0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra

Jia Huang*

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. We define an action of the 0-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their (q,t)-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics.

Résumé. Nous définissons une action de l'algèbre de Hecke-0 de type A sur l'anneau Stanley-Reisner de l'algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur (q,t)-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetric multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.

Keywords: 0-Hecke algebra, Stanley-Reisner ring, Boolean algebra, noncommutative Hall-Littlewood symmetric function, multivariate quasisymmetric function.

1 Introduction

Let $\mathbb F$ be any field. The symmetric group $\mathfrak S_n$ naturally acts on the polynomial ring $\mathbb F[X]:=\mathbb F[x_1,\dots,x_n]$ by permuting the variables x_1,\dots,x_n . The invariant algebra $\mathbb F[X]^{\mathfrak S_n}$, which consists of all the polynomials fixed by this $\mathfrak S_n$ -action, is a polynomial algebra generated by the elementary symmetric functions e_1,\dots,e_n . The coinvariant algebra $\mathbb F[X]/(\mathbb F[X]_+^{\mathfrak S_n})$, with $(\mathbb F[X]_+^{\mathfrak S_n})=(e_1,\dots,e_n)$, is a vector space of dimension n! over $\mathbb F$, and when $\mathbb F$ has characteristic larger than n the coinvariant algebra carries the regular representation of $\mathfrak S_n$. A well known basis for $\mathbb F[X]/(\mathbb F[X]_+^{\mathfrak S_n})$ consists of the descent monomials. Garsia [7] obtained this basis by transferring a natural basis from the Stanley-Reisner ring $\mathbb F[\mathcal B_n]$ of the Boolean algebra $\mathcal B_n$ to the polynomial ring $\mathbb F[X]$. Here the *Boolean algebra* $\mathcal B_n$ is the set of all subsets of $[n]:=\{1,2,\dots,n\}$ partially ordered by inclusion, and the *Stanley-Reisner ring* $\mathbb F[\mathcal B_n]$ is the quotient of the polynomial algebra $\mathbb F[y_A:A\subseteq [n]]$ by the ideal $(y_Ay_B:A$ and B are incomparable in $\mathcal B_n$).

The 0-Hecke algebra $H_n(0)$ (of type A) is a deformation of the group algebra of \mathfrak{S}_n . It acts on $\mathbb{F}[X]$ by the Demazure operators, also known as the isobaric divided difference operators, having the same

^{*}Email: jiahuangustc@gmail.com. Supported by NSF grant DMS-1001933.

invariant algebra as the \mathfrak{S}_n -action on $\mathbb{F}[X]$. In our earlier work [13], we showed that the coinvariant algebra $\mathbb{F}[X]/(\mathbb{F}[X]_+^{\mathfrak{S}_n})$ is also isomorphic to the regular representation of $H_n(0)$, for any field \mathbb{F} , by constructing another basis for $\mathbb{F}[X]/(\mathbb{F}[X]_+^{\mathfrak{S}_n})$ which consists of certain polynomials whose leading terms are the descent monomials. This and the previously mentioned connection between the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ and the polynomial ring $\mathbb{F}[X]$ motivate us to define an $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$.

It turns out that our $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$ has similar properties to the $H_n(0)$ -action on $\mathbb{F}[X]$. It preserves an \mathbb{N}^{n+1} -multigrading of $\mathbb{F}[\mathcal{B}_n]$ and has invariant algebra equal to a polynomial algebra $\mathbb{F}[\Theta]$, where Θ is the set of *rank polynomials* θ_i (the usual analogue of e_i in $\mathbb{F}[\mathcal{B}_n]$). We show that the $H_n(0)$ -action is Θ -linear and thus descends to the coinvariant algebra $\mathbb{F}[\mathcal{B}_n]/(\Theta)$. Using the descent monomials in $\mathbb{F}[\mathcal{B}_n]$ it is not hard to see that $\mathbb{F}[\mathcal{B}_n]/(\Theta)$ carries the regular representation of $H_n(0)$.

It is well known that every finite dimensional (complex) \mathfrak{S}_n -representation is a direct sum of simple (i.e. irreducible) \mathfrak{S}_n -modules, and the simple \mathfrak{S}_n -modules are indexed by partitions λ of n, which correspond to the Schur functions s_λ via the *Frobenius characteristic map*. Hotta-Springer [11] and Garsia-Procesi [9] discovered that the cohomology ring of the *Springer fiber* indexed by a partition μ of n is isomorphic to certain quotient ring R_μ of $\mathbb{F}[X]$, which admits a graded \mathfrak{S}_n -module structure corresponding to the *modified Hall-Littlewood symmetric function* $\widetilde{H}_\mu(x;t)$ via the Frobenius characteristic map. The coinvariant algebra of \mathfrak{S}_n is nothing but R_{1^n} .

In our previous work [13] we established a partial analogue of the above result by showing that the $H_n(0)$ -action on $\mathbb{F}[X]$ descends to R_μ if and only if $\mu=(1^k,n-k)$ is a hook, and if so then R_μ has graded quasisymmetric characteristic equal to $\widetilde{H}_\mu(x;t)$ and graded noncommutative characteristic $\widetilde{H}_\mu(\mathbf{x};t)$. Here $\widetilde{\mathbf{H}}_\alpha(\mathbf{x};t)$ is the noncommutative modified Hall-Littlewood symmetric function introduced by Bergeron and Zabrocki [3] for any composition α of n. Using an analogue of the nabla operator Bergeron and Zabrocki [3] also introduced a (q,t)-analogue $\widetilde{\mathbf{H}}_\alpha(\mathbf{x};q,t)$ for any composition α . Now we provide in Theorem 1.1 below a complete representation theoretic interpretation for $\widetilde{\mathbf{H}}_\alpha(\mathbf{x};t)$ and $\widetilde{\mathbf{H}}_\alpha(\mathbf{x};q,t)$ by the $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$.

To state our result, we first recall the two characteristic maps for representations of $H_n(0)$ introduced by Krob and Thibon [14], which we call the *quasisymmetric characteristic* and the *noncommutative characteristic*. The simple $H_n(0)$ -modules are indexed by compositions α of n and correspond to the *fundamental quasisymmetric functions* F_{α} via the quasisymmetric characteristic; the projective indecomposable $H_n(0)$ -modules are also indexed by compositions α of n and correspond to the *noncommutative ribbon Schur functions* \mathbf{s}_{α} via the noncommutative characteristic. See §2 for details.

