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Top degree coefficients of the Denumerant
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Abstract. For a given sequence α = [α1, α2, . . . , αN , αN+1] of N + 1 positive integers, we consider the combina-
torial function E(α)(t) that counts the nonnegative integer solutions of the equation α1x1 +α2x2 + · · ·+αNxN +
αN+1xN+1 = t, where the right-hand side t is a varying nonnegative integer. It is well-known that E(α)(t) is a
quasipolynomial function of t of degreeN . In combinatorial number theory this function is known as the denumerant.
Our main result is a new algorithm that, for every fixed number k, computes in polynomial time the highest k + 1
coefficients of the quasi-polynomialE(α)(t) as step polynomials of t. Our algorithm is a consequence of a nice poset
structure on the poles of the associated rational generating function for E(α)(t) and the geometric reinterpretation
of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a MAPLE
implementation will be posted separately.

Résumé. Considérons une liste α = [α1, α2, . . . , αN+1] de N + 1 entiers positifs. Le dénumérant E(α)(t) est la
fonction qui compte le nombre de solutions en entiers positifs ou nuls de l’équation

∑N+1
i=1 xiαi = t, où t varie dans

les entiers positifs ou nuls. Il est bien connu que cette fonction est une fonction quasi-polynomiale de t, de degré N .
Nous donnons un nouvel algorithme qui calcule, pour chaque entier fixé k (mais N n’est pas fixé), les k + 1 plus
hauts coefficients du quasi-polynôme E(α)(t) en termes de fonctions en dents de scie. Notre algorithme utilise la
structure d’ensemble partiellement ordonné des pôles de la fonction génératrice de E(α)(t). Les k + 1 plus hauts
coefficients se calculent à l’aide de fonctions génératrices de points entiers dans des cônes polyèdraux de dimension
inférieure ou égale à k.
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1 Introduction
Let α = [α1, α2, . . . , αN , αN+1] be a sequence of positive integers. If t is a non-negative integer,
we denote by E(α)(t) the number of solutions in nonnegative integers of the equation

∑N+1
i=1 αixi =
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t. In other words, E(α)(t) is the same as the number of partitions of the number t using the parts
α1, α2, . . . , αN , αN+1 (with repetitions allowed). This paper presents a new algorithm to compute indi-
vidual coefficients of this quasipolynomial function and uncovers new structure that allows to describe
their periodic nature. Let us begin with some background and history before stating the precise results:

The combinatorial function E(α)(t) was called by J. Sylvester the denumerant. The denumerant
E(α)(t) has a beautiful structure and it has been known since the times of Cayley and Sylvester that
E(α)(t) is in fact a quasi-polynomial, i.e., it can be written in the form E(α)(t) =

∑N
i=0Ei(t)t

i, where
Ei(t) is a periodic function of t (a more precise description of the periods of the coefficients Ei(t) will
be given later). In other words, there exists a positive integer Q such that for t in the coset q + QZ,
the function E(α)(t) coincides with a polynomial function of t. The study of the coefficients Ei(t), in
particular determining their periodicity, is a problem that has occupied various authors and it is the key
focus of our investigations here.

Sylvester and Cayley first showed that the function can be written in the form A(t) +U(t), where A(t)
is a polynomial in t of degree N and U(t) is a periodic function of period the least common multiple
of a1, . . . , ar (see [5, 6] and references therein). In 1943, E.T. Bell gave a simpler proof and remarked
that the period Q is in the worst case given by the least common multiple of the ai, but in general it can
be smaller. A classical observation that goes back to I. Schur is that when the list α consist of relatively
prime numbers, then asymptotically E(α)(t) ≈ tN

N !α1α2···αN+1
as the number t→∞.

Thus, in particular, there is a large enough integer F such that for any t ≥ F , E(α)(t) > 0 and there is
a largest t for which E(α)(t) = 0. Let us give a simple example:

Example 1.1. Let α = [6, 2, 3]. Then on each of the cosets q + 6Z, the function E(α)(t) coincides with
a polynomial E[q](t). Here are the corresponding polynomials.

