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A Parking Function Setting for Nabla Images
of Schur Functions

Yeonkyung Kim†

Mathematics Department, University of California, San Diego, La Jolla, CA, USA

Abstract. In this article, we show how the compositional refinement of the “Shuffle Conjecture” due to Jim Haglund,
Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia
Nabla operator as a weighted sum of a suitable collection of “Parking Functions.” The validity of these expressions
is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.

Résumé. Dans cet article, nous montrons comment le raffinement compositionel de la “Conjecture Shuffle” due
à Jim Haglund, Jennifer Morse et Mike Zabrocki peut être utilisé pour exprimer l’image d’une fonction de Schur
sous l’opérateur Nabla de Bergeron-Garsia comme une somme pondérée d’un ensemble convenable de “fonctions
parking.” La validité de ces expressions, bien sûr, va être conjecturale jusqu’à ce que le raffinement de la composition
de la “Conjecture Shuffle” est établie.
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1 Introduction
Parking Functions in the n× n lattice square are represented in the computer by two line arrays

PF =

[
v1 v2 · · · vn
u1 u2 · · · un

]
with u1, u2, . . . , un integers satisfying

u1 = 0 and 0 ≤ ui ≤ ui−1 + 1

and V = (v1, v2, . . . , vn) a permutation in the symmetric group Sn satisfying

ui = ui−1 + 1 =⇒ vi > vi−1.

We will denote by σ(PF ) the permutation obtained by successive right to left readings of the components
of the vector V = (v1, v2, . . . , vn) according to decreasing values of u1, u2, . . . , un. We will call σ(PF )
the “diagonal word” of PF . We will also let ides(PF ) denote the descent set of the inverse of σ(PF ).
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This given, each Parking Function is assigned the “weight”

w(PF ) = tarea(PF )qdinv(PF )Qides(PF )[X]

where

area(PF ) =

n∑
i=1

ui, (1)

dinv(PF ) =
∑

1≤i<j≤n

χ(ui = uj & vi < vj) +
∑

1≤i<j≤n

χ(ui = uj + 1 & vi > vj),

and, for a subset S ⊂ {1, 2, · · · , , n−1},QS [X] denotes Gessel’s fundamental quasi-symmetric function.

In the figure below we have a Parking Function as we usually conveniently depict it. The vector U =
(u1, u2, . . . , un) is on its left and the vector V = (v1, v2, . . . , vn) is on its right. The shaded cells give
the “main diagonal” (or 0-diagonal) of PF . The numbers in the lattice cells are the “cars”. The path
along whose vertical steps we have set the cars is the supporting “Dyck path” of PF . The components of
U = (u1, u2, . . . , un) give the orders of the diagonals containing the cars. Note that reading the cars by
diagonals from right to left starting with the highest diagonal gives

σ(PF ) = 3 1 8 5 7 6 2 4.

Thus
ides(PF ) = {2, 4, 6, 7}. (2)

It is easily seen that the sum in (1) gives the total number of cells between the supporting Dyck path and
the main diagonal. Note that two cars in the same diagonal with the car on the left smaller than the car
on the right will contribute a unit to dinv(PF ) called a “primary dinv”. Likewise, a car on the left that is
bigger than a car on the right with the latter in the adjacent lower diagonal contributes a unit to dinv(PF )
called a “secondary dinv”.

PF =

[
4 6 8 1 3 2 7 5
0 1 2 2 3 0 1 1

]
⇐⇒ (3)

Thus for the Parking Function in (3) we have

area(PF ) = 10, dinv(PF ) = 4,

which together with (2) give
w(PF ) = t10q4Q{2,4,6,7}[X].
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In Haglund et al. (2012) Haglund, Morse and Zabrocki introduce an additional statistic, the “diagonal
composition” of a Parking function, which we denote by “p(PF ).” This is the composition whose parts
determine the position of the zeros in the vector U = (u1, u2, . . . , un), or equivalently give the lengths of
the segments between successive diagonal touches of its Dyck path. For the present example we have

p(PF ) = (5, 3).

