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`-restricted Q-systems and quantum affine
algebras

Anne-Sophie Gleitz∗

Laboratoire de Mathématiques Nicolas Oresme, UCBN, Caen, France

Abstract. Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution
of an `-restricted Q-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this
conjecture, we sketch a proof for the exceptional type E6 following our preprint (2013). In types E7 and E8, we
prove positivity for a subset of the nodes of the Dynkin diagram, and we reduce the positivity for the remaining nodes
to the conjectural iterated log-concavity of certain explicit sequences of real algebraic numbers.

Résumé. Kuniba, Nakanishi et Suzuki (1994) ont formulé une conjecture générale qui exprime la solution positive
d’un Q-system `-restreint en fonction des dimensions quantiques de certains modules de Kirillov-Reshetikhin. Après
avoir présenté cette conjecture, nous donnons une idée de la preuve pour le type exceptionnel E6, selon notre preprint
(arXiv, 2013). En types E7 et E8, nous démontrons la positivité pour certains sommets du diagramme de Dynkin, et
nous réduisons la positivité, pour les sommets restants, à une conjecture de log-concavité itérée concernant certaines
suites explicites de nombres algébriques.

Keywords: Kirillov-Reshetikhin modules, representation theory, characters, Q-systems, quantum dimension, Kuniba
Nakanishi Suzuki (KNS)

1 `-restricted Q-systems
Let δ be an ADE Dynkin diagram with vertex set I . Kirillov and Reshetikhin [6] have attached to δ
an infinite system of algebraic equations called a Q-system, with unknowns Q(i)

k (i ∈ I, k ∈ N) in a
commutative ring. It is given by(

Q
(i)
k

)2

= Q
(i)
k−1Q

(i)
k+1 +

∏
j∼i

Q
(j)
k , (i ∈ I, k ≥ 1), (1)

where, in the product, the notation j ∼ i means that j runs over all neighbours of i in the diagram δ. One
usually imposes the initial condition:

Q
(i)
0 = 1, (i ∈ I). (2)
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Figure 1: The Dynkin diagram for g = E6 and its node numbering

Fix a positive integer `. The `-restricted Q-system has a finite number of unknowns

Q
(i)
k (i ∈ I, 0 ≤ k ≤ `)

satisfying the same equations (1) and (2) together with the new boundary condition:

Q
(i)
` = 1, (i ∈ I). (3)

It is known (see [10]) that `-restricted Q-systems always have a unique positive solution, that is, a
unique solution satisfying

Q
(i)
k ∈ R>0, (i ∈ I, 1 ≤ k ≤ `− 1). (4)

There are various motivations coming from conformal field theory and algebraic K-theory to obtain an
explicit description of this positive solution [8]. In particular, if Q(i)

k (i ∈ I, 0 ≤ k ≤ `) is this solution,
then the numbers

x
(i)
k :=

∏
j∼iQ

(j)
k

(Q
(i)
k )2

∈]0, 1[, (i ∈ I, 1 ≤ k ≤ `− 1),

are the arguments of a nice dilogarithm identity, see [8, Th. 5.2, Prop. 14.1].

Example 1.1 Let us write the 2-restricted Q-system in type E6 (see Figure 1 for the node numbering
of the Dynkin diagram). Because of the boundary conditions (1) and (2), there are only 6 unknowns
Qi := Q

(i)
1 (1 ≤ i ≤ 6), subject to 

Q2
1 = 1 +Q3,

Q2
2 = 1 +Q4,

Q2
3 = 1 +Q1Q4,

Q2
4 = 1 +Q2Q3Q5,

Q2
5 = 1 +Q4Q6,

Q2
6 = 1 +Q5.

Because of the unicity of the positive solution, if we further assume that Qi > 0, we have

Q1 = Q6, Q3 = Q5,

due to the 2-fold symmetry of the Dynkin diagram of E6. We are therefore reduced to the system
Q2

1 = 1 +Q3,

Q2
2 = 1 +Q4,

Q2
3 = 1 +Q1Q4,

Q2
4 = 1 +Q2Q

2
3,
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whose unique positive solution is

Q1 = 1 + 2 cos
2π

7
≈ 2.246979604,

Q2 =
√

2 ·
√

(4 cos2
2π

7
+ 6 cos

2π

7
+ 1) cos

2π

7
≈ 2.801937735,

Q3 = 8 cos
2π

7
cos2 π

7
≈ 4.048917341,

Q4 =

(
2 cos

2π

7
+ 1

)(
8 cos

2π

7
cos2 π

7
− 1

)
≈ 6.850855076.