E[0](t) = 1
72 t

2 + 1
4 t+ 1, E[1](t) = 1

72 t
2 + 1

18 t−
5
72 , E[2](t) = 1

72 t
2 + 7

36 t+ 5
9 ,

E[3](t) = 1
72 t

2 + 1
6 t+ 3

8 , E[4](t) = 1
72 t

2 + 5
36 t+ 2

9 , E[5](t) = 1
72 t

2 + 1
9 t+ 7

72 .

Naturally, the function E(α)(t) is equal to 0 if t does not belong to the lattice
∑N+1
i=1 Zαi ⊂ Z gen-

erated by the integers αi. So if g is the greatest common divisor of the αi (which can be computed in
polynomial time), and α/g = [α1

g ,
α2

g , . . . ,
αN+1

g ] the formula E(α)(gt) = E(α/g)(t) holds, and we
may assume that the numbers αi span Z without changing the complexity of the problem. In other words,
we may assume that the greatest common divisor of the αi is equal to 1.

Our primary concern is how to compute E(α)(t). This problem has received a lot of attention. Com-
puting the denumerantE(α)(t) as a close formula or evaluating it for specific t is relevant in several other
areas of mathematics. In the combinatorics literature the denumerant has been studied extensively (see
e.g., [5, 7, 11, 13] and the references therein). In combinatorial number theory and the theory of parti-
tions, the problem appears in relation to the Frobenius problem or the coin-change problem of finding the
largest value of t with E(α)(t) = 0 (see [9, 10, 12] for details and algorithms). Authors in the theory of
numerical semigroups have also investigated the so called gaps of the function, which are values of t for
which E(α)(t) = 0, i.e., those positive integers t which cannot be represented by the αi. For N = 1 the
number of gaps is (α1 − 1)(α2 − 1)/2 but for larger N the problem is quite difficult.

Unfortunately, computing E(α)(t) or evaluating it are very challenging computational problems. Even
deciding whether E(α)(t) > 0 for a given t, is a well-known (weakly) NP-hard problem. Computing
E(α)(t), i.e., determining the number of solutions for a given t, is #P -hard. Computing the Frobenius
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number is also known to be NP-hard [12]. Likewise, for a given coset q+QZ, computing the polynomial
E[q](t) is NP-hard. Despite the difficulty to compute the function, in some special cases one can compute
information efficiently. For example, the Frobenius number can be computed in polynomial time when
N + 1 is fixed [10]. At the same time for fixed N + 1 one can compute E(α)(t) in polynomial time as
a special case of a well-known result of Barvinok [2]. There are several papers exploring the practical
computation of the Frobenius numbers (see e.g., [9] and the many references therein).

These wonderful results for fixedN were achieved using a powerful geometric interpretation ofE(α)(t)
(which was the original way we encountered the problem): The function E(α)(t) can also be thought of
as the number of integral points in the N -dimensional simplex in RN+1 defined by

∆α = {[x1, x2, . . . , xN , xN+1] : xi ≥ 0,

N+1∑
i=1

αixi = t}

with rational vertices si = [0, . . . , 0, t
αi
, 0, . . . , 0]. In this context, E(α)(t) is a very special case of the

Ehrhart function (in honor of French mathematician Eugène Ehrhart who started its study [8]). Ehrhart
functions count the lattice points inside a convex polytope P as it is dilated t times. All of the results we
mentioned about E(α)(t) are in fact special cases of theorems from Ehrhart theory [4]. For example, the
asymptotic result of I. Schur can be recovered from seeing that the highest-degree coefficient of E(α)(t)
is just the normalized N -dimensional volume of the simplex ∆α. Our coefficients are just special cases
of Ehrhart coefficients.

This paper is about the computation of E(α)(t) and in particular its coefficients. Here are our main
results:

It is clear that the leading coefficient is given by Schur’s result. Our main theorem recovers explicit
formulas for other coefficients.