Theorem 1.1 Let α be a composition of n. Then there exists a homogeneous $H_n(0)$ -invariant ideal I_{α} of the multigraded algebra $\mathbb{F}[\mathcal{B}_n]$ such that the quotient algebra $\mathbb{F}[\mathcal{B}_n]/I_{\alpha}$ becomes a projective $H_n(0)$ -module with multigraded noncommutative characteristic equal to

$$\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x}; t_1, \dots, t_{n-1}) := \sum_{\beta \preccurlyeq \alpha} \underline{t}^{D(\beta)} \mathbf{s}_{\beta} \quad \text{inside} \quad \mathbf{NSym}[t_1, \dots, t_{n-1}].$$

One has $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t,t^2,\ldots,t^{n-1}) = \widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t)$, and obtains $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};q,t)$ from $\widetilde{\mathbf{H}}_{1^n}(\mathbf{x};t_1,\ldots,t_{n-1})$ by taking $t_i = t^i$ for all $i \in D(\alpha)$, and $t_i = q^{n-i}$ for all $i \in [n-1] \setminus D(\alpha)$.

Here $D(\alpha)$ is the set of partial sums of α , the notation $\beta \preccurlyeq \alpha$ means α and β are compositions of n with $D(\beta) \subseteq D(\alpha)$, and \underline{t}^S denotes the product $\prod_{i \in S} t_i$ over all elements i in a multiset S, including the repeated ones. Taking $\alpha = (1^n)$ shows that $\mathbb{F}[\mathcal{B}_n]/(\Theta)$ carries the regular representation of $H_n(0)$.

Specializations of $\widetilde{\mathbf{H}}_{1^n}(\mathbf{x}; t_1, \dots, t_{n-1})$ include not only $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x}; q, t)$, but also a more general family of noncommutative symmetric functions depending on parameters associated with paths in binary trees introduced recently by Lascoux, Novelli, and Thibon [15].

Next we study the quasisymmetric characteristic of $\mathbb{F}[\mathcal{B}_n]$. We combine the usual \mathbb{N}^{n+1} -multigrading of $\mathbb{F}[\mathcal{B}_n]$ (recorded by $\underline{t} := t_0, \ldots, t_n$) with the length filtration of $H_n(0)$ (recorded by q) and obtain an $\mathbb{N} \times \mathbb{N}^{n+1}$ -multigraded quasisymmetric characteristic for $\mathbb{F}[\mathcal{B}_n]$.

Theorem 1.2 The $\mathbb{N} \times \mathbb{N}^{n+1}$ -multigraded quasisymmetric characteristic of $\mathbb{F}[\mathcal{B}_n]$ is

$$\begin{split} \operatorname{Ch}_{q,\underline{t}}(\mathbb{F}[\mathcal{B}_n]) &= \sum_{k \geq 0} \sum_{\alpha \in \operatorname{Com}(n,k+1)} \underline{t}^{D(\alpha)} \sum_{w \in \mathfrak{S}^{\alpha}} q^{\operatorname{inv}(w)} F_{D(w^{-1})} \\ &= \sum_{w \in \mathfrak{S}_n} \frac{q^{\operatorname{inv}(w)} \underline{t}^{D(w)} F_{D(w^{-1})}}{\prod_{0 \leq i \leq n} (1 - t_i)} \\ &= \sum_{k \geq 0} \sum_{\mathbf{p} \in [k+1]^n} t_{p'_1} \cdots t_{p'_k} q^{\operatorname{inv}(\mathbf{p})} F_{D(\mathbf{p})}. \end{split}$$

Here we identify F_I with F_{α} if $D(\alpha) = I \subseteq [n-1]$. The set $\operatorname{Com}(n,k)$ consists of all weak compositions of n with length k, i.e. all the sequences $\alpha = (\alpha_1, \ldots, \alpha_k)$ of k nonnegative integers with $|\alpha| := \sum_{i=1}^k \alpha_i = n$. The descent multiset of the weak composition α is the multiset

$$D(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{k-1}\}.$$

We also define $\mathfrak{S}^{\alpha}:=\{w\in\mathfrak{S}_n:D(w)\subseteq D(\alpha)\}$. The set $[k+1]^n$ consists of all words of length n on the alphabet [k+1]. Given $\mathbf{p}=(p_1,\ldots,p_n)\in[k+1]^n$, we write $p_i':=\#\{j:p_j\leq i\}$, $\mathrm{inv}(\mathbf{p}):=\#\{(i,j):1\leq i< j\leq n:p_i>p_j\}$, and $D(\mathbf{p}):=\{i:p_i>p_{i+1}\}$. Let $\mathbf{ps}_{q;\ell}(F_{\alpha}):=F_{\alpha}(1,q,q^2,\ldots,q^{\ell-1},0,0,\ldots)$. Applying the linear transformation $\sum_{\ell\geq 0}u_1^{\ell}\mathbf{ps}_{q_1;\ell+1}$

Let $\mathbf{ps}_{q;\ell}(F_{\alpha}) := F_{\alpha}(1, q, q^2, \dots, q^{\ell-1}, 0, 0, \dots)$. Applying the linear transformation $\sum_{\ell \geq 0} u_1^{\ell} \mathbf{ps}_{q_1;\ell+1}$ and the specialization $t_i = q_2^i u_2$ for all $i = 0, 1, \dots, n$ to Theorem 1.2, we recover a result of Garsia and Gessel [8, Theorem 2.2] on the generating function of the joint distribution of five permutation statistics:

$$\frac{\sum_{w \in \mathfrak{S}_n} q_0^{\mathrm{inv}(w)} q_1^{\mathrm{maj}(w^{-1})} u_1^{\mathrm{des}(w^{-1})} q_2^{\mathrm{maj}(w)} u_2^{\mathrm{des}(w)}}{(u_1; q_1)_n (u_2; q_2)_n} = \sum_{\ell, k \ge 0} u_1^{\ell} u_2^k \sum_{(\lambda, \mu) \in B(\ell, k)} q_0^{\mathrm{inv}(\mu)} q_1^{|\lambda|} q_2^{|\mu|}$$
(1)

Here $(u;q)_n := \prod_{0 \le i \le n} (1-q^i u)$, the set $B(\ell,k)$ consists of pairs of weak compositions $\lambda = (\lambda_1, \dots, \lambda_n)$ and $\mu = (\mu_1, \dots, \mu_n)$ satisfying the conditions $\ell \ge \lambda_1 \ge \dots \ge \lambda_n$, $\max\{\mu_i : 1 \le i \le n\} \le k$, and $\lambda_i = \lambda_{i+1} \Rightarrow \mu_i \ge \mu_{i+1}$ (such pairs (λ, μ) are sometimes called *bipartite partitions*), and $\operatorname{inv}(\mu)$ is the number of inversion pairs in μ . Some further specializations of Theorem 1.2 imply identities of Carlitz-MacMahon [6, 17] and Adin-Brenti-Roichman [1].

