e. Φ cannot be expressed as a disjoint union Φ = Ψ ∪Ψ′ both
of which are root systems. For Φ irreducible there exists a unique highest root γ ∈ Φ+ such that α ≺ γ
for all α ∈ Φ [Hum90, Section 2.9(3)]. If hγ = Φ+ \ {γ}, then hγ is a Hessenberg set.

Forw ∈W letNγ
w = N

hγ
w and `γ(w) = `hγ (w). We will be working with both the partial order defined

by the flow-up <γ and the Bruhat order <. Working with the highest root Hessenberg set simplifies much
of the variation which occurs between Nw and Nγ

w. For example

Lemma 3.1 Suppose v > w ∈ W. We have `γ(w) = `γ(v) if and only if v is a cover of w; Nw = Nγ
w;

and there exists β ∈ Nv such that v−1β = −γ.

Proof: The converse follows by definition. Therefore, suppose `γ(w) = `γ(v). Since |h| = |Φ+| − 1
we have inequality `(v) − 1 ≤ `γ(v) = `γ(w) < `(v), which implies `γ(v) = `(v) − 1. Therefore,
there exists a β ∈ Nv such that v−1β = −γ. Further, the equality `γ(v) = `γ(w) forces equality in
`γ(v) = `(v)− 1 ≥ `(w) ≥ `γ(w). Hence, `(v) = `(w) + 1, i.e. v is a cover of w and Nw = Nγ

w. 2

This Lemma with Proposition 2.9 identifies an inversion β ∈ Nγ
w ∩ Nv such that v−1β = −γ. For a

fixed β, the v of Lemma 3.1 is unique.

Corollary 3.2 Suppose v > w and β ∈ Nγ
w ∩Nv . If `γ(w) = `γ(v) and v−1β = −γ, then v is unique.

We are now ready to state the main Theorem of this paper.

Theorem 3.3 These exist R[∆]-module divided difference operators ∂γi : H∗T (hγ) −→ H∗T (hγ) and a
family of flow-up classes {Pw}w∈W such that
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∂γi Pw =

{
Psiw if siw < w;

0 if siw > w.

Further, if w = si1 · · · sin is any reduced expression for w ∈ W , then the operator ∂w := ∂i1 · · · ∂in is
well-defined. In other words, if w = sj1 · · · sjn is another reduced expression for w, then

∂i1 · · · ∂in = ∂j1 · · · ∂jn .

3.1 Proof of Theorem 3.3
In order to prove Theorem 3.3 we give an explicit formula for the divided difference operator. With this we
work by induction on the length function `(w) to define simultaneously the action of the simple reflection
si· on the previously defined flow-up classes AND define a new flow-up class satisfying Theorem 3.3.

The base case of our induction is the longest element w◦ ∈ W (cf [Hum90, Theorem 1.8]) for which
it is straightforward to define a flow-up class. Since Nw◦ = Φ+ it follows Nh

w◦ = h, so Pw◦ is the class
whose value at w◦ is the product of the roots in h and 0 otherwise. Proceeding by induction, suppose for
all w ∈W with `(w) ≥ k that flow-up classes satisfying Theorem 3.3 have been defined.

First a bit of notation, we say sαw l w if sαw < w in Bruhat order and the edge sαw −→ w has been
deleted in Γh, or in other words w−1α = −γ.

Definition 3.4 (Formula for ∂γi ) Letw ∈W with `(w) = k and suppose {Pu}`(u)≥k are flow-up classes
in H∗T (hγ). For each si ∈ ∆ define the ith divided difference operator by

∂γi Pw =


si · Pw if siw l w;
Pw − si · Pw + cααi (Pv − Psiv)

αi
if siw < w;

0 if siw > w,

(2)

where cααi is the Cartan integer of sα(αi), and when v ∈ W exists it is the unique cover of w such that
`γ(w) = `γ(v) and v−1αi = −γ.

Example 3.5 For the type A2 root system the highest root set is h = ∆. The family of flow-up classes
constructed by Definition 3.4 is described in Table 3.5. The reader is encouraged to replicate this data,
for guidance Γ∆ is given in Figure 1.

Pv(w) w = e s1 s2 s1s2 s2s1 s1s2s1

Pe 1 1 1 1 1 1
Ps1 0 t1 − t2 0 t3 − t2 0 0
Ps2 0 0 t2 − t3 0 t2 − t1 0
Ps1s2 0 0 0 t1 − t3 0 t1 − t2
Ps2s1 0 0 0 0 t1 − t3 t2 − t3
Ps1s2s1 0 0 0 0 0 (t1 − t2)(t2 − t3)

Tab. 1: The family of flow-up classes for h = ∆ in type A2.
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It is not obvious that ∂γi is a R[∆]-module homorphism, this is a consequence of the next theorem. We
prove this in [Tef], its proof requires a careful case-by-case analysis.