Theorem 1.2. Given any fixed integer k, there is a polynomial time algorithm to compute the highest
k + 1 degree terms of the quasi-polynomial E(α)(t), that is

TopkE(α)(t) =

k∑
i=0

EN−i(t)t
N−i.

The coefficients are recovered as step polynomial functions of t.

Note that the number Q of cosets for E(α)(t) can be exponential in the binary encoding size of the
problem, and thus it is impossible to list, in polynomial time, the polynomialsE[q](t) for all the cosets q+
QZ. That is why to obtain a polynomial time algorithm, the output is presented in the format of step
polynomials, which we now explain:

(i) We first define the function {s} = s− bsc ∈ [0, 1) for s ∈ R, where bsc denotes the largest integer
smaller or equal to s. The function {s+ 1} = {s} is a periodic function of s modulo 1.

(ii) If r is rational with denominator q, the function T 7→ {rT} is a function of T ∈ R periodic modulo q.
A function of the form T 7→

∑
i ci{riT} will be called a step linear function. If all the ri have a

common denominator q, this function is periodic modulo q.
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(iii) Then consider the algebra generated over Q by such functions on R. An element φ of this algebra
can be written (not in an unique way) as

φ(T ) =

L∑
l=1

cl

Jl∏
j=1

{rl,jT}nl,j .

Such a function φ(T ) will be called a step polynomial.

(iv) We will say that the step polynomial φ is of degree u if
∑
j nj ≤ u for all set of indices I occurring

in the formula for φ. We will say that φ is of period q if all the rational numbers rj have common
denominator q.

It must be stress that evaluating these expressions can be done very fast. Moreover, one can also see
that the step polynomial representation is much more economical than writing the individual polynomials
for each coset of the period. For example instead of six polynomial “pieces” for E(α)(t) we can simply
write a single step polynomial:

1

72
t2 +

(
1

4
−
{− t

3}
6
−
{ t2}

6

)
t+

(
1− 3

2
{− t

3} −
3

2
{ t2}+

1

2

(
{− t

3}
)2

+ {− t
3}{

t
2}+

1

2

(
{ t2}

)2)
We must remark our results come after an earlier result of Barvinok [3] who first proved a similar theo-

rem valid for all simplices. Also in [1], the authors presented a polynomial-time algorithm of to compute
the coefficient functions of TopkE(P )(t) for any simple polytope P (given by its rational vertices) in the
form of step polynomials defined as above. We note that both of these earlier papers use the geometry
of the problem very strongly; instead our algorithm is different as it uses more of the number-theoretic
structure of the special case at hand. We must stress a marked advantage of our algorithms over the work
in [3]: We compute using the step polynomials all the possibilities of E[q](t) while [3] recovers a single
piece for given q. More important, our new algorithm is much easier to implement.

The new algorithm uses directly the residue theorem in one complex variable, which can be applied
more efficiently as a consequence of a rich poset structure on the set of poles of the associated rational
generating function for E(α)(t) (see Subsection 2.2). The other important ingredient used in the efficient
computation of the top coefficients is the reinterpretation of some generating functions in terms of lattice
points in cones. This allows us to apply the polynomial-time signed cone decomposition of Barvinok for
simplicial cones of fixed dimension k [2].

2 The Residue formula for E(α)(t)

Let us begin by fixing some notation. If ω(z) dz is a meromorphic one form on C, with a pole at z = ζ,
we write

Resz=ζ ω(z) dz =
1

2iπ

∫
Cζ

ω(z) dz

where Cζ is a small circle around the pole ζ. If φ(z) =
∑
k≥k0 φkz

k is a Laurent series in z, we denote
by resz=0 the coefficient of z−1 of φ(z). Cauchy’s formula implies that resz=0 φ(z) = Resz=0 φ(z) dz.
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2.1 A residue formula for E(α)(t).
Let α = [α1, α2, . . . , αN+1] be our list of integers. Define

F (α)(z) :=
1∏N+1

i=1 (1− zαi)
.