Denoting by PFn the collection of Parking Functions in the n×n lattice square, one of the compositional
refinements of the Shuffle conjecture due to Haglund-Morse-Zabrocki in Haglund et al. (2012) states that
for any composition p = (p1, p2, . . . , pk) of n we have

∇Cp1Cp2 · · ·Cpk1 =
∑

PF∈PF
p(PF )=(p1,p2,...,pk)

tarea(PF )qdinv(PF )Qides(PF )[X] (4)

where “ ∇ ” is the Bergeron-Garsia operator introduced in [1] and, for each integer a, Ca is the operator
plethystically defined by setting for any symmetric function P [X]

CaP [X] =
(−1
q

)a−1∑
k≥0 P

[
X − 1−1/q

z

]
zkhk[X]

∣∣∣
za
.

Using the device θi which acts on the operator Cp = Cp1Cp2 · · ·Cpk according to the formula

θiCp = Cp−ei

where ei is the coordinate vector with 1 in the ith position, we will show that

Theorem 1 For any composition (p1, p2, . . . , pk) we have

sp1,p2,...,pk [X] = (−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 (5)

where “sp1,p2,...,pk [X]” denotes the Schur function indexed by the composition (p1, p2, . . . , pk).

To get across the significance of this identity it is best to have a close look at a few special cases. To
begin, for k = 2 with a ≥ b ≥ 1, p1 = a and p2 = b, (5) becomes

sa,b[X] = (−q)a+b−2(1− θ2/qθ1)C[a,b]1 = (−q)a+b−2(C[a,b]1− C[a+1,b−1]1/q). (6)

Similarly, for k = 3 with a ≥ b ≥ c ≥ 1, p1 = a, p2 = b and p3 = c, we get

sa,b,c[X] = (−q)a+b+c−3(1− θ2/qθ1)(1− θ3/qθ1)(1− θ3/qθ2)CaCbCc1 =

= (−q)a+b+c−3
(

C[a,b,c]1 − C[a,b+1,c−1]1/q − C[a+1,b,c−1]1/q − C[a+1,b−1,c]1/q

+ C[a+1,b,c−1]1/q2 + C[a+1,b+1,c−2]1/q2

+ C[a+2,b−1,c−1]1/q2 − C[a+2,b,c−2]1/q3
)
. (7)

These identities suggest that it may be possible to obtain a Parking Function interpretation for ∇ of a
Schur function via the compositional refinement of the Shuffle conjecture in (4).
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For example, from (6) we obtain that

∇s4,3 = q4
(
∇C5C21 − q∇C4C31

)
.

From the Haglund-Morse-Zabrocki conjectures, it follows that the sum of the weights of the collection
Π[5, 2] of Parking Functions with diagonal composition [5, 2] should be given by the polynomial∇C5C2

and the sum of the weights of the collection Π[4, 3] of Parking Functions with diagonal composition [4, 3]
should be given by∇C4C3. This given, to obtain a combinatorial setting for∇s4,3 it suffices to construct
an injection φ of Π[4, 3] into Π[5, 2] that preserves area and ides but increases dinv by one unit, and then
identify the complementary collection Π[5, 2] \ φ(Π[4, 3]): thereby obtaining the identity

∇s[4,3] = q4
∑

PF∈Π[5,2]\(φΠ[4,3])

tarea(PF )qdinv(PF )Qides(PF )[X]

A look at the identity in (7) suggests that a combinatorial setting for∇sa,b,c may be obtained by carrying
out an “inclusion-exclusion” process on the collections of Parking Functions with diagonal compositions
the indices of the operators occurring in (7).

The task of carrying out the injections yielding such Parking Function settings for the Nabla image of
Schur functions is the topic of the author’s doctoral thesis which is still in progress. In this article we
show how this can be systematically carried out in a variety of examples of Schur functions such as those
indexed by two-row or two-column partitions.

We should mention that in Loehr and Warrington (2008) another combinatorial model is conjectured
for Nabla Schurs by means of labeled nested Dyck paths. The Loehr-Warrington model stems naturally
from the Jacobi-Trudi formula for Schur functions, while the present model stems naturally from Theorem
(1) which may be viewed as a q-analogue of Jacobi-Trudi. It would make an interesting combinatorial
project to see how their model relates to ours, in particular whether their nested labeled Dyck paths can be
naturally unraveled into collections of Parking Functions. Even more importantly, if the latter unraveling
is carried out, any progress in the resolution of the Loehr-Warrington conjecture may be conducive to
significant progress in the resolution of the Haglund-Morse-Zabrocki conjectures.