If we further set

x1 =
Q3

Q2
1

, x2 =
Q4

Q2
2

, x3 =
Q1Q4

Q2
3

, x4 =
Q2Q

2
3

Q2
4

,

we obtain the remarkable identity

2L(x1) + L(x2) + 2L(x3) + L(x4) =
6π2

7
,

where L denotes the Rogers dilogarithm function (see e.g. [14]).

2 The KNS conjecture
Kuniba, Nakanishi and Suzuki [7] have given a conjectural description of the positive solution of an `-
restricted Q-system in terms of quantum dimensions of Kirillov-Reshetikhin modules over the quantum
affine algebra attached to δ, which we now recall.

Let g be a simple Lie algebra over C with Dynkin diagram δ. Fix a Cartan subalgebra h. Let Φ ⊂ h∗

be the root system of g, and Φ+ its subset of positive roots. Let αi, $i (i ∈ I) denote the simple roots
and the fundamental weights, respectively. We fix a symmetric bilinear form (· | ·) on h∗, normalized by

(αi | αi) = 2, (αi | $j) = δij . (5)

We denote by
ρ =

∑
i∈I

$i, θ =
∑
i

aiαi, (6)

the Weyl vector and the highest root, respectively. Here the ai (i ∈ I) are the Dynkin labels. We have

(ρ | θ) =
∑
i∈I

ai = h− 1, (7)

where h is the Coxeter number.
Let P =

⊕
i∈I Z$i be the weight lattice, and P+ =

⊕
i∈I N$i the monoid of dominant weights. For

λ ∈ P+, we denote by V (λ) the irreducible complex representation of g with highest weight λ, and by
χ(V (λ)) ∈ Z[P ] its character. The dimension of V (λ) is given by Weyl’s formula:

dimV (λ) =
∏
β∈Φ+

(λ+ ρ | β)

(ρ | β)
. (8)
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For ζ ∈ C∗, and k ∈ Z we define the ζ-integer:

[k]ζ := (ζk − ζ−k)(ζ − ζ−1)−1.

The ζ-dimension of V (λ) is the ζ-analogue of dimV (λ) given by

dζ(λ) :=
∏
β∈Φ+

[(λ+ ρ | β)]ζ
[(ρ | β)]ζ

. (9)

When |ζ| = 1, this is a real number, well-defined if [(ρ | β)]ζ 6= 0 for each β ∈ Φ+.
Let Uq(ĝ) be the Drinfeld-Jimbo quantum enveloping algebra of the affine Lie algebra ĝ associated

with g (see e.g. [4]). It has a natural subalgebra isomorphic to the quantum enveloping algebra Uq(g)
of g. Here, we assume that the quantum parameter q ∈ C∗ is not a root of unity. It follows that we can
identify the characters of Uq(g) with those of g.

The Kirillov-Reshetikhin modulesW (i)
k,a are some special irreducible finite-dimensional representations

of Uq(ĝ), depending on three parameters i ∈ I , k ∈ N, a ∈ C∗ (see [8, §4.2]). We will only be interested
in their restrictions to Uq(g), which are independent of a, and will be denoted byW (i)

k . The Uq(g)-module
W

(i)
k is not irreducible in general. Its character can be expressed as an N-linear combination of irreducible

characters of g:
χ
(
W

(i)
k

)
=
∑
λ∈P+

a
(i)
k (λ)χ(V (λ)). (10)

Define the ζ-dimension of a Kirillov-Reshetikhin module by

dζ

(
W

(i)
k

)
:=

∑
λ∈P+

a
(i)
k (λ) dζ(λ). (11)

From now on, we fix ` ∈ Z>0 and we set

l := `+ h, ζ := exp(iπ/l). (12)

Because of (7), the ζ-dimension (9) is well-defined for every λ ∈ P+.

Conjecture 2.1 ([7, Conjecture 14.2]) The collection of real numbers

Q
(i)
k := dζ

(
W

(i)
k

)
, (i ∈ I, 0 ≤ k ≤ `),

is a solution of the `-restricted Q-system. Moreover the following properties hold for any i ∈ I:

(i) dζ
(
W

(i)
k

)
= 0 for k ∈ J`+ 1, l − 1K.

(ii) Q(i)
k = Q

(i)
`−k for k ∈ J0, `K.

(iii) Q(i)
k > 0 for k ∈ J0, `K.