Denote by P =
⋃N+1
i=1 { ζ ∈ C : ζαi = 1 } the set of poles of the meromorphic function F (α) and by

p(ζ) the order of the pole ζ for ζ ∈ P .
Note that because the αi have greatest common divisor 1, we have ζ = 1 as a pole of order N + 1, and

the other poles have order strictly less.

Theorem 2.1. Let α = [α1, α2, . . . , αN+1] be a list of integers with greatest common divisor equal to 1,
and let

F (α)(z) :=
1∏N+1

i=1 (1− zαi)
.

If t is a non-negative integer, then

E(α)(t) = −
∑
ζ∈P

Resz=ζ z
−t−1F (α)(z) dz (2.1)

and the ζ-term of this sum is a quasi-polynomial function of t with degree less than or equal to p(ζ)− 1.

Proof. For |z| < 1, we write 1
1−zαi =

∑∞
u=0 z

uαi so that F (α)(z) =
∑
t≥0E(α)(t)zt.

For a small circle |z| = ε of radius ε around 0, the integral of zk dz is equal to 0 except if k = −1,
when it is 2iπ. Thus

E(α)(t) =
1

2iπ

∫
|z|=ε

z−tF (α)(z)
dz

z
=

1

2iπ

∫
|z|=ε

z−t
N+1∏
i=1

1

(1− zαi)
dz

z
.

Because the αi are positive integers, and t a non-negative integer, there are no residues at z =∞ and we
obtain equation (2.1) by applying the residue theorem.

WriteEζ(t) := −Resz=ζ z
−tF (α)(z)dz

z ; then the dependence in t ofEζ(t) comes from the expansion
of z−t near z = ζ. We write z = ζ + y, so that Eζ(t) = −Resy=0(ζ + y)−tF (α)(ζ + y) dy

ζ+y . As the
pole of F (α)(ζ + y) at y = 0 is of order p(ζ), to compute the residue at y = 0, we only need to
expand in y the function (ζ + y)−t−1 and take the coefficient of yp(ζ)−1. Now for k = t+ 1 the function
(ζ + y)−k = ζ−k − kζ−k−1y + · · · and we can easily check that the dependence in t of our residue is
quasi-polynomial with degree less than or equal to p(ζ)− 1. We thus obtain the result.

2.2 The poset of the high-order poles
Given an integer 0 ≤ k ≤ N , we partition the set of poles P in two disjoint sets according to the order of
the pole:

P>N−k = { ζ : p(ζ) ≥ N + 1− k }, P≤N−k = { ζ : p(ζ) ≤ N − k }.

According to the disjoint decomposition P = P≤N−k ∪ P>N−k, we write
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EP>N−k(t) = −
∑

ζ∈P>N−k

Resz=ζ z
−t−1F (α)(z) dz

and
EP≤N−k(t) = −

∑
ζ∈P≤N−k

Resz=ζ z
−t−1F (α)(z) dz.

The following proposition is a direct consequence of Theorem 2.1.

Proposition 2.2. We have
E(α)(t) = EP>N−k(t) + EP≤N−k(t),

where the function EP≤N−k(t) is a quasi-polynomial function of t of degree in t strictly less than N − k.

Thus for the purpose of computing TopkE(α)(t) it is sufficient to compute the function EP>N−k(t).
This function is computable in polynomial time, as stated in the following theorem that implies is Theorem
1.2

Theorem 2.3. Let k be a fixed number. Then the coefficient functions of the quasi-polynomial function
EP>N−k(t) are computable in polynomial time as step polynomials of t.

We prove the theorem in the rest of this section and the next.
We first rewrite our set P>N−k. Note that if ζ is a pole of order ≥ p, this means that there exist at least

p elements αi in the list α so that ζαi = 1. But if ζαi = 1 for a set I ⊆ {1, . . . , N + 1} of indices i, this
is equivalent to the fact that ζf = 1, for f the greatest common divisor of the elements αi, i ∈ I .