This writing is divided into three sections. In the first section we give a proof of Theorem (1), in the
second section we give some examples in the two part partition cases, in the third and final section we
show how the B operators of Haglund et al. (2012) can be used to give a Parking Function setting to the
Nabla image of two-column Schur functions.

2 A q-analogue of the Jacobi-Trudi identity
In this section it will be convenient to use plethystic notation in dealing with symmetric function identities.
A brief introduction to this notational device can be found in the first section of Garsia et al. (2011). Recall
that the “row adder” for Schur functions is the operator

SaP [X] = P [X − 1
z ]Ω[zX]

∣∣∣
za

(8)

where
Ω[zX] =

∑
m≥0

zmhm[X]

is the generating function of the homogeneous symmetric functions in the alphabet X .
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Proposition 1 For any integral vector p = (p1, p2, . . . , pk) we have

sp1,p2,...,pk [X] = Ω[ZkX]
∏

1≤i<j≤k

(1− zj/zi)
∣∣∣
z
p1
1 ,z

p2
2 ,...,z

pk
k

(9)

where Zk = z1 + z2 + · · ·+ zk.

Proof:
It is well known (see Macdonald (1995)) that

sp1,p2,...,pk [X] = Sp1Sp2 · · · Spk 1 (10)

From the definition in (8), with F [X] = 1, we get,

Sp1Sp2 1 = Sp1Ω[z2X]
∣∣∣
z
p2
2

= Ω
[
z2(X − 1

z1
)
]
Ω[z1X]

∣∣∣
z
p1
1 ,z

p2
2

= Ω[(−z2/z1)]Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

= (1− z2/z1)Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

and by iteration we obtain

Sp1Sp2 · · · Spk 1 = Ω[ZkX]
∏

1≤i<j≤k

(1− zj/zi)
∣∣∣
z
p1
1 ,z

p2
2 ,...,z

pk
k

.

Therefore (9) follows from (10).
2

We are now in a position to give our

Proof of Theorem 1:
Recall that by definition we have set for any symmetric function F [X]

CaF [X] = (− 1
q )a−1F

[
X − 1−1/q

z

]
Ω[zX]

∣∣∣
za
.

Then

(−q)p1+p2−2Cp1Cp2F [X] = (−q)p1−1Cp1F
[
X − 1−1/q

z2

]
Ω[z2X]

∣∣∣
z
p2
2

= F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω
[
z2(X − 1−1/q

z1
)
]
Ω[z1X]

∣∣∣
z
p1
1 ,z

p2
2

= F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω[−z2

1−1/q
z1

]Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

.

Since Ω[−z2
1−1/q
z1

] = 1−z2/z1
1−z2/qz1 , we finally have that

(−q)p1+p2−2Cp1Cp2F [X] = F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω[z1X + z2X] 1−z2/z1

1−z2/qz1

∣∣∣
z
p1
1 ,z

p2
2

.
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By iteration we obtain

(−q)p1+···+pk−kCp1 · · ·CpkF [X] = F
[
X −

∑k
i=1

1−1/q
zi

]
Ω[ZkX]

∏
1≤i<j≤k

1−zj/zi
1−zj/qzi

∣∣∣
z
p1
1 ,...,z

pk
k

with

Zk = z1 + z2 + · · ·+ zk.

Now note that for F [X] = 1 and for any vector a = (a1, a2, . . . ak) we get

(−q)p1−a1+···+pk−ak−k Cp1−a1 · · ·Cpk−ak 1 =

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk]
∣∣∣
z
p1−a1
1 z

p2−a2
2 ···zpk−ak

k

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk] za11 za22 · · · z
ak
k

∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

(11)

Recalling that the device θi acts on the operator Cp = Cp1Cp2 · · ·Cpk , according to the formula

θiCp = Cp−ei

we can rewrite (11) as

(−q)p1+···+pk−k(−θ1/q)
a1(−θ2/q)

a2 · · · (−θk/q)akCp 1 =

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk]za11 za22 · · · z
ak
k

∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

Thus

(−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 =

∏
1≤i<j≤n

(
1− zj/zi

)
Ω[XZk]

∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

This identity combined with (9) gives

(−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 = sp1,2,...,pn [X]

as desired. 2
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3 The two row Schur function case
To illustrate the combinatorial reasoning that is needed to give a Parking Function setting to the Nabla
image of a two row Schur function we will carry out in full detail the case of ∇(s[n−3,3]) which is the
simplest non trivial case.