The structure of this paper is as follows. Section 2 reviews the representation theory of the 0-Hecke algebra. Section 3 studies the Stanley-Reisner ring of the Boolean algebra. Section 4 defines a 0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra. The noncommutative and quasisymmetric characteristics are discussed in Section 5 and Section 6. Finally we give some remarks and questions for future research in Section 7, including a generalization to an action of the Hecke algebra of any finite Coxeter group on the Stanley-Reisner ring of the Coxeter complex.

2 Representation theory of the 0-Hecke algebra

We review the representation theory of the 0-Hecke algebra in this section. The (type A) *Hecke algebra* $H_n(q)$ is the associative $\mathbb{F}(q)$ -algebra generated by T_1, \ldots, T_{n-1} with relations

$$\begin{cases}
(T_i + 1)(T_i - q) = 0, & 1 \le i \le n - 1, \\
T_i T_j = T_j T_i, & 1 \le i, j \le n - 1, |i - j| > 1, \\
T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, & 1 \le i \le n - 2.
\end{cases}$$
(2)

It has an $\mathbb{F}(q)$ -basis $\{T_w : w \in \mathfrak{S}_n\}$ where $T_w := T_{i_1} \cdots T_{i_k}$ if $w = s_{i_1} \cdots s_{i_k}$ is a reduced expression.

Specializing q=1 gives the group algebra of \mathfrak{S}_n , with $s_i=T_i|_{q=1}$ and $w=T_w|_{q=1}$. Let $w\in\mathfrak{S}_n$. The length of w equals $\mathrm{inv}(w):=\#\{(i,j):1\leq i< j\leq n,\ w(i)>w(j)\}$, and the descent set of w is $D(w)=\{i:1\leq i\leq n-1,\ w(i)>w(i+1)\}$. We write $\mathrm{des}(w):=|D(w)|$ and $\mathrm{maj}(w):=\sum_{i\in D(w)}i$.

Let α be a (weak) composition of n, and let α^c be the composition of n with $D(\alpha^c) = [n-1] \setminus D(\alpha)$. The parabolic subgroup \mathfrak{S}_{α} is the subgroup of \mathfrak{S}_n generated by $\{s_i : i \in D(\alpha^c)\}$. The set of all minimal \mathfrak{S}_{α} -coset representatives is $\mathfrak{S}^{\alpha} := \{w \in \mathfrak{S}_n : D(w) \subseteq D(\alpha)\}$. The descent class of α consists of the permutations in \mathfrak{S}_n with descent set equal to $D(\alpha)$, and turns out to be an interval under the (left) weak order of \mathfrak{S}_n , denoted by $[w_0(\alpha), w_1(\alpha)]$. One sees that $w_0(\alpha)$ is the longest element of the parabolic subgroup \mathfrak{S}_{α^c} , and $w_1(\alpha)$ is the longest element in \mathfrak{S}^{α} (c.f. Björner and Wachs [5, Theorem 6.2]).

Another interesting specialization of $H_n(q)$ is the 0-Hecke algebra $H_n(0)$, with generators $\overline{\pi}_i = T_i|_{q=0}$ for $i=1,\ldots,n-1$, and an $\mathbb F$ -basis $\{\overline{\pi}_w = T_w|_{q=0} : w \in \mathfrak S_n\}$. Let $\pi_i := \overline{\pi}_i + 1$. Then π_1,\ldots,π_{n-1} form another generating set for $H_n(0)$, with the same relations as (2) except $\pi_i^2 = \pi_i, 1 \leq i \leq n-1$. The element $\pi_w := \pi_{i_1} \cdots \pi_{i_k}$ is well defined for any $w \in \mathfrak S_n$ with a reduced expression $w = s_{i_1} \cdots s_{i_k}$, and $\{\pi_w : w \in \mathfrak S_n\}$ is another $\mathbb F$ -bases for $H_n(0)$. One can check that π_w equals the sum of $\overline{\pi}_u$ over all u less than or equal to w in the Bruhat order of $\mathfrak S_n$. In particular, $\pi_{w_0(\alpha)}$ is the sum of $\overline{\pi}_u$ for all $u \in \mathfrak S_{\alpha^c}$.

Norton [18] decomposed the 0-Hecke algebra $H_n(0)$ into a direct sum of projective indecomposable submodules $\mathbf{P}_{\alpha} := H_n(0) \cdot \overline{\pi}_{w_0(\alpha)} \pi_{w_0(\alpha^c)}$ for all $\alpha \models n$ (i.e. compositions of n). Each \mathbf{P}_{α} has an \mathbb{F} -basis $\left\{\overline{\pi}_w \pi_{w_0(\alpha^c)} : w \in [w_0(\alpha), w_1(\alpha)]\right\}$. Its $radical \operatorname{rad} \mathbf{P}_{\alpha}$ is the unique maximal $H_n(0)$ -submodule spanned by $\left\{\overline{\pi}_w \pi_{w_0(\alpha^c)} : w \in (w_0(\alpha), w_1(\alpha)]\right\}$. Although \mathbf{P}_{α} itself is not necessarily simple, its top $\mathbf{C}_{\alpha} := \mathbf{P}_{\alpha}/\operatorname{rad} \mathbf{P}_{\alpha}$ is a one-dimensional simple $H_n(0)$ -module with the action of $H_n(0)$ given by

$$\overline{\pi}_i = \begin{cases}
-1, & \text{if } i \in D(\alpha), \\
0, & \text{if } i \notin D(\alpha).
\end{cases}$$

It follows from general representation theory of algebras (see e.g. [2, §I.5]) that $\{\mathbf{P}_{\alpha} : \alpha \models n\}$ and $\{\mathbf{C}_{\alpha} : \alpha \models n\}$ are the complete lists of pairwise non-isomorphic projective indecomposable and simple $H_n(0)$ -modules, respectively.

Krob and Thibon [14] introduced a correspondence between $H_n(0)$ -representations and the dual Hopf algebras QSym and NSym, which we review next. The Hopf algebra QSym has a free \mathbb{Z} -basis of fundamental quasisymmetric functions F_{α} , and the dual Hopf algebra NSym has a dual basis of non-commutative ribbon Schur functions \mathbf{s}_{α} , for all compositions α .