Now let I>N−k be the set of index sets that correspond to sublists of α of length greater than N − k.
Note that when k is fixed, the cardinality of I>N−k is a polynomial function of N . For each subset
I ∈ I>N−k, define fI to be the greatest common divisor of the sublist αi, i ∈ I . Let G>N−k(α) =
{ fI : I ∈ I>N−k } be the set of integers so obtained. Because I>N−k is stable by the operation of
taking supersets, the set G>N−k(α) is a set of integers stable by the operation of taking greatest common
divisors. Thus, G>N−k(α) can be considered as a poset (partially ordered set), where f � f ′ if f divides
f ′.

Using the group G(f) ⊂ C× of f -th roots of unity,

G(f) = { ζ ∈ C : ζf = 1 },

we have thus P>N−k =
⋃
f∈G>N−k(α)G(f); this is, of course, not a disjoint union. Then using the

inclusion–exclusion principle, we can write the characteristic function of the set P>N−k as a linear com-
bination of characteristic functions of the sets G(f):

[P>N−k] =
∑

f∈G>N−k(α)

µ(f)[G(f)],

where µ(f) are integers computed recursively. Such a function µ will be called as always a Möbius
function for the poset (see Chapter 3 [15] for details on posets).

For fixed k, all the data above can be computed in polynomial time in function of the data α. The
greatest common divisor of a set of integers is computed in polynomial time. Finally the Möbius function
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µ(f) is computed in polynomial time, because there are polynomially many levels of the poset being
considered.

Let us define for any positive integer f

E(α, f)(t) = −
∑
ζf=1

Resz=ζ z
−t−1F (α)(z) dz.

Proposition 2.4. Let k be a fixed integer, then

EP>N−k(t) = −
∑

f∈G>N−k(α)

µ(f)E(α, f)(t). (2.2)

Thus we have reduced the computation to the fast computation of E(α, f)(t). We will return to that in
a moment but before we continue with the proof of Theorem 1.2, there are some interesting consequences
for the classical theory of Denumerants.

Equation (2.2) provides explicit expressions for the coefficients of the denumerantE(α)(t). In the past,
researchers have discussed E(α)(t) in terms of its generating function (which belongs to the well-known
clan of rational generating functions [15]), formulas for E(α)(t) in terms of binomial coefficients can
be obtained using partial fraction decomposition. In [14] the authors propose another way to recover the
coefficients of the quasipolynomial by a method they named rigorous guessing. In [14] quasipolynomials
are represented as a function f(t) given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such that f(t) =
f [i](t) when t ≡ i (mod q). To find the coefficients of the f [i] their method finds the first few terms
of the Maclaurin expansion of the partial fraction decomposition to find enough evaluations of those
polynomials and then recovers the coefficients of the f [i] as a result of solving a linear system. Our
approach appeals instead to the number theoretic and polyhedral geometric nature of the problem and
instead of f [i]’s we have a single expression whose coefficients are products of step polynomials.

3 Polyhedral reinterpretation of the generating function E(α, f)(t)

To complete the proof of Theorem 1.2 we need only to prove the following proposition.

Proposition 3.1. For any integer f ∈ G>N−k(α), the coefficient functions of the quasi-polynomial func-
tion E(α, f)(t) and hence EP>N−k(t) are computed in polynomial time as step polynomials of t.

By the previous proposition we know we need to compute the value of E(α, f)(t). Our goal now is
to demonstrate that this function can be thought of as the generating function of the lattice points inside
a convex cone. This is a key point to guarantee good computational bounds. Before we can do that we
review some preliminaries on generating functions of cones. We recall the notion of generating functions
of cones; see also [1].

Let V = Rr provided with a lattice Λ, and let V ∗ denote the dual space. A (rational) simplicial
cone c = R≥0w1 + · · · + R≥0wr is a cone generated by r linearly independent vectors w1, . . . ,wr

of Λ. We consider the semi-rational affine cone s + c, s ∈ V . Let ξ ∈ V ∗ be a dual vector such that
〈ξ,wi〉 < 0, 1 ≤ i ≤ r. Then the sum

S(s + c,Λ)(ξ) =
∑

n∈(s+c)∩Λ

e〈ξ,n〉
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is summable and defines an analytic function of ξ. It is well known that this function extends to a mero-
morphic function of ξ ∈ V ∗C . We still denote this meromorphic extension by S(s + c,Λ)(ξ).