(iv) Q(i)
k < Q

(i)
k+1 for k ∈ J0, b`/2c − 1K.
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Example 2.2 Let us do a quick check in type A3 for ` = 2. In this simple situation the Uq(g)-restrictions
of the KR-modules W (i)

k are simple, and their dimensions are directly given by (9). Since h = 4 we have
ζ = exp(iπ/6), and we easily compute:

dζ(W
(1)
1 ) = dζ($1) =

sin 2π
3

sin π
6

=
√

3,

dζ(W
(2)
1 ) = dζ($2) =

1

sin π
6

= 2,

dζ(W
(3)
1 ) = dζ(W

(1)
1 ) =

√
3,

dζ(W
(1)
2 ) = dζ(2$1) =

sin π
2

sin π
6

sin 2π
3

sin π
3

sin 5π
6

sin π
2

= 1,

dζ(W
(2)
2 ) = dζ(2$2) =

sin π
2

sin π
6

(
sin 2π

3

sin π
3

)2
sin 5π

6

sin π
2

= 1,

dζ(W
(3)
2 ) = dζ(W

(1)
2 ) = 1.

On the other hand, the 2-restricted Q-system in type A3 reads
(Q

(1)
1 )2 = Q

(1)
2 +Q

(2)
1

(Q
(2)
1 )2 = Q

(2)
2 +Q

(1)
1 Q

(3)
1

(Q
(3)
1 )2 = Q

(3)
2 +Q

(2)
1

Q
(1)
2 = Q

(2)
2 = Q

(3)
2 = 1,

and it is easy to check that its only positive solution is given by

Q
(1)
1 = Q

(3)
1 =

√
3, Q

(2)
1 = 2.

So Conjecture 2.1 holds in this case.

3 Type E
The KNS conjecture is easy to check in type A, but it remained an open problem for a long time in other
types. Recently, Lee [10] has given a proof of the KNS conjecture in type D. We may and will therefore
focus hereafter on type E.

Let g be of exceptional type E. We number the nodes of its Dynkin diagram as in Figure 2. Recall that
h = 12 in type E6, h = 18 in type E7, and h = 30 in type E8. In [5] we have proved the following:

Theorem 3.1 The collection of real numbers

Q
(i)
k := dζ

(
W

(i)
k

)
, (i ∈ I, 0 ≤ k ≤ `),

is a solution of the `-restricted Q-system. Moreover:

(a) In type E6, properties (i), (ii), (iii), (iv) of Conjecture 2.1 hold for any i ∈ I . We also have

dζ

(
W

(i)
k+l

)
= dζ

(
W

(i)
k

)
, (k ∈ N).
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Figure 2: The Dynkin diagrams for g = E6, E7, E8 and their node numberings

(b) In type E7, properties (i), (ii) of Conjecture 2.1 hold for any i ∈ I , property (iii) holds for i =
1, 2, 3, 6, 7, and property (iv) holds for i = 1, 2, 7. We also have

dζ

(
W

(i)
k+l

)
= dζ

(
W

(i)
k

)
, (k ∈ N, i = 1, 3, 4, 6),

dζ

(
W

(i)
k+l

)
= −dζ

(
W

(i)
k

)
, (k ∈ N, i = 2, 5, 7).

(c) In typeE8, property (i) of Conjecture 2.1 holds for any i ∈ I , property (ii) holds for i = 1, 3, 4, 5, 6, 7, 8,
property (iii) holds for i = 1, 3, 7, 8, and property (iv) holds for i = 1, 8. We also have for any
i ∈ I

dζ

(
W

(i)
k+l

)
= dζ

(
W

(i)
k

)
, (k ∈ N).

4 Outline of proof
It follows from the Kirillov-Reshetikhin conjecture, proved by Nakajima [12], that the characters χ(W

(i)
k ) (i ∈

I, k ∈ N) give a solution of the unrestricted Q-system (1) (2) in the ring Z[P ]. The map χ(V ) 7→ dζ(V )

being additive and multiplicative, the numbers dζ(W
(i)
k ) (i ∈ I, k ∈ N) give therefore a solution of the

unrestricted Q-system in R. So to prove Conjecture 2.1 we only need to check that

dζ(W
(i)
` ) = 1 (i ∈ I),

and that the collection Q(i)
k := dζ(W

(i)
k ) (i ∈ I, 0 ≤ k ≤ l) satisfies the additional properties (i), (ii),

(iii), (iv).
What makes type E more difficult than typeD is that there are many nodes of the Dynkin diagram with

labels ai > 2, and it is difficult to check positivity of the ζ-dimensions at these nodes. Moreover, there are
no convenient characters formulas in the literature for the Kirillov-Reshetikhin modules, except for the
extremal nodes. To get around these difficulties, we first check the KNS conjecture at the extremal nodes,
and then move to the remaining nodes using the Q-system.
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Let us outline the strategy of the proof in type E6. We start from the following formulas of Chari [3,
Section 3]:

χ(W
(i)
k ) = χ(V (k$i)) for i = 1, 6, (13)