Theorem 3.6 Suppose Theorem 3.3 has uniquely determined Pw for w ∈W with `(w) ≥ k, then

si · Pw =


P if siw l w or siw m w

Pw if siw > w

Pw − αiP + cααi(Pv − Psiv) if siw < w

where P is a flow-up class at siw and when v ∈ W exists it is the unique cover of w such that `γ(w) =
`γ(v) and v−1αi = −γ.

This provides the inductive step to Theorem 3.3. The consequence is that the class P is a new flow-up
class at siw where `(siw) = k − 1. Repeating this process for all w′ with `(w′) = k − 1 proves the
induction. In fact this process uniquely defines a flow-up class at siw. Before proving the uniqueness
we show ∂γi is a module map. Since, R[∆] is a UFD over R[α1, · · · , α̂i, · · · , αk], where α̂i means αi
is removed, dividing by αi is well-defined. Therefore, in the third case of Theorem 3.6 there exists a
well-defined flow-up class such that

∂γi Pw :=
Pw − si · Pw + cααi (Pv − Psiv)

αi
= P.

This proves

Corollary 3.7 The divided difference operator ∂γi : H∗T (hγ) −→ H∗T (hγ) is a R[∆]-module homorphism.

The next is a technical Lemma we need frequently (cf. [Hum90, Lemma 5.11]). It is important because
it says that left multiplication by a simple transposition si preserves the flow-up, i.e. if v is a cover of w,
and w −→ siw if and only if siv is a cover of siw.

Lemma 3.8 (Diamond Lemma) Let v be a cover ofw. Suppose `(siw) = `(w)+1 = `(v) and siw 6= v,
then both siv > v and `(siv) = `(siw) + 1. Further, w −→ v is in Γh if and only if siw −→ siv is in Γh.

Next, we prove the flow-up class P defined in Theorem 3.3 is uniquely determined. This requires a
new induction, which again our base case is w◦ which is uniquely defined. Suppose by induction that
if `(v) > k that the flow-up classes are uniquely determined, and let `(w) = k. This next Proposition
determines the polynomials at all the covers of w for the flow-up class P defined in Definition 3.4. We
include the proof as an example of how to prove these results.

Proposition 3.9 Suppose P is a flow-up classes at w ∈ W defined by Definition 3.4, i.e. P = ∂γi Psiw
for `(siw) = `(w) + 1. Whenever v covers w, then

P(v) =


sαµ

∏
β∈Nγv \{α}

β if α ∈ Nγ
v ,

0 if α 6∈ Nγ
v

(3)

where µ ∈ (Nγ
w ∩Nv) \Nγ

v or µ = 1 otherwise.
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Proof: When µ exists it is the root associated to the edge sµv −→ v missing in Γhγ . Define the polynomial
q = sαµ

∏
β∈Nγv \{α} β. When α 6∈ Nγ

v or `γ(v) = `γ(w) + 1 (when µ does not exist) this is proved in
Proposition 2.12(1)-(3).

Therefore, we may assume `γ(v) = `γ(w), α ∈ Nγ
v , and µ ∈ (Nγ

w ∩ Nv) \ Nγ
v exists. We work by

induction, for w = w◦ there is nothing to prove. Suppose by induction for w′ ∈ W with `(w′) > k
the result is true, and let w ∈ W with `(w) = k. In this case, there exists a simple reflection si so that
`(siw) = `(w)+1. By Lemma 3.8, siv > v, and siv = ssiαw, therefore Psiw(siv) satisfies the inductive
hypothesis.

If siw m w, then by Equation (2) P := si · Psiw. It follows from Corollary 2.10 that Nγ
siv = siN

γ
v , so

deduce Psiw(siv) = siq. This shows P(v) = siPsiw(siv) = q as desired.
If siw > w, Equation (2) gives αiP = Psiw − si · Psiw + cβαi(Pv

′ − Psiv′) where v′ may or may
not exist. Evaluating both sides of this expression at v we claim

αiP(v) = −siPsiw(siv).