Let $M=M_0\supseteq M_1\supseteq \cdots \supseteq M_k\supseteq M_{k+1}=0$ be a composition series of $H_n(0)$ -modules with simple factors $M_i/M_{i+1}\cong \mathbf{C}_{\alpha^{(i)}}$ for $i=0,1,\ldots,k$. Then the *quasisymmetric characteristic* of M is

$$Ch(M) := F_{\alpha^{(0)}} + \cdots + F_{\alpha^{(k)}}.$$

The noncommutative characteristic of a projective $H_n(0)$ -module $M \cong \mathbf{P}_{\alpha^{(1)}} \oplus \cdots \oplus \mathbf{P}_{\alpha^{(k)}}$ is

$$\mathbf{ch}(M) := \mathbf{s}_{\alpha^{(1)}} + \dots + \mathbf{s}_{\alpha^{(k)}}.$$

It is not hard to extend these characteristic maps to $H_n(0)$ -modules with gradings and filtrations.

3 Stanley-Reisner ring of the Boolean algebra

In this section we study the Stanley-Reisner ring of the Boolean algebra. The Boolean algebra \mathcal{B}_n is the ranked poset of all subsets of $[n]:=\{1,2,\ldots,n\}$ ordered by inclusion, with minimum element \emptyset and maximum element [n]. The rank of a subset of [n] is defined as its cardinality. The Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ of the Boolean algebra \mathcal{B}_n is the quotient of the polynomial algebra $\mathbb{F}\left[y_A:A\subseteq[n]\right]$ by the ideal $\left(y_Ay_B:A$ and B are incomparable in $\mathcal{B}_n\right)$. It has an \mathbb{F} -basis $\{y_M\}$ indexed by the multichains M in \mathcal{B}_n , and is multigraded by the rank multisets r(M) of the multichains M.

The symmetric group \mathfrak{S}_n acts on the Boolean algebra \mathcal{B}_n by permuting the integers $1,\ldots,n$. This induces an \mathfrak{S}_n -action on the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$, preserving its multigrading. The *invariant algebra* $\mathbb{F}[\mathcal{B}_n]^{\mathfrak{S}_n}$ consists of all elements in $\mathbb{F}[\mathcal{B}_n]$ invariant under this \mathfrak{S}_n -action. One can show that $\mathbb{F}[\mathcal{B}_n]^{\mathfrak{S}_n} = \mathbb{F}[\Theta]$, where $\Theta := \{\theta_0, \ldots, \theta_n\}$. Garsia [7] showed that $\mathbb{F}[\mathcal{B}_n]$ is a free $\mathbb{F}[\Theta]$ -module on the basis of descent monomials

$$Y_w := \prod_{i \in D(w)} y_{\{w(1),\dots,w(i)\}}, \quad \forall w \in \mathfrak{S}_n.$$
(3)

There is an analogy between the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ and the polynomial ring $\mathbb{F}[X]$ via the transfer map $\tau: \mathbb{F}[\mathcal{B}_n] \to \mathbb{F}[X]$ defined by

$$\tau(\boldsymbol{y}_M) := \prod_{1 \leq i \leq k} \prod_{j \in A_i} x_j$$

for all multichains $M=(A_1\subseteq\cdots\subseteq A_k)$ in \mathcal{B}_n . It is *not* a ring homomorphism (e.g. $y_{\{1\}}y_{\{2\}}=0$ but $x_1x_2\neq 0$). Nevertheless, it induces an isomorphism $\tau:\mathbb{F}[\mathcal{B}_n]/(\theta_0)\cong\mathbb{F}[X]$ of \mathfrak{S}_n -modules. Moreover, it sends the rank polynomials θ_1,\ldots,θ_n to the elementary symmetric polynomials e_1,\ldots,e_n , and sends the descent monomials Y_w in $\mathbb{F}[\mathcal{B}_n^*]$ defined by (3) to the corresponding descent monomials in $\mathbb{F}[X]$ for all $w\in\mathfrak{S}_n$.

Example 3.1 The Boolean algebra \mathcal{B}_3 consists of all subsets of $\{1,2,3\}$. Its Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_3]$ is a free $\mathbb{F}[\Theta]$ -module with a basis of descent monomials $Y_1=1$, $Y_{s_1}=y_2$, $Y_{s_2s_1}=y_3$, $Y_{s_2}=y_{13}$, $Y_{s_1s_2}=y_{23}$, $Y_{s_1s_2s_1}=y_{23}y_3$, where Θ consists of the rank polynomials $\theta_0=y_\emptyset$, $\theta_1:=y_1+y_2+y_3$, $\theta_2:=y_{12}+y_{13}+y_{23}$, $\theta_3:=y_{123}$. The transfer map τ sends $\theta_1,\theta_2,\theta_3$ to e_1,e_2,e_3 , and sends the six descent monomials in $\mathbb{F}[\mathcal{B}_3]$ to the six descent monomials 1, x_2 , x_3 , x_1x_3 , x_2x_3 , $x_2x_3^2$ in $\mathbb{F}[x_1,x_2,x_3]$.

The homogeneous components of $\mathbb{F}[\mathcal{B}_n]$ are indexed by multisets with elements in $\{0,\ldots,n\}$, or equivalently by weak compositions α of n. The α -homogeneous component $\mathbb{F}[\mathcal{B}_n]_{\alpha}$ has an \mathbb{F} -basis $\{y_M: r(M)=D(\alpha)\}$. Denote by $\mathrm{Com}(n,k)$ the set of all weak compositions of n with length k. If $M=(A_1\subseteq\cdots\subseteq A_k)$ is a multichain of length k in \mathcal{B}_n then we set $A_0:=\emptyset$ and $A_{k+1}:=[n]$ by convention. Define $\alpha(M):=(\alpha_1,\ldots,\alpha_{k+1})$, where $\alpha_i=|A_i|-|A_{i-1}|$ for all $i\in[k+1]$. Then

 $\alpha(M) \in \operatorname{Com}(n,k+1)$ and $D(\alpha(M)) = r(M)$, i.e. $\alpha(M)$ indexes the homogeneous component containing y_M . Define $\sigma(M)$ to be the minimal element in \mathfrak{S}_n which sends the standard multichain $[\alpha_1] \subseteq [\alpha_1 + \alpha_2] \subseteq \cdots \subseteq [\alpha_1 + \cdots + \alpha_k]$ with rank multiset $D(\alpha(M))$ to M. Then $\sigma(M) \in \mathfrak{S}^{\alpha(M)}$.

The map $M \mapsto (\alpha(M), \sigma(M))$ is a bijection between multichains of length k in \mathcal{B}_n and the pairs (α, σ) of $\alpha \in \text{Com}(n, k+1)$ and $\sigma \in \mathfrak{S}^{\alpha}$. A short way to write down this encoding of M is to insert bars at the descent positions of $\sigma(M)$. For example, the length-4 multichain $\{2\} \subseteq \{2\} \subseteq \{1, 2, 4\} \subseteq [4]$ in \mathcal{B}_4 is encoded by 2||14|3|.