Let n > 5. Let NS3 denote the collections of Parking Functions with diagonal composition [n− 2, 2]
whose Dyck path terminates according to one of the following three patterns and the cars adjacent to the
north steps are required to satisfy the inequalities indicated by the arrows.

Fig. 1: In the second pattern vn−2 < vn and in the third pattern vn−2 < vn and vn−3 < vn−1 .

Theorem 2 Assume that the compositional refinement of the Shuffle conjecture in (4) holds. Then,

∇(−1)ns[n−3,3] = qn−3
∑

PF∈NS3

tarea(PF )qdinv(PF )Qides(PF )[X]

Proof:
We start by constructing an injection φ3 from the collection Π[n − 3, 3] of Parking Functions with

diagonal composition [n−3, 3] to Π[n−2, 2], those Parking Functions with diagonal composition [n−2, 2].
Furthermore, this injection will preserve the area and ides of the Parking Functions while increasing the
dinv by exactly 1.

Let PF be a Parking Function with diagonal composition [n− 3, 3]. There are two possible shapes for
the rightmost three columns of the Dyck path of PF .

Fig. 2: The rightmost possible columns.

In either shape, since n > 5, PF does not hit the diagonal twice in a row. Hence the two steps preceding
the last three columns must both be going east.

Between these two shapes, we will have five cases for defining φ3(PF ). For the first, suppose that
the last four columns of PF are as in the left side of the figure below. Suppose also that a < c. Then
replacing the last four columns of PF with the right side of this figure gives a legal Parking Function. Let
this be denoted by PF ′

Notice that area(PF ) = area(PF ′). Furthermore, these two Parking Functions have the same diago-
nal word and hence ides(PF ) = ides(PF ′). Notice also that all pairs contributing to the dinv (primary
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or secondary) are unchanged except that the pair (b, a) now also contributes to the secondary dinv. Hence
dinv(PF ′) = dinv(PF ) + 1. Therefore we will set φ3(PF ) = PF ′.

For the second case, suppose that the last four columns of PF are as in the left side of the figure below
with a > c. Again, let PF ′ be the Parking Function obtained by replacing the last four columns of PF
with the columns of the right side of the figure below.

We have that c < a < b, so PF ′ is a valid Parking Function. The area is unchanged. However,
the diagonal word has changed. In particular, b and c have switched places and we need to show that
ides(PF ) has not been changed. To see this recall that the descent of the inverse of a permutation is the
set of all j such that j + 1 occurs before j in the permutation. This given, the interchange of the order of
c and b alters ides(PF ) only if c and b are consecutive but this is excluded by the inequalities c < a < b.

It remains to show that dinv(PF ′) = dinv(PF ) + 1. But this is true since the pair (c, b) contributes
to dinv(PF ′), though it did not contribute to dinv(PF ), and the pair (c, a) is not contributing to the
secondary dinv since c < a. Hence we can again let φ3(PF ) = PF ′.

We have exhausted the cases corresponding to the right side of Fig. 2. Therefore we will move on to
the left side. As we noted before, the two steps preceeding the last three columns must both be east steps.
However the step preceeding that could be either north or east.

Note that on the right side of the figure above, the step directly before the ones shown must be an east
step since n > 5 and another north step would result in hitting the diagonal.

For the third case, suppose the last three columns of PF are as on the left. Then we can construct PF ′

in the usual way corresponding to the diagram below.

Note area(PF ) = area(PF ′). Also the diagonal word is unchanged for ides(PF ) = ides(PF ′).
Furthermore, the only change to the dinv is that (c, b) contributes to the secondary dinv in PF ′. Hence
dinv(PF ′) = dinv(PF ) + 1. Therefore we again set φ3(PF ) = PF ′.

