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Noncommutative algebras, defined by the generators and relations,residered. The definition and main results
connected with the Grobner basis, Hilbert series and Anick’s resolution are foetiul®dost attention is paid to
universal enveloping algebras. Four main examples illustrate the coaicepts and ideas. Algorithmic problems
arising in the calculation of the Hilbert series are investigated. Theesxe of finite state automata, defining the
behaviour of the Hilbert series, is discussed. The extensions of the BERGMAN package for IBM PC campatibl
computers are described. A table is provided permitting a comparison @ffinetiveness of the calculations in
BERGMAN with the other systems.
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1 Introduction

BERGMAN is an effective program for calculating thedBnrier basis (both for commutative and non-
commutative case) and monomial Poincaré series, elaborated at Stockhafensiini(J. Backelin) for
SUN-station (and some other types of computers). In our implementation on an IBMéPGsead the
original source of J. Backelin (and his valuable help) [1], and added some new additional functions
especially for the noncommutative algebras. To illustrate them we giveeallssary definitions and
several examples.

2 Main Examples

Let A =< X|R > be a finitely presented (noncommutative) associative algebra overfiditere are
the main examples of algebras that will help us to illustrate some followingtlefia (later we will refer
to them as main examples).

Example 2.1 A =< z,y|lz? = 0,2y> = 0 >

Example 2.2 A =< z,y|z? = y* >

Example 2.3 A =< =z, y|z? — vy >

Example 2.4 A =< e1, €9, e3,...|[e;, e;] = (i — j)eir; >, where charK = 0 and[a, b] = ab — ba.
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Though the last example does not look as finitely presented, it is evident;tlzaitd ¢> generate the
algebra ¢ 11 = % for k > 2). Slightly less trivial is the fact that it is sufficient to have only two
relations:[es, ea] = e5; [eq, €3] = e7 (See Ufnarovskij [2]). Nevertheless, we will use this example in this
infinite presentation to allow the reader to see how definitions work in the infiase c

This is also an example of an universal enveloping algera: U (L), wherel is a Lie algebra with
the same sets of generators and relations except that the comnjutajas now interpreted as a Lie
product. If we interpret it as a graded commutdtob] = ab — (—1)!?l*lpa, the second example can also
be considered as an universal enveloping algebra of 4-dimensional Lie superalgebrat, y|[z, 2] =

[y, y] > .

3 Hilbert Series and Global Dimension

Note that all algebras in our examples are graded algeldrasi A,,, where all components,, are finite
dimensional andi,, A,,, C A4, . For the last example grading is less trivial: € A4,,.
We restrict our attention on graded algebras and introduce the following:

Definition 3.1 The generating functiol 4 = H4(t) = >_° (dim A,)¢" is called Hilbert series of an
algebraA.

The Hilbert series of a graded algebra is one of our main objects of intérésta very useful invariant
in the commutative case, but in the noncommutative case it also containefargiortant information
about the algebra. First, it plays the role of generalized dimension of an algebrexdraple, it has the
following trivial properties:

o Hagp = Ha+ Hpi Haop = Halp, gy = g7 + 717 — 1
o If L is agraded Lie algebra (superalgebid), = " a,,t" andA = U(L), then

00 1 00 (1+t2n—1)a2n_1
Hy = — | Ha= —_ .
A 1:[ (1 —¢m)a" ( A 1:[ (1 — ¢2n)ezn

If L is a Lie algebra from our main Example 4, then

(o] 1
_ 2 3 _ _ n
Hy=t+0+1°+. = Hy = |1| = > pnt

wherep(n) is the number of partitions. So it is the example with non-rational Hilbert series.

In the second main example we halfg = 2t + 2¢2 = H, = ((11:’;); = o

In our main Examples 1 and 3, the Hilbert series is equél te 2¢ + ¢?)~1. It can be directly checked
from the first example, but the last one will be discussed in the sequel.

Secondly, the following two theorems of Anick [3. 4] shows non-trivial properties diéilseries:

Theorem 3.1 Let Hx (I r) be the generating function of the number of the generators (relations, both
minimal) of given degree. Then

gl.dmA<2& Hy=(1—-Hx+Hp)™!