Recall the following result.

Theorem 3.2. The series S(s + c,Λ)(ξ) is a meromorphic function of ξ such that
∏r
i=1 〈ξ,wi〉S(s +

c,Λ)(ξ) is holomorphic in a neighborhood of 0.

Let t ∈ Λ. Consider the translated cone t + s + c of s + c by t. Then we have the covariance formula

S(t + s + c,Λ)(ξ) = e〈ξ,t〉S(s + c,Λ)(ξ). (3.1)

Because of this formula, it is convenient to introduce the following function.

Definition 3.3. Define the function

M(s, c,Λ)(ξ) = e−〈ξ,s〉S(s + c,Λ)(ξ).

Thus the function s 7→M(s, c,Λ)(ξ) is a function of s ∈ V/Λ (a periodic function of s) whose values
are meromorphic functions of ξ.

The function is easy to write down for a unimodular cone, that is a cone u whose primitive generators
gu
i form a basis of the lattice Λ. We introduce the following notation.

Definition 3.4. Let u be a unimodular cone with primitive generators gu
i and let s ∈ V . Then, write

s =
∑
i sig

u
i , with si ∈ R, and define

{−s}u =
∑
i

{−si}gu
i .

Thus s + {−s}u =
∑
idsiegu

i . Note that if t ∈ Λ, then {−(s + t)}u = {−s}u. Thus, s 7→ {−s}u is a
function on V/Λ with value in V . For any ξ ∈ V ∗, we then find

S(s + u,Λ)(ξ) = e〈ξ,s〉e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
j 〉)

and thus
M(s, u,Λ)(ξ) = e〈ξ,{−s}u〉

1∏
j(1− e〈ξ,g

u
j 〉)

. (3.2)

For a general cone c, we can decompose its characteristic function [c] as a signed sum of characteristic
functions of unimodular cones,

∑
u εu[u], modulo characteristic functions of cones containing lines. As

shown by Barvinok, if the dimension r of V is fixed, this decomposition can be computed in polynomial
time. Then we can write

S(s + c,Λ)(ξ) =
∑
u

εu S(s + u,Λ)(ξ).

Thus we obtain, using Formula (3.2),

M(s, c,Λ)(ξ) =
∑
u

εu e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
i 〉)

. (3.3)

Here u runs through all the unimodular cones occurring in the decomposition of c, and the gu
i ∈ Λ are the

generators of the unimodular cone u.
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Remark 3.5. For computing explicit examples, it is convenient to make a change of variables that leads
to computations in the standard lattice Zr. Let B be the matrix whose columns are the generators of the
lattice Λ; then Λ = BZr.

M(s, c,Λ)(ξ) = e−〈ξ,s〉
∑

n∈(s+c)∩BZr
e〈ξ,n〉

= e−〈B
>ξ,B−1s〉

∑
x∈(B−1(s+c)∩Zr

e〈B
>ξ,x〉 = M(B−1s, B−1c,Zr)(B>ξ).

3.1 Back to the computation of E(α, f)(t)

After the preliminaries we will see how to rewrite E(α, f)(t) in terms of lattice points of cones. This
will require some suitable manipulation of the initial form of E(α, f)(t). So we introduce some notation.
Let k be fixed. For f ∈ G>N−k(α), define F(α, f, T )(x) =

∑
ζf=1

ζ−T∏N+1
i=1 (1−ζαieαix)

, E(α, f)(t, T ) =

− resx=0 e−txF(α, f, T )(x), and Ei(f)(T ) = resx=0
(−x)i

i! F(α, f, T )(x). Writing z = ζex and chang-
ing coordinates in residues, we obtain immediately:

E(α, f)(t) = E(α, f)(t, T )
∣∣
T=t

. (3.4)