For the fourth case, suppose that the last three columns of PF are as on the left side of the figure below.
Suppose also that c > d. Let PF ′ be the Parking Function obtained by replacing the last five columns
with those on the right side of the figure below.
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We have area(PF ) = area(PF ′), and ides(PF ) = ides(PF ′) since the diagonal word is unchanged.
As in the last case, the only change to the dinv being that (c, b) contributes to dinv(PF ′) but not to
dinv(PF ). Hence φ3(PF ) = PF ′.

Now for the fifth and final case, suppose that PF is as in the left side of the figure below and c < d.
Then a < b < c < d, so replacing the last 5 columns with those of the right side of the figure gives a
Parking Function PF ′

Clearly area(PF ) = area(PF ′). The diagonal word has changed however. As in the second case,
two labels have switched places in the diagonal word, namely b and d. Again, these two labels are not
consecutive (b < c < d) so, arguing in just the same way as in the second case, we see that ides(PF ) =
ides(PF ′). It remains to consider the change to the dinv. Since no labels have been moved to a different
diagonal, the only changes to dinv must occur due to pairs of the labels a, b, c, d. In PF , the pair (b, d)
does not contribute to the primary dinv while the pair (a, d) contributes 1 to the secondary dinv. In PF ′,
the pairs (b, d) and (b, a) contribute to the primary and secondary dinv, respectively, but the pair (a, d)
no longer contributes. Hence dinv(PF ′) = dinv(PF ) + 1 as desired. Therefore we let φ3(PF ) = PF ′.

The following display summarizes the action of φ3 in each of the five cases

We can thus see that φ3 is an injection Π[n − 3, 3] into Π[n − 2, 2] since the images are disjoint sub
collections of Π[n− 2, 2]. Moreover note that Π[n− 2, 2] may be partitioned as follows

We can thus deduce that
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Now by (6), and the Haglund-Morse-Zabrocki conjectures we finally obtain that

(−1)n∇(s[n−3,3]) = qn−3
( ∑
PF∈Π[n−2,2]

w(PF ) − q
∑

PF∈Π[n−3,3]

w(PF )
)

= qn−3
( ∑
PF∈Π[n−2,2]

w(PF ) −
∑

PF∈Π[n−3,3]

w(φ3(PF ))
)

= qn−3
∑

PF∈NS3

tarea(PF )qdinv(PF )Qides(PF )[X].
2

4 The Two Column Schur function case
In the Haglund-Morse-Zabrocki paper Haglund et al. (2012) another Hall-Littlewood type operator “Bb”
is introduced whose action on a symmetric function F [X] is defined by setting

Bb = ωB̃bω (12)
with

B̃bF [X] = F
[
X − 1−q

z

]
Ω[zX]

∣∣∣
zb

(13)

The significance of these operators in the present context stems from the following identity

Proposition 2 For any integral pair of integers a > b ≥ 1 we have

s2b,1a−b [X] = BaBb 1 − q Ba+1Bb−1 1 (14)

Proof: Note that from (13) for F = 1 we get

B̃b 1 = hb[X]

Thus, again from (13) it follows that

B̃aB̃b 1 = hb
[
X − 1−q

z

]
Ω[zX]

∣∣∣
za

=

b∑
r=0

hb−r[X]hr[q − 1]hr+a[X]

Likewise we get

B̃a+1B̃b−1 1 =

b−1∑
r=0

hb−1−r[X]hr[q − 1]hr+1+a[X] =

b∑
r=1

hb−r[X]hr−1[q − 1]hr+a[X]

Now it can easily be shown that we have hr[q− 1] = qr − qr−1 if r > 0 and hr[q− 1] = 1 if r = 0.
Thus using these identities we may write

B̃aB̃b 1 = hb[X]ha[X] +

b∑
r=1

hb−r[X](qr − qr−1)hr+a[X]

and

qB̃a+1B̃b−1 1 = qhb−1[X]h1+a[X] +

b∑
r=2

hb−r[X](qr − qr−1)hr+a[X]
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By subtraction we get