(inequality for free algebras only).
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In our main examples the value Of — Hx + Hg) is equal to

1 | 2,3 | 4
1=+ +3 [ 1=20+87 [ 1t — 248 + 17

so only the second and third examples are algebras of global dimension 2.

Theorem 3.2 For every system of diophantine equatichs: 0, there exists a finitely presented algebra
A (which can be constructively expressed in terms of the coefficients 6f thech that A has global
dimension 2 if and only if the systesh= 0 has no solutions.

Moreover, this algebra is an universal enveloping algebra of a Lie superalgebra, defineddatic
relations only. This theorem is important.

Corollary 3.1 One cannot

o Find an algorithmthat takes relations as input and gives the Hilbert series as outputhéfmore,
one cannot detect in general if the Hilbert series of a given algebra is equal to somediiesl)s

« Predict the behaviour of a Hilbert series, knowing only a finite number of its coefficients.

4 Normal Words and Grobner Basis

Despite pessimistic conclusions in the end of the previous section, it is fosiind the Hilbert series
in important cases. Let us introduce some important definitions.

Let S be the set of all the words in the alphabBét(identifying 1 with the empty word). Consider the
following ordering onS : f > g if either the length of word' is greater than that of or they have the
same length, buf is greater thep lexicographically. (More ingenious, the so-called admissible ordering
may be considered too, but we restrict our attention only to this case.)

Definition 4.1 Awordf € S'is called normal (for4) if it cannot be written in4 as a linear combination
of words that are less thaf

In our first main example the wordsz, y, zy, yz, y> are normal, but:?, zy? are not. The same is true
for the second main example. Whyzig? not normal? Becausey® = 2 = y*z.

In the last main example the words of the foefiieh? - .. ¢k~ are normal according the Poinear’
Birkgoff—-Witt-theorem, if the alphabet and ordering:is< es < es - - -. It is much more complicated to
express normal words in the alphabetes only.

The following evident theorem explains how normal words can be used for the calnwdétie Hilbert

series.

Theorem 4.1 The setl, consisting of all normal words, forms a basis for the algebralts Hilbert
series can be calculated &4 = ).~ d,,t", whered,, is the number of normal words of degree

Following Anick, let us introduce

Definition 4.2 Aword f € S is called an obstruction if is not normal itself, but every proper subword
is normal.
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Note that other expressions (such as ‘tips’, for example) are used instead of ‘abstrite denote the
set of all obstructions aB. Because obstructions are not normal words, eyeky F' can be written as a
linear combination of normal wordg; = u;.

Definition 4.3 The set¢ = {f; — u;} is called a (reduced) Gabiner basis (ford).
In our main examples:
1. G = {22, zy?} (evidently).
2. G = {22 -y zy® — y*x}.
3. G={ayf —xyf*tk=0,1,2,.. }.
4. G =Aejei —eiej — (j —i)eiy;lj > i}
All those examples can be easily checked by hand (see [5]). BERGMAN is arfadwool to calculate

Grobner basis in the more complicated cases.
Of course, knowing an obstruction set we can reconstruct normal words:

Theorem 4.2 Let B =< X|F >. Then algebrasi and B have the same sets of normal words and, in
particular, H4 = Hp.

Definition 4.4 AlgebraB from the previous theorem is called the monomial algebra, associateddwith

So, the algebra from our first main example is associated with the monomial algebra fecond s
example. Note also that all universal enveloping algebras for Lie algabtlashe same Hilbert series
have, according to the PBW-theorem, the same associatadmial algebra (in some alphabets). Note
also that definitions depend upon choice of the generator set (alphabet) and ordering.

More generally, a Gitiner basis for any idedl is its subset7, such that the set of highest terms of
elements front+ contains the set of obstructions far= K < X > /I. Note that the reduced Gonher
basis may be easily obtained from an arbitrary Grobner basis (by self-reducing) amdideteuniquely
for a given ordering.