The dependence in T ofF(α, f, T )(x) is through ζT . As ζf = 1, the functionF(α, f, T )(x) is a periodic
function of T modulo f whose values are meromorphic functions of x. Since the pole in x is of order at
most N + 1, we can rewrite E(α, f)(t, T ) in terms of Ei(f)(T ) and prove:

Theorem 3.6. Let k be fixed. Then for f ∈ G>N−k(α) we can write

E(α, f)(t, T ) =

N∑
i=0

tiEi(f)(T )

with Ei(f)(T ) a step polynomial of degree less than or equal to N − i and periodic of T modulo f . This
step polynomial can be computed in polynomial time.

For example EN is independent of T , thus it is a constant.
It is now clear that once we have proved Theorem 3.6, then the proof of Theorem 1.2 will follow. So

we now concentrate on writing the function F(α, f, T )(x) more explicitly.

Definition 3.7. For a list α and integers f and T , define meromorphic functions of x ∈ C by:

B(α, f)(x) :=
1∏

i : f |αi(1− eαix)
, S(α, f, T )(x) :=

∑
ζ : ζf=1

ζ−T∏
i : f -αi(1− ζ

αieαix)
.

Thus
F(α, f, T )(x) = B(α, f)(x)S(α, f, T )(x).

The expression we obtained will allow us to compute F(α, f, T ) by relating S(α, f, T ) to a generating
function of a cone. This cone will have fixed dimension when k is fixed.
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3.2 E(α, f)(t) as the generating function of a cone in fixed dimension
To this end, let f be an integer from G>N−k(α). By definition, f is the greatest common divisor of a
sublist of α. Thus the greatest common divisor of f and the elements of α which are not a multiple of
f is still equal to 1. Let I = I(α, f) be the set of indices i ∈ {1, . . . , N + 1} such that αi is indivisible
by f , i.e., f - αi. Note that f by definition is the greatest common divisor of all except at most k of the
integers αj . Let r denote the cardinality of I; then r ≤ k. Let VI = RI and let V ∗I denote the dual space.
We also define the sublist αI = [αi]i∈I of elements of α indivisible by f and view it as a vector in V ∗I .

Definition 3.8. For an integer T , define the meromorphic function of ξ ∈ V ∗I ,

Q(α, f, T )(ξ) =
∑

ζ : ζf=1

ζ−T∏
j∈I(α,f)(1− ζαjeξj )

.

Remark 3.9. Observe that Q(α, f, T ) can be restricted at ξ = αIx, for x ∈ C generic, to give
S(α, f, T )(x).

We find that Q(α, f, T )(ξ) is the discrete generating function of an affine shift of the standard cone
relative to a certain lattice in VI , which we define as:

Λ(α, f) =
{
y ∈ ZI : 〈αI ,y〉 =

∑
j∈I

yjαj ∈ Zf
}
. (3.5)

Consider the map φ : ZI → Z/Zf , y 7→ 〈α,y〉 + Zf . Its kernel is the lattice Λ(α, f). Because the
greatest common divisor of f and the elements of αI is 1, by Bezout’s theorem there exist s0 ∈ Z and
s ∈ ZI such that 1 =

∑
i∈I siαi + s0f . Therefore, the map φ is surjective, and therefore the index

|ZI : Λ(α, f)| equals f .

Theorem 3.10. Let α = [α1, . . . , αN+1] be a list of positive integers and f be the greatest common
divisor of a sublist of α. Let I = I(α, f) = { i : f - αi }. Let s0 ∈ Z and s ∈ ZI such that 1 =∑
i∈I siαi + s0f using Bezout’s theorem. Let T be an integer, and ξ ∈ V ∗I . Then

Q(α, f, T )(ξ) = f M
(
−T s,RI≥0,Λ(α, f)

)
(ξ).