B̃aB̃b 1 − q B̃a+1B̃b−1 1 = hb[X]ha[X] + hb−1[X](q − 1)h1+a[X] − qhb−1[X]h1+a[X]

= hb[X]ha[X] − hb−1[X]h1+a[X] = s[a,b][X]

and since ω 1 = 1 from (12) we derive that

BaBb 1 − q Ba+1Bb−1 1 = ωs[a,b][X] = s2b,1a−b [X]

as desired. 2

In Haglund et al. (2012) it is shown s that the Bb and Ca operators satisfy the commutativity relation

BbCa = qCaBb (15)

and it is also shown that

Bb 1 =

b∑
k=1

∑
(p1,p2,...,pk)|=b

Cp1Cp2 · · ·Cpk 1 (16)

By combining (15) with (16) and (14) we can then easily derive that

s2b,1a−b [X] =
∑
α|=a

∑
β|=b

ql(β)CβCα 1 − q
∑

γ|=a+1

∑
δ|=b−1

ql(δ)CδCγ 1

with l(β) and l(δ) denoting the lengths of the compositions β and δ respectively.

The number of summands on the right side of this identity can be further reduced and better organized to
facilitate the combinatorial steps needed to obtain the desired Parking function setting for∇s2b,1a−b [X].

To begin by breaking up the sums according as the sizes of the last part of β is 1 and first part of γ are
equal to 1 or not gives

s2b,1a−b [X] =
∑
α|=a

∑
β̃|=b−1

ql(β̃)+1Cβ̃C1Cα 1 +
∑
α|=a

∑
β|=b ;l βl(β)>1

ql(β)CβCα 1

−
∑
γ̃|=a

∑
δ|=b−1

ql(δ)+1CδC1Cγ̃ 1 − q
∑

γ|=a+1 ; γ1>1

∑
δ|=b−1

ql(δ)CδCγ 1

Canceling the common terms we obtain

s2b,1a−b [X] =
∑
α|=a

∑
β|=b

βl(β)>1

ql(β)CβCα 1 − q
∑

γ|=a+1

γ1>1

∑
δ|=b−1

ql(δ)CδCγ 1

Now splitting once more the sums according to the sizes of the first part of α and the last part of β which
we will denote u and v respectively, setting γ = u+ 1, γ̃ and δ = δ̃, v − 1 we get

s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

( ∑
α̃|=a−u

∑
β̃|=b−v

ql(β̃)+1Cβ̃CvCuCα̃ 1− q
∑

γ̃|=a−u

∑
δ̃|=b−v

ql(δ̃)+1Cδ̃Cv−1Cu+1Cγ̃ 1
)
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This can be rewritten in the form

s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

∑
α̃|=a−u

∑
β̃|=b−v

ql(β̃)+1Cβ̃
(
CvCu − qCv−1Cu+1

)
Cα̃ 1

and the Haglund-Morse-Zabrocki conjectures give

∇s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

∑
α̃|=a−u

∑
β̃|=b−v

ql(β̃)+1
(
W [β̃, v, u, α̃] − qW [β̃, v, u, α̃]

)

where for convenience we have let W [β̃, v, u, α̃] and W [β̃, v, u, α̃] denote the sum of the weight of the
collections Π[β̃, v, u, α̃] and Π[β̃, v, u, α̃].

This identity shows that to obtain a Parking Function setting for ∇s2b,1a−b [X] we need to construct an
injection of Π[β̃, v, u, α̃] into Π[β̃, v, u, α̃] which preserves area and ides and increases dinv by 1. Now it
is not difficult to see that to construct this injection it suffices to be able to carry it out for Π[v, u, ] into
Π[v, u] and then appropriately transfer the resulting injection to the pairs Π[β̃, v, u, α̃] and Π[β̃, v, u, α̃].
and the desired properties will be automatically satisfied as long as all moved cars remain in their diagonal
as we have illustrated in the example worked out in section 3.

The general case can be obtained as an inclusion-exclusion of Parking Functions based on the identity

ωsp1,p2,...,pk =
∏

1≤i≤j≤n

(1− q θj/θi)Bp1Bp2 . . .Bpk1

which can be established in a manner analogous to our proof of (5). The realization of this plan is part of
the author’s ongoing thesis research.
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