5 n—chains and Poincaré Series

The next step is to introduce some homological algebra. Let us consider algeagh, E), where the
set of vertexi/ consists of the union of the unit alphabetX and all proper suffixes of the obstructions.
EdgesF are defined as follows: — = for everyr € X and in other case$ — ¢ if and only if the word
fg contains the only obstruction and this obstruction is its suffix (maybe coincidingfwjth

In our main examples 1 and 2, the grdplooks like

1
x/\y
(I

In the third example, vertices (exceptandy) have the formy™z and are connected to each other
(including itself).

It the fourth main example, vertices argand (considering ase.. ) everye; is connected with every
€5 with 7 > J.
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Definition 5.1 n-chain is a word, that can be read in grafghduring a path of lengtl{n + 1), starting
from1. LetC,, be a set of all n-chains.

So,

The only—1-chainisl itself: C_; = 1.

The only 0-chains are letters from the alphaligt.= X.
The only 1-chains are obstructions; = F.

Let us enumerate-chains forn > 2 in our examples. In the first two
C% ::{xn+1’xny2}
In the third
Cn = {xyrayx - wy |k > 0}
In the last main example
c, = {62'162'2 N |i1 > 49 > - - ~in+1}
Definition 5.2 The monomial Poincaré series for an algebtas defined as
Pron(s,t) = Z Cm ot s"

wheree,,, ,, is the number ofn + 1)-chains of degreen.

In our first two main examples

PRon(s,t) = 14 2ts + (17 + %) + (t* +t1)s° + - -

In the third
m—2
PR (s, t) = 1+ 2ts + mgn
0 (s,1) + 2ts + (n—?)t s
m>n>2
= 1?s?
= 1+ 2t8+t282 ké_o(st—i—t)k s = 1+2t8+ m

In the fourth main example,, ,, is equal to the number of partitionsof to » distinct summands.
Let us recall the defition of classical Poincarseries.

Definition 5.3 A double Poincaré series for an algehrais defined as a generating function
Pa(s,t) = dim(Tor; , (K, K))t"s"

whereTor? (K, K) is considered as a graded module.

From the point of view of calculation of the Hilbert series, we can restrict aenibn to the monomial
Poinca¥g series:

Theorem 5.1
H3' = Pa(=1,1) = PP (= 1,1)

If Ais monomial algebra, theR7*°" (s,¢) = Pa(s,t), son-chains correspond to homology of associated
monomial algebra.
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In our first two main examples we have
H' =124 48 - -t 4" 40— =1 -2t 412

In the third one we also havB ;' = 1 — 2t 4 ¢>. The reader can interpret the connections between
partitions that we have as a sequence in the last main example.

6 Anick’s Resolution

To calculate the Poincasseries in the general case, we construct Anick’s resoluticn [6]:
Ch®A=>Cho1®A— - C.1A— K =0

It is sufficient to define module homomorphisis: C,, @ A — C,,_1 @ A only fortermsf @ 1. Itis
convenient to identify”,, ® N with C,, N. Then the mag,, is defined as

andi,, : kerd,_; — KC, N is defined recursively:
in(t) = @t + in(u — ad, (@)

wheret is the highest term af anda is its coefficient.
Note that:

e d, calculate, for every non-empty woyd its normal formf, i, acts identically.

e d; calculate, for any obstructiorf,— f, i.e. recover the element of Gsier basis from its obstruc-
tion. To applyd; for arbitrary word of formfs one need to be more carefudl (fs) = Ro(fs—fs).
(in general, use the maR,, : C,,.1 N — C,, N, the fixedn-chain in the beginning and reduce the
remaining part to normal form).

In our main examples:

1. d,(f) = ffor f € C, andd,,(fs) = Rn—1(fs) in general (those formulas are valid for every
monomial algebra).