There is another way to encode the multichain M. Let $p_i(M) := \min\{j \in [k+1] : i \in A_j\}, 1 \le i \le n$. So $p_i(M)$ is the first position where i appears in M. One checks that

$$\begin{cases}
p_{i}(M) > p_{i+1}(M) \Leftrightarrow i \in D(\sigma(M)^{-1}), \\
p_{i}(M) = p_{i+1}(M) \Leftrightarrow i \notin D(\sigma(M)^{-1}), D(s_{i}\sigma(M)) \not\subseteq D(\alpha(M)), \\
p_{i}(M) < p_{i+1}(M) \Leftrightarrow i \notin D(\sigma(M)^{-1}), D(s_{i}\sigma(M)) \subseteq D(\alpha(M)).
\end{cases}$$
(4)

The map $M \mapsto p(M) := (p_1(M), \dots, p_n(M))$ is an bijection between the set of multichains with length k in \mathcal{B}_n and the set $[k+1]^n$ of all words of length n on the alphabet [k+1], for any fixed integer $k \geq 0$.

Let $p(M) = \mathbf{p} = (p_1, \dots, p_n) \in [k+1]^n$. Then $\operatorname{inv}(p(M)) = \operatorname{inv}(\sigma(M))$. Let $\mathbf{p}' := (p_1', \dots, p_k')$ where $p_i' := |\{j : p_j(M) \le i\}| = |A_i|$. Then the rank multiset of M consists of p_1', \dots, p_k' . Define $D(\mathbf{p}) := \{i \in [n-1] : p_i > p_{i+1}\}$. For example, the multichain 3|14||2|5 corresponds to $\mathbf{p} = (2, 4, 1, 2, 5) \in [5]^5$, and one has $\mathbf{p}' = (1, 3, 3, 4)$, $D(2, 5, 1, 2, 4) = \{2\}$.

These two encodings (with slightly different notation) were already used by Garsia and Gessel [8] in their work on generating functions of multivariate distributions of permutation statistics.

4 0-Hecke algebra action

We saw an analogy between $\mathbb{F}[\mathcal{B}_n]$ and $\mathbb{F}[X]$ in the last section. The usual $H_n(0)$ -action on the polynomial ring $\mathbb{F}[X]$ is via the *Demazure operators*

$$\overline{\pi}_i(f) := \frac{x_{i+1}f - x_{i+1}s_if}{x_i - x_{i+1}}, \quad \forall f \in \mathbb{F}[X], \ 1 \le i \le n - 1.$$
 (5)

The above definition is equivalent to

$$\overline{\pi}_{i}(x_{i}^{a}x_{i+1}^{b}m) = \begin{cases} (x_{i}^{a-1}x_{i+1}^{b+1} + x_{i}^{a-2}x_{i+1}^{b+2} \cdots + \underline{x_{i}^{b}x_{i+1}^{a}})m, & \text{if } a > b, \\ 0, & \text{if } a = b, \\ -(\underline{x_{i}^{a}x_{i+1}^{b}} + x_{i}^{a+1}x_{i+1}^{b-1} + \cdots + x_{i}^{b-1}x_{i+1}^{a+1})m, & \text{if } a < b. \end{cases}$$
(6)

Here m is any monomial in $\mathbb{F}[X]$ containing neither x_i nor x_{i+1} . Denote by $\overline{\pi}'_i$ the operator obtained from (6) by taking only the leading term (underlined) in the lexicographic order of the result. Then $\overline{\pi}'_1, \ldots, \overline{\pi}'_{n-1}$ realize another $H_n(0)$ -action on $\mathbb{F}[X]$. We call it the *transferred* $H_n(0)$ -action because it can be obtained by applying the transfer map τ to our $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$, which we now define.

Let $M = (A_1 \subseteq \cdots \subseteq A_k)$ be a multichain in \mathcal{B}_n . Recall that $p_i(M) := \min\{j \in [k+1] : i \in A_j\}$, $1 \le i \le n$. We define

$$\overline{\pi}_{i}(y_{M}) := \begin{cases}
-y_{M}, & p_{i}(M) > p_{i+1}(M), \\
0, & p_{i}(M) = p_{i+1}(M), \\
s_{i}(y_{M}), & p_{i}(M) < p_{i+1}(M)
\end{cases}$$
(7)

for $i=1,\ldots,n-1$. Applying the transfer map τ one recovers $\overline{\pi}'_i$. For instance, when n=4 one has

$$\begin{array}{llll} \overline{\pi}_1(y_{1|34||2|}) & = & y_{2|34||1|}, & \overline{\pi}_1'(x_1^4x_2x_3^3x_4^3) & = & x_1x_2^4x_3^3x_4^3, \\ \overline{\pi}_2(y_{1|34||2|}) & = & -y_{1|34||2|}, & \overline{\pi}_2'(x_1^4x_2x_3^3x_4^3) & = & -x_1^4x_2x_3^3x_4^3, \\ \overline{\pi}_3(y_{1|34||2|}) & = & 0, & \overline{\pi}_3'(x_1^4x_2x_3^3x_4^3) & = & 0. \end{array}$$

One can check that $\overline{\pi}_1, \ldots, \overline{\pi}_{n-1}$ realize an $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$ preserving the multigrading of $\mathbb{F}[\mathcal{B}_n]$. If one set $t_i = t^i$ for $i = 1, \ldots, n$, then there is an isomorphism $\mathbb{F}[\mathcal{B}_n]/(\emptyset) \cong \mathbb{F}[X]$ of graded $H_n(0)$ -modules (which can be given explicitly, but *not* via the transfer map τ).

It is not hard to show that $\mathbb{F}[\mathcal{B}_n]^{H_n(0)} = \mathbb{F}[\Theta]$, where $\mathbb{F}[\mathcal{B}_n]^{H_n(0)}$ is the *invariant algebra* of the $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$, defined as

$$\mathbb{F}[\mathcal{B}_n]^{H_n(0)} := \{ f \in \mathbb{F}[\mathcal{B}_n] : \pi_i f = f, \ i = 1, \dots, n-1 \}.$$

Proposition 4.1 The $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$ is Θ -linear.

Therefore the *coinvariant algebra* $\mathbb{F}[\mathcal{B}_n]/(\Theta)$ is a multigraded $H_n(0)$ -module, which is isomorphic to the regular representation of $H_n(0)$ by Theorem 1.1. This cannot be obtained simply by applying the transfer map τ , since τ is *not* a map of $H_n(0)$ -modules.

5 Noncommutative characteristic

In this section we use the $H_n(0)$ -action on the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ of the Boolean algebra \mathcal{B}_n to provide a noncommutative analogue of the following remarkable result.