χ(W
(2)
k ) =

k∑
r=0

χ(V (r$2)). (14)

Using (13) and (9), we can then check rather easily the desired properties at nodes 1 and 6.
Since, by (14), W (2)

k is not irreducible, we need more tools at node 2. Following Lee [9, 10], we use
the level l dot action of the affine Weyl group Ŵ of ĝ on the weight lattice P , denoted by

λ 7→ w · λ, (λ ∈ P, w ∈ Ŵ ),

see [5]. If λ and w · λ are dominant, it is known that

dζ(λ) = (−1)`(w)dζ(w · λ), (15)

where `(w) is the length of w in Ŵ . Applying (15) with w = s0 and λ = k$2, we show that

dζ(k$2) = −dζ((`+ 1− k)$2),

and this formula, together with (14), allows us to check all desired properties at node 2.
Using the Q-system equations,

dζ(W
(1)
k )2 = dζ(W

(1)
k+1)dζ(W

(1)
k−1) + dζ(W

(3)
k ),

dζ(W
(2)
k )2 = dζ(W

(2)
k+1)dζ(W

(2)
k−1) + dζ(W

(4)
k ),

dζ(W
(6)
k )2 = dζ(W

(6)
k+1)dζ(W

(6)
k−1) + dζ(W

(5)
k ),

it is then easy to deduce that

dζ(W
(3)
` ) = dζ(W

(4)
` ) = dζ(W

(5)
` ) = 1,

and that properties (i) and (ii) are verified at nodes 3, 4, and 5. Moreover, property (3), that is, positivity,
is clearly equivalent to the fact that the sequences dζ(W

(1)
k ), dζ(W

(2)
k ) and dζ(W

(6)
k ) are strictly log-

concave.
Recall that a finite sequence of real numbers (ak)0≤k≤n is called log-concave if

a2
k ≥ ak−1ak+1, (1 ≤ k ≤ n− 1). (16)

It is strictly log-concave if a2
k > ak−1ak+1. Using well-known properties of log-concave sequences (see

e.g. [13]), we show

Lemma 4.1 For every i ∈ I , the finite sequence dζ(k$i) (0 ≤ k ≤ `/ai) is strictly log-concave and
positive, where ai is the Dynkin label at vertex i.
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We then deduce from Lemma 4.1 that dζ(W
(1)
k ), dζ(W

(2)
k ) and dζ(W

(6)
k ) are strictly log-concave, and

from this we obtain that properties (iii) and (iv) also hold at nodes 3, 4, 5, which finishes the proof for E6.

The proofs in type E7 and E8 are essentially the same as for type E6. However log-concavity is no
longer sufficient to establish positivity at some inner nodes of the Dynkin diagram, and some stronger
form of log-concavity would be necessary. Let us illustrate this in type E7.

Following [1], define L to be the operator mapping the sequence of real numbers (ak)0≤k≤n to the
sequence (bk)0≤k≤n defined by

bk := a2
k − ak+1ak−1, (0 ≤ k ≤ n),

where we have set a−1 = an+1 = 0. Hence (ak) is log-concave if L(ak) is non-negative. We say that
(ak) is i-fold log-concave if the ith iterate Li(ak) is non-negative, and infinitely log-concave if it is i-
fold log-concave for all i ∈ N. Interesting examples of i-fold log-concave sequences have been studied
recently in combinatorics, see e.g. [1, 2, 11].

It is easy to deduce from the Q-system that the non-negativity of Q(i)
k for

0 ≤ k ≤ ` and i = 4, 5 amounts to the fact that the sequence

Q
(7)
k = dζ(k$7), (0 ≤ k ≤ `) (17)

is 3-fold and 2-fold log-concave. We thus conjecture

Conjecture 4.2 The sequence (17) is i-fold log-concave for i = 2, 3.

In fact we believe that this sequence is even infinitely log-concave. Here are a few sample values for Q(7)
k

when ` is small.

` Q
(7)
0 Q

(7)
1 Q

(7)
2 Q

(7)
3 Q

(7)
4 Q

(7)
5

2 1 2.2882456111 1
3 1 3.7912878474 3.7912878474 1
4 1 5.4436536231 9.0266741836 5.4436536231 1
5 1 7.1903369448 17.142395935 17.142395935 7.1903369448 1

In type E8, we state a similar conjecture:

Conjecture 4.3 The sequence

dζ(W
(8)
k ) =

k∑
r=0

dζ(r$8)

is i-fold log-concave for i = 3, 4, 5.

This would imply that the sequences (Q
(i)
k )0≤k≤` (i = 6, 5, 4) are non-negative.
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