2. Intensor language:
dy:2® s y—zy’ 0l

dy 2’y @0l =220y’ —zy’ @

7 Finite State Automata and Lie Algebras

The main problem in noncommutative cases is thaib®er basis is usually infinite. However, by us-
ing finite state automata we can try to predict the infinity behaviour of our Grobnes, lomsit least the
obstruction set on infinity. The main idea of this approach was describdtharovsky [7], and can be
illustrated here by our third main example: having sufficient terms fronobis¢ruction set, for example,
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2?2 zyx, zyie, vz, zy*e, one can predict the whole family:y™ . This kind of prediction can be for-
malized in terms of regular languages (or equivalently, finite state authnq@tée often, this prediction
gives the correct answer that can be proved using other argurhavsttheless, the possibility of predic-
tion is restricted. First, it is impossible in general cases, as wedlesady mentioned. Second, algebras
that have a regular obstruction set also have a rational Hilbert seriesithadpolynomial or exponential
growth. So, the Hilbert series for our fourth main example could not be predicted in énisenafter a
finite number of calculations in terms of only two generatars:;. But even in a simple class of universal
enveloping algebras, these predictions are impossible, as we see:

Theorem 7.1 [8] I_et L be a free solvable Lie algebra of solvability length/ (L) be its universal
enveloping algebra. f > 2, then the growth of. andU/ (L) is almost exponential (less than exponential
growth[2] but greater than growtf2™”] for anya < 1).

8 Bergman Package under MS-DOS

The BERGMAN package was elaborated by Backelin (Stockholm University) origiftel SUN/Sparc
stations, written in PSL (a dialect of LISP, used in REDUCE), it wascessfully transfered to an IBM
PC at the Institute of Mathematics of Moldova. It can be used both under REDUCE and (more easily)
under a specially written shell (implemented by A. Colesnicov and L. Malahova).

Main possibilities:

e commutative Gobner basis calculations in two different strategies;

e noncommutative Gitiner basis calculations;

o calculations of Hilbert series and Poineagéries of the associated monomial algebra;
¢ arbitrary long integer of,, coefficients of relations;

¢ input and output both in LISP and Maple notations.

From the shell there are several separate programs — specially written for the noncovencaisgi that
allow us (after calculating the Gbher basis) to:

o predict the behaviour of the highest terms of the infinitel@3er basis using its finite part;

o calculate growth and Hilbert series;

o calculate Anick’s resolution and Poineagéries up to a given degree (implemented by A. Podoplelov).
To estimate the possibilities that BERGMAN gives, let us consider one dgamp

Example 8.1
A=<,y z tlee —ay —yx, 2z + z0 — yt — ty,

yz + 2y, 2t +tz, 22,1t >
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Its Hilbert series can be calculated both from the noncommutative and comraytaiivts of view
(considering the homology of the related commutative algebra — see Roos [9] for debailshe can
compare this with one of the best commutative programs — MACAULAY (old version). Bybmthe
best results could be obtained from considering this example from the point of view of Lie supesalge

Deg Time for Time for Time for Time for
BERGMAN MACAULAY MACAULAY BERGMAN
< Sparcserver  Sparcserver Mac IBM-PC
40 MHZ 40 MHZ 16.7 MHZ 25 MHZ
192 MB 192 MB 8 MB 4 MB
2 0.32 <1 <1 1
3 0.37 <1 1
4 0.44 <1 5 2
5 053 1 16 3
6 0.61 4 I 3
7 0.73 35 535 4
8 0.94 372 5020 5
9 1.21 3416 - 6
10 1.56 31742 - 8
11 2.04 259647 - 9
12 2.84 - - 12
13 4.47 - - 18
14 7.49 - - 31
15 13.9 - - 116
16 27.8 - - 477
17 59.3 - - 2443
18 167 - - 11601
19 411 - - -
20 1061 - - -

Sparcserver 690 MP (40 MHZ Cypress Sparc,192 MB int. memory) Macintosh SE/30
(68030. 16.67MHZ,8M) and 486SX 25 MHz IBM PC compatible computer with 4 MB
RAM were used.

As to Anick’s resolution, it can be calculated both on IBM PC and UNIX-stations (and,tékes
example, about 10 minutes to calculate Poiacaries up to degree 12).

Pure commutative @bner basis calculations can also be performed quite quickly. For example, the
well-known 6-cyclic system of equations takes from 1-3 minutes (depending on ordering), and-this ca
culation cannot be performed on the same computer both by MAPLE and MATHEMATICA).
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