Remark 3.11. The function Q(α, f, T )(ξ) is a function of T periodic modulo f . Since fZI is contained
in Λ(α, f), the element fs is in the lattice Λ(α, f), and we see that the right hand side is also a periodic
function of T modulo f .

of Theorem 3.10. Consider ξ ∈ V ∗I with ξj < 0. Then we can write the equality

1∏
j∈I(1− ζαjeξj )

=
∏
j∈I

∞∑
nj=0

ζnjαjenjξj . So Q(α, f, T )(ξ) =
∑

n∈ZI≥0

( ∑
f : ζf=1

ζ
∑
j njαj−T

)
e
∑
j∈I njξj .

We note that
∑
f : ζf=1 ζ

m is zero except if m ∈ Zf , when this sum is equal to f . Then we obtain that
Q(α, f, T ) is the sum over n ∈ ZI≥0 such that

∑
j njαj − T ∈ Zf . The equality 1 =

∑
j∈I sjαj + s0f

implies that T ≡
∑
j tsjαj modulo f , and the condition

∑
j njαj−T ∈ Zf is equivalent to the condition∑

j(nj − Tsj)αj ∈ Zf .
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We see that the point n − T s is in the lattice Λ(α, f) as well as in the cone −T s + RI≥0 (as nj ≥
0). Thus our function Q(α, f, T )(ξ) is equal to f e〈ξ,T s〉S

(
−T s + RI≥0,Λ(α, f)

)
(ξ) = f M

(
−T s +

RI≥0,Λ(α, f)
)
(ξ).

3.3 Unimodular decomposition in the dual space
The cone RI≥0 is in general not unimodular with respect to the lattice Λ(α, f). By decomposing RI≥0

in cones u that are unimodular with respect to Λ(α, f), modulo cones containing lines, we can write
M
(
−T s,RI≥0,Λ(α, f)

)
=
∑

u εuM(−T s, u,Λ), where εu ∈ {±1}. This decomposition can be com-
puted using Barvinok’s algorithm in polynomial time for fixed k because the dimension |I| is at most
k.

Remark 3.12. Although we know that the meromorphic function M
(
−T s,RI≥0,Λ(α, f)

)
(ξ) restricts

via ξ = αIx to a meromorphic function of a single variable x, it may happen that the individual functions
M
(
−T s, u,Λ(α, f)

)
(ξ) do not restrict. In other words, the line αIx may be entirely contained in the

set of poles. If this is the case, we can compute (in polynomial time) a regular vector β ∈ QI so that all
functions M

(
−T s + u,Λ(α, f)

)
(ξ) occurring can be evaluated on (αI + εβ)x.

Finally let us analyze the dependence in T of the functions M(−T s, u,Λ(α, f)), where u is a unimod-
ular cone. Let the generators be gu

i , so the elements gu
i form a basis of the lattice Λ(α, f). Recall that

the lattice fZr is contained in Λ(α, f). Thus as s ∈ Zr, we have s =
∑
i sig

u
i with fsi ∈ Z and hence

{−T s}u =
∑
i{−Tsi}gu

i with {−Tsi} a function of T periodic modulo f .
Thus the function T 7→ {−T s}u is a step linear function, modulo f , with value in V . We then write

M(−T s, u)(ξ) = e〈ξ,{T s}u〉
∏r
j=1

1

(1−e〈ξ,gj〉)
, and hence finally

F(α, f, T )(x) = f M
(
−T s,RI≥0,Λ(α, f)

)
(αIx)

∏
j : f |αj

1

(1− eαjx)
.

This is a meromorphic function of the variable x. Near x = 0, it is of the form
∑

u exp{lu(T )x}h(x)/xN+1

where h(x) is holomorphic in x and lu(T ) is a step linear function of T , modulo f . Thus to compute

Ei(f)(T ) = resx=0
(−x)i

i!
F(α, f, T )(x)

we only have to expand the function x 7→ exp{lu(T )x} up to the power xN−i. This expansion can be
done in polynomial time. We thus see that as stated in Theorem 3.6, Ei(f)(T ) is a step polynomial of
degree less than or equal to (N − i), which is periodic of T modulo f . This completes the proof of
Theorem 3.6 and thus the proof of Theorem 1.2.
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