Theorem 5.1 (Hotta-Springer [11], Garsia-Procesi [9]) For any partition $\mu = (0 < \mu_1 \le \cdots \le \mu_k)$ of n, there exists an \mathfrak{S}_n -invariant ideal J_{μ} of $\mathbb{C}[X]$ such that $\mathbb{C}[X]/J_{\mu}$ is isomorphic to the cohomology ring of the Springer fiber indexed by μ and has graded Frobenius characteristic equal to the modified Hall-Littlewood symmetric function

$$\widetilde{H}_{\mu}(X;t) = \sum_{\lambda} t^{n(\mu)} K_{\lambda\mu}(t^{-1}) s_{\lambda}$$
 inside Sym[t]

where $n(\mu) := \mu_{k-1} + 2\mu_{k-2} + \cdots + (k-1)\mu_1$ and $K_{\lambda\mu}(t)$ is the Kostka-Foulkes polynomial.

Example 5.2 Tanisaki [19] gives a construction for the ideal J_{μ} . If $\mu = (1^k, n - k)$ is a hook then $J_{1^k, n-k}$ is generated by e_1, \ldots, e_k and all monomials $x_{i_1} \cdots x_{i_{k+1}}$ with $1 \le i_1 < \cdots < i_{k+1} \le n$.

Now consider a composition $\alpha=(\alpha_1,\ldots,\alpha_\ell)$. The major index of α is $\mathrm{maj}(\alpha):=\sum_{i\in D(\alpha)}i$. Viewing a partition $\mu=(0<\mu_1\leq\mu_2\leq\cdots)$ as a composition one has $\mathrm{maj}(\mu)=n(\mu)$. Recall that $\alpha:=(\alpha_\ell,\ldots,\alpha_1)$ and α^c is the composition of n with $D(\alpha^c)=[n-1]\setminus D(\alpha)$. We define $\alpha':=\alpha^c=(\alpha)^c$. One can identify α with a *ribbon diagram*, i.e. a connected skew Young diagram without 2 by 2 boxes, which has row lengths $\alpha_1,\ldots,\alpha_\ell$, ordered from bottom to top. Note that a ribbon diagram is a Young diagram if and only if it is a hook. One can check that α' is the transpose of α ; see the example below.

Bergeron and Zabrocki [3] introduced a noncommutative modified Hall-Littlewood symmetric function

$$\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t) := \sum_{\beta \preccurlyeq \alpha} t^{\text{maj}(\beta)} \mathbf{s}_{\beta} \quad \text{inside} \quad \mathbf{NSym}[t]$$
 (8)

and a (q, t)-analogue

$$\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};q,t) := \sum_{\beta \models n} t^{c(\alpha,\beta)} q^{c(\alpha',\overleftarrow{\beta})} \mathbf{s}_{\beta} \quad \text{inside} \quad \mathbf{NSym}[q,t]$$
(9)

for every composition α , where \mathbf{s}_{β} is the noncommutative ribbon Schur function indexed by β , and $c(\alpha,\beta) := \sum_{i \in D(\alpha) \cap D(\beta)} i$. In our earlier work [13] we provided a partial representation theoretic interpretation for $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t)$ when $\alpha = (1^k, n-k)$ is a hook, using the $H_n(0)$ -action on the polynomial ring $\mathbb{F}[X]$ by the Demazure operators.

Theorem 5.3 ([13]) The ideal J_{μ} of $\mathbb{F}[X]$ is $H_n(0)$ -invariant if and only if $\mu = (1^{n-k}, k)$ is a hook, and if that holds then $\mathbb{F}[X]/J_{\mu}$ becomes a graded projective $H_n(0)$ -module with

$$\mathbf{ch}_t(\mathbb{F}[X]/J_{\mu}) = \widetilde{\mathbf{H}}_{\mu}(\mathbf{x};t),$$

$$\operatorname{Ch}_t(\mathbb{F}[X]/J_{\mu}) = \widetilde{H}_{\mu}(\mathbf{x};t).$$

Now we switch to the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ and define I_{α} to be its ideal generated by

$$\Theta_{\alpha} := \{\theta_i : i \in D(\alpha) \cup \{n\}\} \quad \text{and} \quad \{y_A : A \subseteq [n], \ |A| \notin D(\alpha) \cup \{n\}\}$$

for any composition α of n. The following result is a restatement of Theorem 1.1.

Theorem 5.4 Let α be a composition of n. Then $\mathbb{F}[\mathcal{B}_n]/I_{\alpha}$ is a projective $H_n(0)$ -module with multigraded noncommutative characteristic equal to

$$\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x}; t_1, \dots, t_{n-1}) := \sum_{\beta \preccurlyeq \alpha} \underline{t}^{D(\beta)} \mathbf{s}_{\beta} \quad \text{inside} \quad \mathbf{NSym}[t_1, \dots, t_{n-1}].$$

One has $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t,t^2,\ldots,t^{n-1}) = \widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t)$, and one obtains $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};q,t)$ from $\widetilde{\mathbf{H}}_{1^n}(\mathbf{x};t_1,\ldots,t_{n-1})$ by taking $t_i = t^i$ for all $i \in D(\alpha)$, and $t_i = q^{n-i}$ for all $i \in [n-1] \setminus D(\alpha)$.

Proof: There is an \mathbb{F} -basis for $\mathbb{F}[\mathcal{B}_{\alpha}]/(\Theta_{\alpha})$ given by the descent monomials Y_w defined in (3) for all $w \in \mathfrak{S}^{\alpha}$. The result follows from the $H_n(0)$ -action on this basis and (4).

The proof of this theorem is actually simpler than the proof of our partial interpretation for $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x};t)$ in [13]. This is because $\overline{\pi}_i$ sends a descent monomial in $\mathbb{F}[\mathcal{B}_n]$ to either 0 or ± 1 times a descent monomial, but sends a descent monomial in $\mathbb{F}[X]$ to a polynomial in general (whose leading term is still a descent monomial). We view the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ (or $\mathbb{F}[\mathcal{B}_n]/(\emptyset)$) as a q=0 analogue of the polynomial ring $\mathbb{F}[X]$. For an odd (i.e. q=-1) analogue, see Lauda and Russell [16].

Remark 5.5 If $\alpha = (1^k, n-k)$ is a hook, one can check that the ideal $I_{1^k,n-k}$ of $\mathbb{F}[\mathcal{B}_n]$ has generators $\theta_1, \ldots, \theta_k$ and all y_A with $A \subseteq [n]$ and $|A| \notin [k]$. By Example 5.2, the images of these generators under the transfer map τ are the Tanisaki generators for the ideal $J_{1^k,n-k}$ of $\mathbb{F}[X]$, but $\tau(I_{1^k,n-k}) \neq J_{1^k,n-k}$.