To prove this first note Psiw(v) = Pv′(v) = 0 since v is not in the flow-up. Next, when Psiv′(v) 6= 0
since `(siv′) = `(v) it must be that siv′ = v. This leads to a contradiction. The hypothesis on v′ is that
siv
′ l v′, but siv′ = v and `γ(v) = `(v)− 1. This means at vertex v in Γhγ there are two edges deleted

from the Γhγ , i.e. v−1 maps two roots to −γ, a contradiction since v is invertible.
Therefore, αiP(v) = −siPsiw(siv), and the inductive hypothesis shows Psiw(siv) is the product

ssiαsiµ = sisαµ times the product of the roots in Nγ
siv = {αi} ∪ siNγ

v except siα. Equivalently P(v) is
the product of sαµ and the roots in Nγ

v except α, which is q as desired. 2

This will prove no matter how you arrive at w the class P is uniquely determined.

Corollary 3.10 The flow-up classes defined by Definition 3.4 are unique, i.e. if sv = w = tu where s, t
are simple reflections, then ∂sPsv = P = ∂tPtu.

Proof: Let ∂sPsv = P and ∂tPsu = P ′. We want to show P = P ′. Since P ′ is non-zero only on
x >γ w and homogeneous of degree `γ(w) we have a R[∆]-linear combination

P ′ =
∑
x >γ w

`γ (x) ≤ `γ (w)

fxPx + fwP.

Evaluating both sides of this expression at w we have P ′(w) = fwP(w), but P ′(w) = P(w) which
determines that fw = 1. Next, evaluation at any x >γ w in the summation gives

P ′(x) = fxPx(x) + P(x).

Since Px(x) 6= 0 and P ′(x) = P(x) by Proposition 3.9 we conclude all the fx = 0. Therefore P ′ = P .
2

As a consequence we can define a unique class Psiw := ∂γi Pw, and by induction this proves the
first half of Theorem 3.3; that is there exists a family of flow-up classes {Pw}W and divided difference
operators ∂γi . Next, we prove the second half, that is if w = si1 · · · sin is a reduced expression, then
∂w = ∂i1 · · · ∂in is independent of the reduced expression.
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Theorem 3.11 Ifw ∈W andw = si1 · · · sin a reduced expression, then ∂w := ∂i1 · · · ∂in is independent
of the reduced expression, that is if w = sj1 · · · sjn , then

∂i1 · · · ∂in = ∂ji · · · ∂n .

Proof Sketch: Since any two expressions for w ∈ W can obtained by a sequence of braid relations
[Hum90, Theorem 1.9] it suffices to check if the Theorem is true for the braid relations. Therefore,
suppose that v = stst · · · = tsts · · · and let u and u′ be suffixes of v, i.e. su = v = tu′ such that
`(u) = `(v)− 1 = `(u′). Then, ∂u and ∂u′ are well-defined since they have unique expressions in terms
of the simple reflections. To show ∂v is well-defined it suffices to show ∂s∂u = ∂t∂u′ by acting on the
basis {Pw}w∈W .

Now, we need only check the x ∈W such that `(vx) = `(x)− `(v) or else by induction with Definiton
3.4

∂s∂uPx = 0 = ∂t∂u′Px.
In this case, we have `(ux) = `(x) − `(u) and ∂uPx = Pux (respectively for u′). The product vx is
well-defined, so conclude sux = vx < ux if and only if tu′x = vx < u′x. An application of Corollary
3.10 proves ∂s∂uPx = ∂sPux = Pvx = ∂tPu

′x = ∂t∂u′Px. 2

3.2 Future work
This work provides a model construction of divded difference operators and flow-up classes for all the
GKM rings H∗T (h). A difficulty which needs to be overcome before we can obtain the equivalent of
Theorem 3.6 we need a better understanding of flow-up classes then Proposition 2.12 provides. Namely,
here we take advantage that covers of w essential determine Pw. In general, we will need to understand
flow-up classes further up the flow of w then just at the covers.

An advantage of this approach is that it does determine the representation on H∗T (h) when Φ is simply-
laced, i.e. all the Cartan integers cαβ = ±1. This next result will appear in [Tef].

Theorem 3.12 Suppose Φ is simply-laced. LetmV = |W |
|Φ| andmR = |W |−|∆|mV , then as aW -module

H∗T (h) = (V ⊕mV
⊕

R⊕mR)
⊗
R

R[∆],

where V is the reflection representation (cf. Section 2) , R is the trivial representation and R[∆] is the
polynomial representation of W .

In the case where Φ is the type A root system we have

Theorem 3.13 If Φ is the type An−1 root system, then as a Sn-module

H∗T (h) = (V ⊕(n−2)!
⊕

R⊕(n−1)!(n−1))
⊗
R

R[∆].

Furthermore, this proves the Shareshian-Wachs conjecture [SW11, Conjecture 5.3].
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