For any composition $\alpha \models n$, one can view $\widetilde{\mathbf{H}}_{\alpha}(\mathbf{x}; t_1, \dots, t_{n-1})$ as a modified version of

$$\mathbf{H}_{\alpha} = \mathbf{H}_{\alpha}(\mathbf{x}; t_1, \dots, t_{n-1}) := \sum_{\beta \preccurlyeq \alpha} \underline{t}^{D(\alpha) \setminus D(\beta)} \mathbf{s}_{\beta}.$$

Below are some properties satisfied by \mathbf{H}_{α} , generalizing the properties of $\mathbf{H}_{\alpha}(\mathbf{x};t)$ given in [3].

Proposition 5.6 *Let* α *and* β *be two compositions.*

- (i) $\mathbf{H}_{\alpha}(0,\ldots,0) = \mathbf{s}_{\alpha}$, $\mathbf{H}_{\alpha}(1,\ldots,1) = \mathbf{h}_{\alpha}$.
- (ii) $\bigcup_{n>0} \{ \mathbf{H}_{\alpha} : \alpha \models n \}$ is a basis for $\mathbf{NSym}[t_1, t_2, \ldots]$.
- (iii) $\langle \mathbf{H}_{\alpha}, \mathbf{H}_{\beta} \rangle = (-1)^{|\alpha| + \ell(\alpha)} \delta_{\alpha, \beta^c}$ for any pair of compositions α and β .

(iv)

$$\mathbf{H}_{\alpha} \cdot \mathbf{H}_{\beta} = \sum_{\gamma \preccurlyeq \beta} \left(\prod_{i \in D(\beta) \setminus D(\gamma)} (t_i - t_{|\alpha|+i}) \right) \left(\mathbf{H}_{\alpha\gamma} + (1 - t_{|\alpha|}) \mathbf{H}_{\alpha \triangleright \gamma} \right).$$

(v) If $n = |\alpha|$ and $t | n := (t_1, \dots, t_{n-1}, 1, t_1, \dots, t_{n-1}, 1, \dots)$ then

$$\mathbf{H}_{\alpha}(\mathbf{x}; t_1, \dots, t_{n-1})\mathbf{H}_{\beta}(\mathbf{x}; t|n) = \mathbf{H}_{\alpha\beta}(t|n).$$

6 Quasisymmetric characteristic

Now we study the quasisymmetric characteristic of $\mathbb{F}[\mathcal{B}_n]$. The following lemma follows easily from (4).

Lemma 6.1 Let α be a weak composition of n. Then the α -homogeneous component $\mathbb{F}[\mathcal{B}_n]_{\alpha}$ of the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$ is an $H_n(0)$ -submodule of $\mathbb{F}[\mathcal{B}_n]$ with homogeneous multigrading $\underline{t}^{D(\alpha)}$ and isomorphic to the cyclic module $H_n(0)\pi_{w_0(\alpha^c)}$.

Since $\mathbb{F}[\mathcal{B}_n]_{\alpha}$ is a cyclic multigraded $H_n(0)$ -module, we get an $\mathbb{N} \times \mathbb{N}^{n+1}$ -multigraded quasisymmetric characteristic

$$\operatorname{Ch}_{q,\underline{t}}(\mathbb{F}[\mathcal{B}_n]_{\alpha}) = \sum_{w \in \mathfrak{S}^{\alpha}} q^{\operatorname{inv}(w)} \underline{t}^{D(\alpha)} F_{D(w^{-1})}$$
(10)

where q keeps track of the length filtration and \underline{t} keeps track of the multigrading of $\mathbb{F}[\mathcal{B}_n]_{\alpha}$. This defines an $\mathbb{N} \times \mathbb{N}^{n+1}$ -multigraded quasisymmetric characteristic for the Stanley-Reisner ring $\mathbb{F}[\mathcal{B}_n]$, which is explicitly given in Theorem 1.2 and restated below.

Theorem 6.2 The $\mathbb{N} \times \mathbb{N}^{n+1}$ -multigraded quasisymmetric characteristic of $\mathbb{F}[\mathcal{B}_n]$ is

$$\operatorname{Ch}_{q,\underline{t}}(\mathbb{F}[\mathcal{B}_n]) = \sum_{k\geq 0} \sum_{\alpha \in \operatorname{Com}(n,k+1)} \underline{t}^{D(\alpha)} \sum_{w \in \mathfrak{S}^{\alpha}} q^{\operatorname{inv}(w)} F_{D(w^{-1})} \\
 = \sum_{w \in \mathfrak{S}_n} \frac{q^{\operatorname{inv}(w)} \underline{t}^{D(w)} F_{D(w^{-1})}}{\prod_{0 \leq i \leq n} (1 - t_i)} \\
 = \sum_{k\geq 0} \sum_{\mathbf{p} \in [k+1]^n} t_{p'_1} \cdots t_{p'_k} q^{\operatorname{inv}(\mathbf{p})} F_{D(\mathbf{p})}.$$

Proof: Use the two encodings of the multichains in \mathcal{B}_n as well as the free $\mathbb{F}[\Theta]$ -basis $\{Y_w : w \in \mathfrak{S}_n\}$ of descent monomials for $\mathbb{F}[\mathcal{B}_n]$ discussed in Section 3.

Next we explain here how this theorem specializes to (1), a result of Garsia and Gessel [8, Theorem 2.2] on the multivariate generating function of the permutation statistics $\operatorname{inv}(w)$, $\operatorname{maj}(w)$, $\operatorname{des}(w)$, $\operatorname{maj}(w^{-1})$, and $\operatorname{des}(w^{-1})$ for all $w \in \mathfrak{S}_n$. First recall that

$$F_{\alpha} = \sum_{\substack{i_1 \ge \dots \ge i_n \ge 1\\ i \in D(\alpha) \Rightarrow i_i > i_{i+1}}} x_{i_1} \cdots x_{i_n}, \quad \forall \alpha \models n.$$

Let $\mathbf{ps}_{q;\ell}(F_{\alpha}) := F_{\alpha}(1,q,q^2,\dots,q^{\ell-1},0,0,\dots)$, and $(u;q)_n := (1-u)(1-qu)(1-q^2u)\cdots(1-q^nu)$. It is not hard to check (see Gessel and Reutenauer [10, Lemma 5.2]) that

$$\sum_{\ell>0} u^{\ell} \mathbf{ps}_{q;\ell+1}(F_{\alpha}) = \frac{q^{\mathrm{maj}(\alpha)} u^{\mathrm{des}(\alpha)}}{(u;q)_n}.$$

Then applying the linear transformation $\sum_{\ell\geq 0}u_1^\ell\mathbf{ps}_{q_1;\ell+1}$ and the specialization $t_i=q_2^iu_2$ for all $i=0,1,\ldots,n$ to Theorem 6.2 we recover (1).

A further specialization of Theorem 6.2 gives a well known result which is often attributed to Carlitz [6] but actually dates back to MacMahon [17, Volume 2, Chapter 4].

Corollary 6.3 (Carlitz-MacMahon) Let $[k+1]_q := 1 + q + q^2 + \cdots + q^k$. Then

$$\frac{\sum_{w \in \mathfrak{S}_n} q^{\operatorname{maj}(w)} u^{\operatorname{des}(w)}}{(u; q)_n} = \sum_{k \ge 0} ([k+1]_q)^n u^k.$$

Theorem 6.2 also implies the following result, which was obtained by Adin, Brenti, and Roichman [1] from the Hilbert series of the coinvariant algebra $\mathbb{F}[X]/(\mathbb{F}[X]_+^{\mathfrak{S}_n})$.

Corollary 6.4 (Adin-Brenti-Roichman) *Let* Par(n) *be the set of weak partitions* $\lambda = (\lambda_1, \ldots, \lambda_n)$ *with* $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$, and let $m(\lambda) = (m_0(\lambda), m_1(\lambda), \ldots)$, where $m_j(\lambda) := \#\{1 \leq i \leq n : \lambda_i = j\}$. Then

$$\sum_{\lambda \in Par(n)} \binom{n}{m(\lambda)} \prod_{i=1}^{n} q_i^{\lambda_i} = \frac{\sum_{w \in \mathfrak{S}_n} \prod_{i \in D(w)} q_1 \cdots q_i}{(1 - q_1)(1 - q_1 q_2) \cdots (1 - q_1 \cdots q_n)}.$$

7 Remarks and questions for future research

7.1 Hecke algebra action

It is well known that the symmetric group \mathfrak{S}_n is the Coxeter group of type A_{n-1} . The Stanley-Reisner ring of \mathcal{B}_n is essentially the Stanley-Reisner ring of the Coxeter complex of \mathfrak{S}_n . The Hecke algebra $H_W(q)$ can be defined for any finite Coxeter group W. We can generalize our action $H_n(0)$ -action on $\mathbb{F}[\mathcal{B}_n]$ to an $H_W(q)$ -action on the Stanley-Reisner ring $\mathbb{F}(q)[\Delta(W)]$ of the Coxeter complex $\Delta(W)$ of any finite Coxeter group W. We show similar results for this $H_W(q)$ -action.

7.2 Gluing the group algebra and the 0-Hecke algebra

The group algebra $\mathbb{F}W$ of a finite Coxeter group W naturally admits both actions of W and $H_W(0)$. Hivert and Thiéry [12] defined the *Hecke group algebra* of W by gluing these two actions. In type A, one can also glue the usual actions of \mathfrak{S}_n and $H_n(0)$ on the polynomial ring $\mathbb{F}[X]$, but the resulting algebra is different from the Hecke group algebra of \mathfrak{S}_n .

Now one has a W-action and an $H_W(0)$ -action on the Stanley-Reisner ring $\mathbb{F}[\Delta(W)]$. What can we say about the algebra generated by the operators s_i and $\overline{\pi}_i$ on $\mathbb{F}[\Delta(W)]$? Is it the same as the Hecke group algebra of W? If not, what properties (dimension, bases, presentation, simple and projective indecomposable modules, etc.) does it have?

7.3 Tits Building

Let $\Delta(G)$ be the Tits building of the general linear group $G=GL(n,\mathbb{F}_q)$ and its usual BN-pair over a finite field \mathbb{F}_q ; see e.g. Björner [4]. The Stanley-Reisner ring $\mathbb{F}[\Delta(G)]$ is a q-analogue of $\mathbb{F}[\mathcal{B}_n]$. The nonzero monomials in $\mathbb{F}[\Delta(G)]$ are indexed by multiflags of subspaces of \mathbb{F}_q^n , and there are $q^{\mathrm{inv}(w)}$ many multiflags corresponding to a given multichain M in \mathcal{B}_n , where $w=\sigma(M)$. Can one obtain the multivariate quasisymmetric function identities in Theorem 1.2 by defining a nice $H_n(0)$ -action on $\mathbb{F}[\Delta(G)]$?

Acknowledgements

The author is grateful to Victor Reiner for providing valuable suggestions. He also thanks Ben Braun and Jean-Yves Thibon for helpful conversations and email correspondence.

References

- [1] R. Adin, F. Brenti, and Y. Roichman, Descent representations and multivariate statistics, Trans. Amer. Math. Soc. 357 (2005) 3051–3082.
- [2] I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras, vol. 1: Techniques of representation theory, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006.
- [3] N. Bergeron and M. Zabrocki, q and q, t-analogs of non-commutative symmetric functions, Discrete Math. 298 (2005) 79–103.
- [4] A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984) 173–212.
- [5] A. Björner and M. Wachs, Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc. 308 (1988) 1–37.
- [6] L. Carlitz, A combinatorial property of q-Eulerian numbers, Amer. Monthly, 82 (1975) 51–54.
- [7] A. Garsia, Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. Math. 38 (1980) 229–266.

- [8] A. Garsia and I. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979) 288–305.
- [9] A. Garsia and C. Procesi, On certain graded S_n -modules and the q-Kostka polynomials, Adv. Math. 94 (1992) 82–138.
- [10] I. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993) 189–215.
- [11] R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113–127.
- [12] F. Hivert and N. Thiéry, The Hecke group algebra of a Coxeter group and its representation theory, J. Algebra, 321(2009) 2230–2258.
- [13] J. Huang, 0-Hecke algebra actions on coinvariants and flags, to appear in J. Algebraic Combin..
- [14] D. Krob and J.-Y. Thibon, Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q=0, J. Algebraic Combin. 6 (1997) 339–376.
- [15] A. Lascoux, J.-C. Novelli, and J.-Y. Thibon, Noncommutative symmetric functions with matrix parameters, J. Algebr. Comb. 37 (2013) 621–642.
- [16] A. Lauda and H. Russell, Oddification of the cohomology of type A Springer varieties, arXiv:1203.0797.
- [17] P.A. MacMahon, Combinatorial Analysis, Vols. 1 and 2, Cambridge University Press 1915–1916; reprinted by Chelsea 1960.
- [18] P.N. Norton, 0-Hecke algebras, J. Austral. Math. Soc. A 27 (1979) 337–357.
- [19] T. Tanisaki, Defining ideals of the closures of conjugacy classes and representations of the Weyl groups, Tohoku Math. J. 34 (1982), 575–585.